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Abstract. Model-based image interpretation extracts high-level infor-
mation from images using a priori knowledge about the object of interest.
The computational challenge is to determine the model parameters that
best match a given image by searching for the global optimum of the
involved objective function. Unfortunately, this function is usually de-
signed manually, based on implicit and domain-dependent knowledge,
which prevents the fitting task from yielding accurate results.

In this paper, we demonstrate how to improve model fitting by learning
objective functions from annotated training images. Our approach au-
tomates many critical decisions and the remaining manual steps hardly
require domain-dependent knowledge. This yields more robust objective
functions that are able to achieve the accurate model fit. Our evalua-
tion uses a publicly available image database and compares the obtained
results to a recent state-of-the-art approach.

1 Introduction

Model-based image interpretation systems exploit a priori knowledge about ob-
jects, such as shape or texture. The model contains a parameter vector p that
represents its configuration, including position, rotation, scaling, and deforma-
tion. These parameters are usually mapped to the surface of an image, via a set
of feature points, a contour, or a textured region.

Model fitting is the computational challenge of finding the model parame-
ters that describe the content of the image best [1]. This task consists of two
components: the fitting algorithm and the objective function. The objective func-
tion yields a comparable value that determines how accurately a parameterized
model fits to an image. In this paper, smaller values denote a better model fit.
Depending on context, they are also known as the likelihood, similarity, energy,
cost, goodness or quality functions. The fitting algorithm searches for the model
parameters p that optimize the objective function. Since the described methods
are independent of the used fitting algorithm, this paper shall not elaborate on
them but we refer to [1] for a recent overview and categorization.

Problem Statement. Fitting algorithms have been the subject of intensive
research and evaluation. In contrast, the objective function is usually determined
ad hoc and heuristically, using the designer’s intuitions about a good measure of
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Fig. 1. The traditional procedure for designing objective functions (left), and the pro-
posed method for learning objective functions from annotated training images (right).
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fitness. Afterwards, its appropriateness is subjectively determined by inspecting
its result, evaluated on example images and example model parameterizations. If
the result is not satisfactory the objective function is tuned or redesigned from
scratch, see Figure 1 (left). The consequences are that this design approach
requires much implicit and domain-dependent knowledge. Its iterative nature
also makes it a time-consuming process of unpredictable duration. Furthermore,
the best model fit is not objectively determined.

Solution Idea. In contrast, this paper explicitly formulates the properties
of ideal objective functions and gives a concrete example of such a function
based on manual image annotations. Unfortunately, it is impossible to obtain
ideal objective functions for real-world scenarios. Therefore, we propose to learn
the objective function from comprehensive training data specified by the ideal
objective function. This methodology approximates the ideal objective function
and therefore achieves high accuracy. It automates most steps and the remaining
manual steps require little domain-dependent knowledge, see Figure 1 (right).
Furthermore, the design-inspect loop is eliminated, which makes the time re-
quirements predictable.

Section 2 describes the design approach and points out its shortcomings.
Section 3 specifies properties of ideal objective functions. Section 4 explains the
proposed approach in detail. Section 5 experimentally evaluates the obtained re-
sults. Section 6 refers to related work and Section 7 summarizes our contributions
and suggests further work.

2 Manually Designing Objective Functions

In order to explain the proposed technique, this paper utilizes a two-dimensional,
deformable, contour model of a human face according to the Active Shape Model
approach [2]. The model parameters p=(t;,t,,s,0,b)” describes the transla-
tion ¢, and t,, the scaling s, the rotation 6 and the deformation b. The func-
tion ¢, (p) computes the location of the n** contour point with 1<n<N.
Model-based image interpretation requires determining the model that fits
best to the image. For this reason, the objective function f(I,p) computes the
fitness between the model parameters p and the image I. According to common
approaches [2], we split the objective function into N local parts f,, (I, x), one for
each contour point ¢, (p). These local functions evaluate the image variations
around the corresponding contour point and give evidence about its fitness.



