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Abstract

Geometric models allow to determine semantic informa-
tion about real-world objects. Model fitting algorithms need
to find the best match between a parameterized model and
a given image. This task inherently requires an objective
function to estimate the error between a model parameteri-
zation and an image. The accuracy of this function directly
influences the accuracy of the entire process of model fit-
ting. Unfortunately, building these functions is a non-trivial
task.

Dedicated to the application of face model fitting, this
paper proposes to consider a multi-band image represen-
tation that indicates the facial components, from which a
large set of image features is computed. Since it is not pos-
sible to manually formulate an objective function that con-
siders this large amount of features, we apply a Machine
Learning framework to construct them. This automatic ap-
proach is capable of considering the large amount of fea-
tures provided and yield highly accurate objective functions
for face model fitting. Since the Machine Learning frame-
work rejects non-relevant image features, we obtain high
performance runtime characteristics as well.

1. Introduction
Model-based techniques have proven successful for ex-

tracting high-level information from images. A priori
knowledge such as shape or texture allows to reduce the
large amount of image data to a small number of model
parameters. The model’s parameter vector p represents its
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configuration, such as position, rotation, scaling, and defor-
mation.

Model fitting is the computational challenge of finding
the model parameters that best describe the given image and
it usually consists of two components: the fitting algorithm
and the objective function. The objective function f(I,p)
yields a comparable value that indicates how accurately a
parameterized model p fits to an image I . In this paper,
smaller values denote a better model fit. The fitting algo-
rithm searches for the model parameters that minimize the
objective function. Since the described methods are inde-
pendent of the used fitting algorithm, this paper shall not
elaborate on them but we refer to [5] for a recent overview
and categorization.

Problem Statement: The accuracy of model fitting
greatly depends on the quality of the objective function.
This function is often designed manually using the de-
signer’s intuition and domain knowledge. He selects a small
number of image features and formulates mathematical cal-
culation rules [10, 3]. Afterwards, the function’s appropri-
ateness is subjectively determined by inspecting its result
on example images and example model parameters.

To ensure well fit models, we calculate image features
not only from the original image but also from a set of de-
rived feature bands. Therefore, a vast amount of image fea-
tures have to be evaluated for their benefit when the objec-
tive function is created. Humans are not able to consider this
vast amount of data and therefore the traditional approach
to design the objective function is not applicable.

Solution Idea: This paper proposes to automatically
learn the objective function rather than designing it manu-
ally. Machine Learning allows to consider a large amount of
image features, objectively evaluate their importance, pick
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original skin lip teeth iris eye brows fitted model
Figure 1. Our multi-band image representation indicates the location of various facial components. An objective function that is able to
consider this vast amount of information supports correctly fitting a face model.

the relevant ones and reject the rest. We provide the learn-
ing algorithm with image features from every band of a
multi-band image representation that describes various fa-
cial components. Each pixel of a facial component band in-
dicates the probability that it corresponds to a certain facial
component, see Figure 1. It is robust to clutter and motion
in the background and emphasizes the transitions between
the facial components which are crucial for face model fit-
ting.

The contributions of this publication are threefold. 1) We
propose a Machine Learning framework to create objective
functions for face model fitting. 2) Great accuracy is ob-
tained because the machine learning process is able to ob-
jectively evaluate the benefit of each image feature from a
large set. 3) Since it rejects non-relevant image features
and only considers the relevant ones, the obtained objective
function shows high runtime performance as well.

This paper continues as follows. Section 2 provides an
overview about related approaches and the scientific back-
ground of this paper. Section 3 introduces our approach that
learns robust objective functions from a multi-channel im-
age representation. Section 4 discusses our approach and
shows advantages and disadvantages. Section 5 demon-
strates results of the experimental evaluation of our ap-
proach. Section 6 summarized our approach and points out
future work.

2. Related Work and Background
This section reviews the scientific background for fitting

deformable shape models including related approaches that
consider multi-band image representations.

