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Abstract

Model-based image interpretation extracts high-level in-
formation from images using a priori knowledge about the
object of interest. The computational challenge in model fit-
ting is to determine the model parameters that best match a
given image, which corresponds to finding the global opti-
mum of the objective function.

When it comes to the robustness and accuracy of fitting
models to specific images, humans still outperform state-
of-the-art model fitting systems. Therefore, we propose a
method in which non-experts can guide the process of de-
signing model fitting algorithms. In particular, this paper
demonstrates how to obtain robust objective functions for
face model fitting applications, by learning their calcula-
tion rules from example images annotated by humans. We
evaluate the obtained function using a publicly available
image database and compare it to a recent state-of-the-art
approach in terms of accuracy.

1. Introduction
Model-based image interpretation has proven to be ap-

propriate to infer high-level scene descriptors from the con-
tent of images [4, 12, 9, 6]. These systems exploit a pri-
ori knowledge about objects, such as shape or texture. The
model contains a parameter vector p that represents its con-
figuration, including position, rotation, scaling, and defor-
mation. These parameters are usually mapped to the surface
of an image via a set of feature points, a contour, or a tex-
tured region.

Model fitting is the computational challenge of finding
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the model parameters that describe the content of the im-
age best [7]. This task consists of two components: (1) The
objective function returns a value that determines how ac-
curately a parameterized model fits to an image. In this pa-
per, smaller values denote a better model fit. Depending on
context, they are also known as the likelihood, similarity,
energy, cost, goodness or quality functions. (2) The fitting
algorithm searches for the model parameters p that opti-
mize the objective function, i.e. they try to find the global
minimum or maximum, depending on the definition of the
objective function. Since the described methods are inde-
pendent of the used fitting algorithm, this paper shall not
elaborate on them but we refer to [7] for a recent overview
and categorization.

Problem Statement. Fitting algorithms have been the
subject of intensive research and evaluation. In contrast, the
objective function is usually determined ad hoc and heuris-
tically. The designer manually selects a small set of im-
age features that he considers to be appropriate and mathe-
matically composes the calculation rules from them. Af-
terwards, he visually inspects the appropriateness of the
objective function by evaluating it on a few example im-
ages. If the result is not satisfactory the function is tuned
or redesigned from scratch. The consequences are that
this design approach requires much implicit and domain-
dependent knowledge. Its iterative nature also makes it a
time-consuming process of unpredictable duration. The cal-
culation rules cannot be specified appropriately enough and
therefore, the best model fit is not objectively determined.

Solution Idea. In contrast, it is very easy for humans
to determine the model parameters that best match a given
image. Therefore, we propose to learn the objective func-
tion from these preferred model parameters, specified by
(non-expert) users. Furthermore, this paper investigates the
properties of objective functions and explicitly formulates



Figure 2. The proposed methodology requires users to annotate example images with the preferred model parameters. Further steps are
automated. This proposed procedure yields highly accurate objective functions.

the properties of ideal objective functions. We also give
a concrete example of such a function, which it is based
on image annotations. The proposed methodology approxi-
mates the ideal objective function and therefore, the learned
objective functions are approximately ideal. It automates
most steps and the remaining manual step of annotating im-
ages requires little domain-dependent knowledge, see Fig-
ure 2. Furthermore, the design-inspect loop is eliminated,
which makes the time requirements predictable. Also, by
annotating only a particular class of images (e.g. bearded
faces), the user determines on which class of images the
learning algorithm will be specialized. This approach also
yields more accurate objective functions, because the selec-
tion of image features is based on objective relevance mea-
sures.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the design approach and points out its short-
comings. Section 3 specifies properties of ideal objective
functions. Section 4 explains the proposed approach in de-
tail. Section 5 experimentally evaluates the obtained results.
Section 6 refers to related work and Section 7 summarizes
our contributions and suggests further work.

2. Designing Objective Functions

In order to explain the proposed technique, this paper
utilizes a two-dimensional, deformable contour model of
a human face according to the Active Shape Model ap-
proach [2]. The model parameters p=(tx, ty, s, θ, b)T de-
scribes the translation tx and ty , the scaling s, the rotation θ

Figure 1. Specifying the preferred parameters of the face model for
a set of images represents the most important part of our approach.
The creation of the calculation rules is guided by this information.

and the deformation b. The function cn(p) computes the
location of the nth contour point with 1≤n≤N .