Note, that the search on local objective functions f,,(I,x) is conducted in pixel
space £ER?, whereas the search on global objective function f(I,p) is conducted
in parameter space p€RY with P=dim(p). The result of the global objective
function is the sum of the local function values, as in Equation 1. From now on,
we will concentrate on local objective functions f,,, and simply refer to them as
objective functions.

FUI,p) =" full,ca(p)) (1)

Objective functions are usually designed by manually selecting salient fea-
tures from the image and mathematically composing them. The feature selection
and the mathematical composition are both based on the designer’s intuition and
implicit knowledge of the domain. In [3] for instance, the objective function is
computed from edge values of the image. Each contour point is considered to be
located well if it overlaps a strong edge of the image. A similar objective function
is shown in Equation 2, where 0<FE(I,x)<1 denotes the edge magnitude.

full,e) =1 - E(I,x) (2)

As illustrated with the example in Figure 2, the design approach has com-
prehensive shortcomings and unexpected side-effects. 2a) visualizes one of the
contour points of the face model as well as its perpendicular towards the contour.
2b) and 2c) depict the content of the image along this perpendicular as well as
the corresponding edge magnitudes E(I, x). 2d) shows the value of the designed
objective function f¢ along the perpendicular. Obviously, this function has many
local minima within this one-dimensional space. Furthermore, the global mini-
mum does not correspond to the ideal location that is denoted by the vertical
line. Because of this amount of local minima, fitting algorithms have difficulty
in finding the global minimum. Even if an algorithm found the global minimum,
it would be wrong, because it does not correspond to the ideal location.

3 The Properties of Ideal Objective Functions

This section makes the observations from Figure 2 explicit by formulating two
properties P1 and P2. We call an objective function ideal once it has both of
them. The mathematical formalization of P1 uses the ideal model parameters p7,
which are defined to be the model parameters with the best fitness to a specific
image I. Similarly, ¢, (p7) denote the ideal contour points.

P1: Correctness: The global minimum corresponds to the best model fit.
Va(en(pr) #2) = full,en(p])) < full, o)
P2: Uni-modality: The objective function has no local extrema.

Imve (m#x) = f,(I,m)<f,(I,z) N Vf,(I,z)#0
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Fig.2. a) Contour point with perpendicular, b) Image data, ¢) Edge magnitudes,
d) Designed objective function fy, e) Ideal objective function f;, f) Training data,
g) Learned objective function f£: Note, b) — g) are taken along that perpendicular
visible in a). The vertical line represents the location of the ideal contour point ¢, (p7)

Note that P2 guarantees that any determined minimum represents the global
minimum. This facilitates search, because fitting algorithms can not get stuck
in local minima. Thereby, the global minimum m does not need to correspond
to the best fit. This is only required by the independent property P1.

fill, ) = |® — en(p])| 3)

We now introduce a concrete instance of an ideal objective function f(I,x),
defined in Equation 3. It computes the distance between the ideal contour
point ¢, (p;) and a pixel « located on the image surface. A significant feature
of fr is that it uses the ideal parameters p} to compute its value. This implies
that f cannot be applied to previously unseen images, because pj is not known
for these images.

4 Learning Robust Objective Functions

This section explains the five steps of our approach that learns objective func-
tions from annotated training images, see Figure 1 (right). The key idea behind
the approach is that f; has the properties P1 and P2, and it generates the
training data for learning an objective function f£ (I, z). Therefore, this learned
function will also approximately have these properties. Since it is “approximately
ideal” we will refer to it as a robust objective function.



4.1 Annotating Images with Ideal Model Parameters

We manually annotate a set of images I}, with 1<k<K with the ideal model pa-
rameters pj, . These parameters help to compute the ideal objective function f5
in Equation 3. This annotation is the only laborious step in the entire proce-
dure of the proposed approach, whereat the time need remains predictable. An
experienced human needs about one minute to determine the ideal parameters
of our face model for one image. Figure 3 shows four images that are annotated
with the ideal parameters of our face model. Note that for synthetic images, p}
is known, and can be used in such cases. For real-world images, however, the
ideal model parameters depend on the user’s judgment.