2.1. Fitting Active Shape Models

Active Shape Models (ASM) represent the variation in
shape of deformable objects as a linear combination of a
small number of modes of variation. A small number of pa-
rameters is capable of expressing large variations in shape.
The shape x of an ASM is a linearized vector of N shape
points generated by Equation 1, where x̄ is the mean shape,

P is the matrix of orthogonal modes of shape variation, and
b is the vector of deformation parameters.

x = x̄ + Pb (1)

Both x̄ and P are obtained from a set of registered train-
ing shapes by computing the mean and by applying PCA,
respectively. P is restricted such that it contains a small
number of the most important variations only. Applying
affine transformation T yields the global shape x̂ that can
be located anywhere within the image.

x̂ = T (tx, ty, s, α,x) (2)

As described by Cootes et al. [1], the fitting strategy for
ASMs is to individually consider each shape point x̂n and
search for a better hypothesis x̂H

n by minimizing an objec-
tive function fn(I,u). Equation 3 describes this search,
where the value of fn indicates how accurately the loca-
tion u within the image I describes the nth shape point.

x̂H
n = argmin

u
fn(I,u) (3)

In order to reduce the computational cost of this local
search, u is usually constrained to lie on the perpendicular
to the shape line within a certain search radius.

The so determined hypothesis of the shape x̂H usually
does not obey the model restrictions, i.e. model parame-
ters that would yield the shape x̂H do not exist. Therefore,
the model parameters p are approximated in a second step
by minimizing the squared distance between the hypothe-
sis x̂H and the shape x̂ described by p.

The advantage of this two-step fitting approach is that
the search along the perpendicular is only one-dimensional.
This allows to conduct exhaustive search, which does not
suffer from getting stuck in local minima. However, its
drawbacks are that this second approximation step might
decrease the previously achieved accuracy of x̂H and yield
the final result x̂.



Figure 2. This figure illustrates how to learn an objective function from multi-band images. The image features are extracted not only from
the original image data but also from a set of facial component feature bands.

2.2. Multi-band Image Representation of Facial
Component

Our multi-band image representation describes the posi-
tions of different facial components, such as skin, lips, eyes,
and brows. The pixel values of the various feature bands
represent the probability to belong to a certain facial compo-
nent. In order to quickly determine this value, simple clas-
sifiers would consider single pixel color information only.
Unfortunately, high intra-class and small inter-class varia-
tions prevent these classifiers from yielding robust results,
whereas more elaborate classifiers do not achieve real-time
performance.

Recently, we proposed a two-step approach to solve this
task [14]. In the first step, we determine context informa-
tion about the given image and the visible person. For this
reason, the bounding box around the face is obtained from
face locators, such as the approach of Viola and Jones [13].
The bounding box is utilized to estimate the parameters of
the skin color distribution, which is assumed to be Gaus-
sian. This color distribution together with the geometric
coordinates of the facial bounding box represents the char-
acteristics of the entire image.

In the second step, we learn a quick classifier that is able
to determine the facial component of a pixel. This approach
is superior to simple classifiers, because it considers pixel
information as well as the image characteristics at the same
time. Therefore, the calculation is both, accurate and very
fast at the same time.

2.3. Multi-band Model Fitting

Cootes et al. [2] propose to utilize images with two fea-
ture bands for creating and fitting face appearance models.
These feature bands reflect edge directions in two dimen-
sions, where the magnitude indicates the degree of reliance
in the orientation estimation. Therefore, the appearance
model is not rendered as intensity values but as edge direc-
tions. This approach is similar to our approach because not
only the raw image data but an image representation with
various additional feature bands is considered.

Similarly, Stegmann et al. [11] propose to utilize a multi-
band image representation. Edges and color bands obtained
from converting the image into various color spaces are con-
sidered. They experienced a significant gain in accuracy.

Kahmaran et al. [7] also take this approach but rely on a
different image representation.

In contrast to these approaches, our representation adapts
to image conditions and the characteristics of the visible
person. It does not consider simple local features such as
edges but sophisticated global image features that depend
on global image properties.

3. Fitting Contour Models with Objective
Functions

The contour points x̂ that are partially connected with
lines are obtained from the model’s parameter vector p. The
common fitting strategy for contour models [1] is to search
for the best hypothesis x̂H

n of each contour point x̂n indi-
vidually by minimizing a local objective function fn(I,u)
with u being a position in the image. Therefore, the suc-
cess of ASM fitting relies on the quality of the objective
function.

Traditionally, objective functions are specified manually
by first selecting a small number of image features, such
as edges or corners, and then formulating calculation rules
that compute the function value from the feature values [1].
Our approach provides the objective function not only with
the original image but with a multi-band image representa-
tion I = {Igray, Iskin, Iteeth, I lip, Iiris, Ibrows}.