The objective function f(I,p) computes the fitness be-
tween the model parameters p and the image I . Accord-
ing to common approaches [2, 5, 10, 11], we split the
objective function into N local parts fn(I,x), one for
each contour point cn(p). These local functions evalu-
ate the image variations around the corresponding contour
point and give evidence about its fitness. Note, that the
minimization of local objective functions fn(I,x) is con-
ducted in pixel space x∈R2, whereas it is conducted in pa-
rameter space p∈RP for global objective function f(I,p)
with P=dim(p). The result of the global objective func-
tion is the sum of the local function values, as in Equation 1.
From now on, we will concentrate on local objective func-
tions fn, and simply refer to them as objective functions.

f(I,p) =
N∑

n=1

fn(I, cn(p)) (1)

Objective functions are usually designed by manually se-
lecting salient features from the image and mathematically
composing them. The feature selection and the mathemat-
ical composition are both based on the designer’s intuition
and implicit knowledge of the domain. In [1] for instance,
the objective function is computed from edge values of the
image. Each contour point is considered to be located well
if it overlaps a strong edge of the image. A similar objec-
tive function is shown in Equation 2, where 0≤E(I,x)≤1
denotes the edge magnitude.

fe
n(I,x) = 1− E(I,x) (2)

As illustrated with the example in Figure 3, the de-
sign approach has comprehensive shortcomings and un-
expected side-effects. 3a) visualizes one of the contour
points of the face model as well as its perpendicular to-
wards the contour. 3b) and 3c) depict the content of the
image along this perpendicular as well as the corresponding
edge magnitudes E(I,x). 3d) shows the value of the de-
signed objective function fe

n along the perpendicular. Obvi-
ously, this function has many local minima within this one-
dimensional space. Furthermore, the global minimum does



Figure 3. a) Contour point with perpendicular, b) Image data,
c) Edge magnitudes, d) Designed objective function fe

n, e) Ideal
objective function derived from human guidance f?

n , f) Training
data, g) Learned objective function f `

n; Note, b) – g) are taken
along that perpendicular visible in a). The vertical line represents
the location of the preferred contour point cn(p?

I).

not correspond to the preferred location that is denoted by
the vertical line. Because of this amount of local minima,
fitting algorithms have difficulty in finding the global min-
imum. Even if an algorithm found the global minimum, it
would be wrong, because it does not correspond to the pre-
ferred location.

3. The Properties of Ideal Objective Functions
This section makes the observations from Figure 3 ex-

plicit by formulating two properties P1 and P2. We call an
objective function ideal once it has both of them. The math-
ematical formalization of P1 uses the preferred model pa-
rameters p?

I , which are defined to be the model parameters
with the best fitness to a specific image I . Similarly, cn(p?

I)
denote the preferred contour points. The aim of our ap-
proach is to determine p?

I manually in order to obtain highly
appropriate calculation rules. The image in Figure 3a) is an-
notated with p?

I .

P1: The global minimum corresponds to the best model fit.

∀x(cn(p?
I) 6= x) ⇒ fn(I, cn(p?

I)) < fn(I,x)

P2: There is no local minimum or maximum.

∃m∀x (m 6= x) ⇒ fn(I,m) < fn(I,x)

∧ ∇fn(I,x) 6= 0

Property P1 relates to the correctness of the local objec-
tive function. Fitting algorithms search for its global min-
imum and P1 ensures that the search result corresponds to
the best fit of the contour point. Although it might seem ob-
vious that this is a desirable property for objective functions

to have, designing them does not always guarantee that this
is the case, such as in the example in Section 2.

Property P2 guarantees that any determined minimum
represents the global minimum. This facilitates search, be-
cause algorithms can not get stuck in a local minimum.
Simple local minimization strategies suffice to find the
global minimum. The mathematical formalization states
that all locations x that are not the global minimum m are
not allowed to have a zero gradient, and are therefore not
minima. Note that the global minimum m does not need
to correspond with the best fit; this is only required by the
independent property P1.

3.1. An Ideal Objective Function

We now introduce a concrete instance of an ideal objec-
tive function, which is denoted with f?

n(I,x), see Equa-
tion 3. It computes the distance between the preferred con-
tour point cn(p?

I) and a pixel x located on the image.

f?
n(I,x) = |x− cn(p?

I)| (3)

A significant feature of f?
n is that it relies on the preferred

model parameters p?
I , which are specified by user knowl-

edge, to compute its value. This implies that ideal objec-
tive functions cannot be obtained without human interac-
tion. Furthermore, it implies that the ideal objective func-
tion f?

n cannot be evaluated for previously unseen images
using automated model fitting algorithms, because the pre-
ferred model parameters p?

I are not known for these images.