Fig. 3. Four images that are manually annotated with the ideal face model.

4.2 Generating Further Image Annotations

According to P1, the ideal objective function returns the minimum f}*(7, x)=0 for
all image annotations. This data is not sufficient to learn f!, because training
data must also contain image annotations, for which f¥(I,x)##0. To acquire
these annotations, x must be varied. General variations move x to any position
within the image, however, it is more practicable to restrict this motion in terms
of distance and direction.

Therefore, we generate a number of displacements xy, , ¢ with —D<d<D that
are located on the perpendicular to the contour line with a maximum distance A
to the contour point. Taking only these relocations facilitates the later learning
step and improves the accuracy of the resulting calculation rules. This procedure
is depicted in Figure 4. The center row depicts the manually annotated images,
for which f3 (I, @y n,0)=f, (I, cn (P, ))=0. The other columns depict the displace-
ments &, dz0 With fi (I, @y n,d20)>0 as defined by P1. At these displacements
values of f} are obtained by applying Equation 3

Due to different image sizes, the size of the visible face varies substantially.
Distance measures, such as the return value of the ideal objective function, error
measures and A, should not be biased by this variation. Therefore, all distances
in pixels are converted to the interocular measure, by dividing them by the pixel
distance between the pupils.
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Fig.4. In each of the K images each of the N contour points is annotated
with 2D+1 displacements. Manual work is only necessary for annotating d=0, which
is depicted in the middle row. The other displacements are computed automatically.
Note A in the upper right image that indicates the learning radius. The unit of the
ideal objective function values and A is the interocular measure.

4.3 Specifying Image Features

Our approach learns a mapping from I, and @k .4 to f}(Ix, ®kna), Which is
called fﬁ (I,x). Since fﬁ has no access to pj, it must compute its value from the
content of the image. Instead of learning a direct mapping from = and I to f},
we use a feature-extraction method [1]. The idea is to provide a multitude of
image features, and let the learning algorithm choose which of them are relevant
to the computation rules of the objective function.

In our approach, we use Haar-like image features of different styles and
sizes [4], see Figure 5, which greatly cope with noisy images. These features
are not only computed at the location of the contour point itself, but also at
locations within its vicinity specified by a grid, see Figure 5. This variety of
image features enables the objective function to exploit the texture of the image
at the model’s contour point and in its surrounding area.
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Fig. 5. The set of A=6-3-5-5=450 features utilized for learning the objective functions.
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4.4 Generating Training Data

The result of the manual annotation step (Section 4.1) and the automated an-
notation step (Section 4.2) is a list of K(2D + 1) image locations for each of the
N contour points. Adding the corresponding target value f; yields the list in
Equation 4.

[ Iy, Tina I, Ten,a) ] (4)

[hi(Ik, ®knd), - halTk, Trna) s foles Thona) ] (5)
with 1<k<K, 1<n<N, —D<d<D

We denote image features by h,(I,z), with 1<a<A. Each of these features
returns a scalar value. Applying each feature to Equation 4 yields the training
data in Equation 5. This step simplifies matters greatly. We have reduced the
problem of mapping images and pixel locations to the target value f}(I,x), to
mapping a list of feature values to the target value.

4.5 Learning the Calculation Rules

The local objective function f¢ maps the values of the features to the value of f.
This mapping is learned from the training data by learning a model tree [5].
Model trees are a generalization of decision trees. Whereas decision trees have
nominal values at their leaf nodes, model trees have line segments, allowing them
to also map features to a continuous value, such as the value returned by f.
They are learned by recursively partitioning the feature space. A linear function
is then fitted to the training data in each partition using linear regression. One
of the advantages of model trees is that they tend to use only features that are
relevant to predict the target values. Currently, we are providing A=450 image
features, as illustrated in Figure 5. The model tree selects around 20 of them for
learning the calculation rules.

After these five steps, a local objective function is learned for each contour
point. It can now be called with an arbitrary pixel & of an arbitrary image I.