3.1. Properties of Ideal Objective Functions

Functions that perfectly support the process of model fit-
ting are called ideal objective functions. Two properties en-
sure that minimizing the objective function always results in
a perfect model fit. First, the global minimum has to corre-
spond to the correct position of the shape point. This prop-
erty is important because the fitting algorithm will estimate
the model parameterization from this minimum. Second,
the objective function must not have any further local min-
ima. This property is important because fitting algorithms
can get easily stuck in local minima. Equation 4 depicts an
ideal objective function f?

n for the nth shape point. It com-
putes the Euclidean distance between a given location u
on the image plane and the correct location of the shape
point x̂?

n. Note that the vector of correct shape points x̂?



Figure 3. The selection of the feature bands that are considered
by the objective function influences the precision of the objective
function. The feature bands representing skin color and lip color
provide more information than grey values.

must be specified manually.

f?
n(I,u) = |u − x̂?

n| (4)

Fitting Active Appearance Models (AAMs), such as the
ones used by Stegmann et al. [11], requires a better initial
parameter estimate than fitting ASMs. The reason is, that
common AAM objective functions do not fulfill the second
property. Therefore, the multi-band approach proposed here
will outperform a multi-band implementation of AAMs.

3.2. Generating Image Annotations

Although f?
n already provides ideal characteristics, it is

not able to be used for previously unseen images, because it
requires to manually specify the correct shape points x̂?

n to
compute its value. However, we propose to use f?

n to gener-
ate training data for learning a further objective function f `

n

that does not require knowledge of x̂?
n.

This six-step procedure is depicted in Figure 2. The key
idea behind our approach is that f?

n has the properties for
idealness and generates ideal training data. f `

n is learned
from this training data and will therefore approximately
have these properties, too.

A set of manually annotated images with the correct
shape points x̂?

n forms the basis of this approach. For
each x̂?

n, the ideal objective function returns the mini-
mum f?

n(I, x̂?
n) = 0 by definition. These correspondences

between pixel coordinates and the function’s result values
do not yet represent sufficient training data to learn f `

n. In
the second step, further correspondences between image co-
ordinates and function values are automatically acquired by
considering locations in the neighborhood of x̂?

n. Evalu-
ating the ideal objective function at these locations returns
a value greater than 0. This training data is sufficient to
learn f `

n. For a more detailed inspection of this approach
we refer to [15].

3.3. Learning Objective Functions from Multi-band
Image Data

For more robustness, we do not learn f `
n from the plain

image content, but we compute the multi-band image repre-
sentation I = {Igray, Iskin, I lip, Ibrow, I iris, I tooth} containing
a set of facial components including Igray that denotes the

original image as described in Section 2.2. From each band,
we extract a large set of Haar-like features [13] of different
sizes and different styles. Now, we have a mapping from a
set of feature values to the result value of the ideal objective
function.

The last step learns f `
n(I,p) from this large amount of

training data. We choose tree-based linear regression [9]
as Machine Learning algorithm, because this approach ob-
jectively investigates the benefit of each feature, picks the
relevant ones, and rejects all other features. Therefore, the
values of only a small number of image features need to be
computed during runtime.

Performing model fitting for previously unseen images
is now a two-step approach. In the first step, the multi-band
image representation is calculated from the original image
as shown in Section 2.2. Their feature bands are adapted
to the current image because their calculation is based on
image-specific properties. In the second step, the learned
objective function is optimized in order to estimate the cor-
rect model parameters. This function calculates its value
from the multi-band image representation.

4. Discussion

This procedure holds several advantages. First, the re-
maining manual step (annotating the images) is less error-
prone than designing the entire function: It is intuitive to
specify the correct model parameters for a moderate num-
ber of example images. According to its definition, the ob-
jective function returns zero for these examples. In con-
trast, explicitly formulating rules that yield the correct re-
sult for a variety of model parameters is difficult. Second,
the procedure is mostly automated and therefore, it gets rid
of the labor-intensive task of designing the objective func-
tion. Third, by using an ideal objective function to generate
training data, the learned objective function is also approx-
imately ideal. Fourth, this approach does not rely on expert
knowledge and therefore, it is generally applicable and not
domain-dependent.

Finally, extracting the image features from the original
image data as well as from facial component feature bands
holds further advantages. Since these image representa-
tions provide information about the location of various fa-
cial components, they decrease the influence of the image
content of these components to the fitting process. The bot-
tom line is that our approach yields more accurate objective
functions, which greatly facilitate the model fitting task.

However, the quality of the objective function is limited
by the quality of the training data. For instance, if the train-
ing set does not contain bearded men, the learned objective
function will not be able to fit the model to images with
bearded men correctly.



Figure 4. This chart illustrates the use of different Haar-like features within objective functions of two different shape points, the first one
on the cheek line and the second one on the upper lip. Larger circles denote a more frequent use of a certain feature within the objective
functions.