4. Learning Robust Objective Functions from
Human Knowledge

This section explains the five steps of the proposed ap-
proach that learns objective functions from training images,
see Figure 2. The key idea behind the approach is that f?

n,
which is obtained by user knowledge, has the properties P1
and P2, and it generates the training data for learning an-
other objective function f `

n(I,x). Therefore, this learned
function will also approximately have these properties.

4.1. Manually Annotating Images

First, humans manually annotate a set of images Ik with
the preferred model parameters p?

Ik
with 1≤k≤K. This

step cannot be accomplished automatically, because it re-
quires an amount of human knowledge that has not yet been
achieved with computer algorithms. If it had already been
achieved, there would be no need for further sophisticated
model fitting algorithms. All further steps rely on these an-
notations, because they allow to compute the ideal objective
function f?

n, see Equation 3. This step is the only laborious
part of the entire procedure of the proposed approach. An
experienced human needs about one minute to determine



Figure 4. In each of the K images, each of the N contour points is
annotated with 2D+1 displacements. Manual annotation is only
necessary for d=0 (middle row). The other displacements are
computed automatically. The upper right image shows the learning
radius ∆. The unit of the ideal objective function values and ∆ is
the interocular measure.

the preferred parameters of our face model for one image.
Therefore, the time requirements remain predictable. Fig-
ure 1 shows three images that are annotated with the pre-
ferred parameters of our face model.

4.2. Generating Further Image Annotations

According to P1, the ideal objective function returns the
minimum f?

n(I,x)=0 for all image annotations. This data
is not sufficient to learn f `

n, because training data must also
contain image annotations, for which f?

n(I, x)6=0. To ac-
quire these annotations, x must be varied. General varia-
tions move x to any position within the image, however, it
is more practicable to restrict this motion in terms of dis-
tance and direction.

Therefore, we generate a number of displace-
ments xk,n,d with −D≤d≤D that are located on the
perpendicular to the contour line with a maximum dis-
tance ∆ to the contour point. Taking only these relocations

facilitates the later learning step and improves the accuracy
of the resulting calculation rules. This procedure is depicted
in Figure 4. The center row depicts the manually annotated
images, for which f?

n(I,xk,n,0)=f?
n(I, cn(p?

Ik
))=0.

The other columns depict the displacements xk,n,d6=0

with f?
n(I,xk,n,d6=0)>0 as defined by P1. At these

displacements the values of f?
n are obtained by applying

Equation 3
Due to different image sizes, the size of the visible face

varies substantially. Distance measures, such as the return
value of the ideal objective function, error measures and ∆,
should not be biased by this variation. Therefore, all dis-
tances in pixels are converted to the interocular measure, by
dividing them by the pixel distance between the pupils.

4.3. Specifying Image Features

Our approach learns a mapping from Ik and xk,n,d

to f?
n(Ik, xk,n,d), which is called f `

n(I,x). Since f `
n has

no access to p?
I , it must compute its value from the content

of the image. Instead of learning a direct mapping from x
and I to f?

n, we use a feature-extraction method [7]. The
idea is to provide a multitude of image features, and let the
learning algorithm choose which of them are relevant to the
computation rules of the objective function.

In our approach, we use Haar-like image features of dif-
ferent styles and sizes [13], see Figure 5, which greatly cope
with noisy images. These features are not only computed at
the location of the contour point itself, but also at locations
within its vicinity specified by a grid, see Figure 5. This
variety of image features enables the objective function to
exploit the texture of the image at the model’s contour point
and in its surrounding area.

4.4. Generating Training Data

The result of the manual annotation step (Section 4.1)
and the automated annotation step (Section 4.2) is a list
of K(2D + 1) image locations for each of the N contour
points. Adding the corresponding target value f?

n yields the
list in Equation 4.

[ Ik, xk,n,d, f?
n(Ik,xk,n,d) ] (4)

[h1(Ik,xk,n,d), . . . ,hA(Ik,xk,n,d), f?
n(Ik,xk,n,d) ] (5)

with 1≤k≤K, 1≤n≤N, −D≤d≤D

We denote image features by ha(I,x), with 1≤a≤A. Each
of these features returns a scalar value. Applying each fea-
ture to Equation 4 yields the training data in Equation 5.
This step simplifies matters greatly. We have reduced the
problem of mapping images and pixel locations to the tar-
get value f?

n(I,x), to mapping a list of feature values to the
target value.



Figure 5. The set of A = 6 · 3 · 5 · 5 = 450 features utilized for learning the objective functions.