5 Experimental Evaluation

This section evaluates learned objective functions in the context of face model
fitting. Thereby, we gather 500 images of frontal faces from the Internet.



5.1 Visualization of Global Objective Functions

Figure 6 visualizes how the value of the global objective function depends on
varying pairs of parameters from the parameter vector p. The deformation pa-
rameter b; determines the angle at which the face model is viewed, and by opens
and closes the mouth of the model. As proposed by Cootes et al. [3] the defor-
mation parameters vary from —2o0 to 20 of the deviation within the examples
used for training the deformable model. It is clearly visible that the learned
global objective function is closer to be ideal than the edge-based function. The
plateaus with many local minima arise because they are outside of the area on
which the objective function was trained. In these areas, the objective function
cannot be expected to be ideal.

5.2 Comparison to a State-of-the-art Approach

In a further experiment, we compare our approach to a state-of-the-art model
fitting approach using the BiolD database [6]. Figure 7 shows the result of our
fitting algorithm using a learned objective function (solid line). We determine
the point-to-point distance between the results of the fitted models and the an-
notated models. Figure 7 visualizes the result of our experiment. The z-axis
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Fig. 6. Comparing the behavior of the edge-based (left column) to the learned (right
column) global objective function, by varying pairs of parameters.
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Fig. 7. The initial position of the face model (dashed line) is highly improved by fitting
it with a learned objective function (solid line).

indicates the point-to-point distance measure between the manually specified
models and the results of the fitting step and the y-axis indicates their cumula-
tive percentage. Model fitting using our learned objective function (solid curve)
improves global face localization (dashed line). 95% of all faces are fitted within a
distance measure of 0.12 by applying the learning approach. Applying only global
face localization the distance measure for locating 95% of the faces is 0.16. That
corresponds to an up to 30% higher deviation from the annotated model pa-
rameters. The set-up of this experiment is directly comparable to the one of [7]
in terms of the utilized image database and the format of the obtained results.
Their approach conducts template matching in order to determine facial feature
points. The quality of our results is comparable to those of [7], who achieved the
fitting of 90% of the faces within a distance measure of 0.075 and 96% within a
distance measure of 0.15. In our experiment 90% of all faces are fitted within a
distance measure of 0.09 and the distance measure for fitting 96% is 0.13.

6 Related Work

The insights and the approach of Ginneken et al. [8] are most comparable to
our work. They consider objective functions to be ideal if they fulfill properties
similar to P1 and P2. Annotated training images serve for learning local objective
functions. Their approach also determines relevant image features from a set
of image features. However, they do not learn the objective function from an
ideal objective function but manually specify calculation rules. Therefore, their
approach aims at obtaining Property Pl but does not consider Property P2.
Furthermore, their approach turns out to be slow, which is a direct result from
applying the k-Nearest-Neighbor classifier.
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Currently, model fitting is often conducted using Active Appearance Mod-
els [2], which do not only contain the contour of the object but also the texture of
the surface as it appears in the training images. The objective function is usually
taken to be the sum of the square pixel errors between the synthesized texture of
the model and the underlying image. Model fitting aims at minimizing this error
by conducting a gradient decent approach. Obviously, this approach matches P1
very well. However, this approach does not consider P2 at all. Therefore, model
fitting only achieves reasonable results within a small convergence area around
the ideal model parameters.

7 Summary and Outlook

In this paper, we formalize the properties of ideal objective functions and give
a concrete example of such functions. Since designed objective functions are far
from ideal. Therefore, we have developed a novel method that learns objective
functions from annotated example images. This approach automates many crit-
ical decisions and the remaining manual steps require less domain-dependent
knowledge. The resulting objective functions are more accurate, because au-
tomated learning algorithms select relevant features from the many features
provided and customize each local objective function to local image conditions.
Since many images are used for training, the learned objective function gener-
alizes well. Using a publicly available image database, we verify that learned
objective functions enable fitting algorithms to robustly determine the best fit.
Ongoing research applies our method to tracking three-dimensional models
through image sequences. They exploit knowledge from the current image to
bias search in the next image, which makes them perform fast and accurately.
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