5. Experimental Evaluation
This section conducts a threefold evaluation of the

learned objective functions. First, the accuracy of learn-
ing the objective functions is measured. Second, it in-
spects the image features selected for computing the func-
tion value. Finally, the runtime characteristics of learned
objective functions are investigated.

The entire evaluation is conducted on a random collec-
tion of 500 images with faces acquired from the Internet.
They show individual persons and they are taken without
a computer vision application in mind. The images origi-
nate from different camera types and show different illumi-
nation conditions, head orientation, and facial expression.
Their sizes vary between 0.1 and 1.0 M pixel, and the in-
terocular distance varies between 30 and 230 pixels. We
manually specified the correct model parameters ourselves.
Therefore, evaluation on these images proves the general
applicability1.

We learned the objective functions on 67% of the im-
ages and the remaining 33% are considered for evalua-
tion (167 images).

5.1. Comparing the Use of Different Facial Compo-
nent Bands

This evaluation investigates how accurately an objec-
tive function is learned being provided with different fa-
cial component bands. We conduct four experiments E1
to E4 that learn objective functions from different im-
age representations, providing the same number of fea-
tures within each experiment to ensure comparability:

1The reader may verify this by uploading his own holiday photos to our
Web-Service: http://www.someuniversity.com/author/FitFaceModel.php

IE1={Igray}, IE2={Igray, Iskin}, IE3={Iskin, I lip}, and
IE4={Igray, Iskin, I lip}. The objective functions for the in-
dividual shape points are evaluated on a separate test set
showing different accuracy. Figure 3 demonstrates the ac-
curacy by measuring the mean errors dE1 to dE4 between
the value of the ideal objective function and the value of the
learned objective functions. Comparing E1 to E2, Figure 3
clearly shows that providing additional information about
skin decreases the error of the objective function because
we mostly model transitions between skin colored regions
and non-skin colored regions.

Since dE4 which considers the original image data, skin
color and lip color is almost as accurate as dE3 which con-
siders skin color and lip color only, providing the origi-
nal image data does not greatly influence the fitting accu-
racy. However, providing a lip color feature band further
improves the fitting accuracy.

5.2. Inspection of the Most Relevant Features

This section investigates which features are considered
relevant in Experiment E4. We compare two shape points as
visible in Figure 4. These shape points are chosen, because
they are located at semantically different locations within
the face: the cheek and the upper lip. As expected, they
demonstrate the automatic selection of different facial com-
ponent bands and different Haar-like features very well.

Figure 4 illustrates that Feature 1a in the skin color band
is considered most important for the shape point located
on the cheek. This feature is able to determine horizontal
transitions. This is intuitive because the skin color band
clearly separates the face from the background by a hori-
zontal transition. In contrast to the gray value band, objects
in the background do not affect the image content around



this shape point.
Figure 4 illustrates that Feature 1b in the skin color band

and Feature 1c in the lip color band are considered most
important. This is intuitive because both features reflect
the transition between the lips and the surrounding skin. In
some cases, the lip color provides more information, e.g.
beards cover the area around the mouth and make this tran-
sition difficult to detect in the skin color band. The lip color
feature band in contrast still reflects this transition.

Both points consider the gray scale image only to a small
extent. This proves that information obtained from the
multi-band image representation is more important.

5.3. Runtime Characteristics

This section evaluates the timing characteristics of ex-
ecuting the learned objective functions of Experiment E4.
Depending on the number of features provided, we inspect
the number of features selected, which is similar to the num-
ber of arithmetic operations that have to be performed. As
shown in Figure 5, increasing the number of features pro-
vided makes the tree-based regression algorithm reject more
non-relevant features and therefore, the number of selected
features converges to a fixed amount.

6. Conclusion and Outlook
In this paper, we propose a novel way to obtain robust

objective functions for face model fitting. Their high accu-
racy is obtained, because they consider a large amount of
image features, which are computed from a multi-band im-
age representation that indicates the location of the facial
components. Instead of conducting the tedious and erro-
neous process of manually formulating the objective func-
tion, we automatically learn this function from manually an-
notated images.

Our evaluation demonstrates that the Machine Learning
algorithm rates the information gained from the facial com-
ponent bands to be more relevant than the information of the
original image. The execution time of the objective function
converges to a fixed number of operations with a increasing
number of features. In our ongoing research we will eval-
uate learning objective functions with multi-band for three-
dimensional models.
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