4.5. Learning the Calculation Rules

The local objective function f `
n maps the values of the

features to the value of f?
n. This mapping is learned from

the training data by learning a model tree [14]. Model trees
are a generalization of decision trees. Whereas decision
trees have nominal values at their leaf nodes, model trees
have line segments, allowing them to also map features to a
continuous value, such as the value returned by f?

n. They
are learned by recursively partitioning the feature space.
A linear function is then fitted to the training data in each
partition using linear regression. One of the advantages of
model trees is that they tend to use only features that are rel-
evant to predict the target values. Currently, we are provid-
ing A=450 image features, as illustrated in Figure 5. The
model tree selects around 20 of them for learning the calcu-
lation rules.

After these five steps, a local objective function is
learned for each contour point. It can now be evaluated at
an arbitrary pixel x of an arbitrary image I .

Figure 6. The behavior of the learned objective function varying
pairs of parameters; the translation tx and ty and two deformation
parameters b1 and b2.

5. Experimental Evaluation

This section evaluates our approach in order to prove its
appropriateness and accuracy using a publicly available im-
age database for comparison purpose.

Figure 6 visualizes how the value of the global objec-
tive function depends on specific pairs of model parame-
ters, such as the translation tx and ty and the deformation
parameters b1 and b2, where b1 determines the rotation an-
gle of the face model, and b2 opens and closes its mouth. As
proposed by Cootes et al. [1] we vary the deformation pa-
rameters between−2σ and 2σ of the deviation of the exam-
ples used for training the model. As expected, the learned
global objective function f ` is closer to be ideal than the
designed edge-based approach fe. Its plateaus with many
local minima arise from the fact that they are outside of the
learning radius ∆. In these areas, the result of the function
is undefined.

In a further experiment, we evaluate our approach on the
BioID database [8]. Figure 7 shows the result of model fit-
ting with learned objective functions (solid line). The x-
axis indicates the point-to-point distance between the fitted
model and the manually specified model and the y-axis in-
dicates the cumulative percentage of the distances. Model
fitting with learned objective functions greatly improves the
initial face localization (dashed line) that is conducted with
the approach of Viola et al. [13]. 95% of all faces are fitted
within a distance measure of 0.12 by applying the learn-
ing approach. Applying only face localization the distance
measure for locating 95% of the faces is 0.16. That corre-

Figure 7. The initial position of the face model (dashed line)
is highly improved by fitting it with a learned objective func-
tion (solid line).



sponds to an up to 30% higher deviation from the annotated
model parameters. The set-up of this experiment is similar
to the one of [3] w.r.t. the utilized images and the obtained
results. Their approach conducts template matching in or-
der to determine facial feature points. They achieved the
fitting of 90% of the face models within a distance of 0.075
and 96% within a distance of 0.15.

6. Related Work
The approach of Ginneken et al. [5] is most similar to our

work. They consider objective functions to be ideal if they
fulfill properties similar to P1 and P2. Also, training im-
ages annotated by humans serve for learning local objective
functions. Their approach also determines relevant image
features from a set of image features. However, they do not
learn the objective function from an ideal objective function
but manually specify calculation rules. Therefore, their ap-
proach aims at obtaining Property P1 but does not consider
Property P2. Furthermore, their approach turns out to be
slow, which is a direct result from applying the k-Nearest-
Neighbor classifier.

Currently, model fitting is often conducted using Active
Appearance Models [2], which do not only contain the con-
tour of the object but also the texture of the surface as it
appears in the training images. The objective function is
usually taken to be the sum of the square pixel errors be-
tween the synthesized texture of the model and the under-
lying image. Model fitting aims at minimizing this error
by conducting a gradient decent approach. Obviously, this
approach matches P1 very well. However, this approach
does not consider P2 at all. Therefore, model fitting only
achieves reasonable results within a small convergence area
around the preferred model parameters.

7. Summary and Outlook
Accurate objective functions are essential for accurate

model fitting. However, their calculation rules are usually
designed by hand and therefore far from ideal. In this paper,
we propose to learn robust objective functions from exam-
ples provided by humans. First, we formalize the properties
of ideal objective functions and give a concrete example of
such a function. This ideal objective function requires hu-
man interaction to annotate a set of example image with
the preferred model parameters. Then, we learn a new ob-
jective function from these image annotations. The result-
ing objective function is more accurate, because automated
learning algorithms select relevant features from the many
features provided and customize each local objective func-
tion to local image conditions. Since many images are used
for training, the learned objective function generalizes well.

For evaluation, we compare this approach to a state-
of-the-art approach. Using a publicly available image

database, we verify that learned objective functions enable
fitting algorithms to robustly determine the best fit.

In our ongoing research, we are applying our human-
assisted approach to three-dimensional face models, as well
as to face tracking in image sequences.
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