
Learning Robust Objective Functions for Model
Fitting in Image Understanding Applications

Matthias Wimmer, Freek Stulp, Stephan Tschechne, Bernd Radig
Fakulẗat für Informatik, Technische Universität München,

Boltzmannstr. 3, 85748 Garching, Germany
wimmerm@cs.tum.edu http://wwwradig.cs.tum.edu

Abstract

Model-based methods in computer vision have proven to be a good approach
for compressing the large amount of information in images. Fitting algo-
rithms search for those parameters of the model that optimise the objective
function given a certain image. Although fitting algorithms have been the
subject of intensive research and evaluation, the objective function is usu-
ally designed ad hoc and heuristically with much implicit domain-dependent
knowledge.

This paper formulates a set of requirements that robust objective func-
tions should satisfy. Furthermore, we propose a novel approach that learns
the objective function from training images that have been annotated with the
preferred model parameters. The requirements are automatically enforced
during the learning phase, which yields generally applicable objective func-
tions. We compare the performance of our approach to other approaches.
For this purpose, we propose a set of indicators that evaluate how well an
objective function meets the stated requirements.

1 Introduction

In computer vision applications, models serve as an intermediate step for interpreting
scenes in images. Model-based image understanding methods exploit a priori knowledge
about the objects and the scene by imposing constraints on texture, regions, or region
boundaries. This reduces the large amount of information in images to a small set of
model parameters. This parameters facilitate and speed-up further image understanding.
Model fitting is the computational problem of finding the parameter values for a paramet-
ric model that describe the content of the image best [2].

Model-based methods consist of three main components. (1) The model. There are
various types of models and each of them is appropriate for a certain use, such as 2D and
3D models, contour and texture models, rigid and deformable models, and many more. A
parameter vectorp represents the possible configuration of the model, such as position,
rotation, scaling, and deformation. (2) The fitting method that searches for the model
parameters that match the image best. Since our methods are independent of the fitting
algorithm used, we shall not elaborate on them in this paper. We refer to [2] for a recent
overview and categorisation of fitting algorithms. (3) The objective function that evaluates
how good the fit of a parameterised model to an image is. Examples and synonyms of

1

the objective function arelikelihood function, energy function, cost function, goodness
function, andquality function.

Figure 1: Fitting a deformable face model to images that show different mimics.

Mimic recognition serves as a good example for model-based image interpretation.
Deformable face models are suitable for expressing the variations within a human face.
The parameters describe the constitution of the face, such as the opening of the mouth, the
roundness of the eyes, or the raising of the eye brows, as depicted in Figure 1. A fitting
algorithm searches for the parameters that describe the visible face best by minimising an
objective function. The mimic of the person is then derived from the model parameters.
Pantic et al. [3] give a comprehensive overview about current research within this area.

Fitting algorithms have been the subject of intensive research and evaluation. In con-
trast, the objective function is usually determined ad hoc and heuristically, using the de-
signer’s intuitions about a good measure of fitness. Afterwards, its appropriateness is
subjectively determined by inspecting the result of the objective function on example im-
ages and example parameterisations of the model. If the result is not satisfactory the
function is tuned or redesigned from scratch. This iterative process is shown to the left
in Figure 2. In short, the traditional way of designing objective functions is rather an
art than a science. The consequence is that this methodology is time-consuming, and of-
ten leads to non-robust functions that do not objectively determine the fitness of a model
parameterisation.

Figure 2: Modus operandi for the design approach and the proposed learn approach.

1.1 Solution Idea

To avoid the problems of the design approach, we invert this procedure. Instead of itera-
tively designing an objective function and testing it on example images, we first annotate
example images with preferred model parameters and learn the objective function from
these examples. The two approaches are contrasted in Figure 2. This novel procedure
has several benefits. First of all, this method is less error-prone, because giving examples
of good fits is much easier than explicitly designing a function that should cover all pos-
sible examples. Analogously, most of us will have no problem determining whether we

2

like individual paintings or not. On the other hand, it would be difficult to incorporate
the exact reasons for these preferences into a function that would correctly predict our
judgement for previously unseen paintings. A further benefit is that the labour-intensive
phase for the objective function design is replaced by an automated learning algorithm,
which also eliminates the iterativedesign-inspectloop. Finally, the learning phase can be
directed, for instance to enforce certain requirements the objective function should meet.
This yields more robust and accurate objective functions which greatly facilitate the task
of the fitting algorithms.

The contributions of this paper are threefold: First, we express a set of domain-
independent requirements that robust objective functions need to satisfy. Second, we
propose a new approach that learns objective functions from training data. Third, we for-
mulate a set of indicators that deliver comparable values about the accuracy of objective
functions.

In the remainder of the paper we proceed as follows. In Section 2 we explain the
drawbacks of manually designing objective functions. In Section 3 we formulate a set of
requirements for robust objective functions and define optimal objective functions based
on those insights. Section 4 describes our approach that learns an objective function
from annotated example images. Section 5 evaluates the accuracy of our approach and
compares it to both a design approach and an optimal approach. Section 6 concludes with
a summary and an outlook on future work.

2 Designing Objective Functions

An objective functionf (I ,p) calculates a value that indicates how well model parame-
tersp describe the content of the imageI . In this paper, lower values correspond to a
better fit, sof is a cost function. The goal of fitting algorithms is therefore to find the
model parameters that minimise the objective function.

In this paper, we will use a contour model, and base the objective function on this
contour. Such models incorporate a contour which is described byn contour pointsci(p)
with 1≤ i ≤ n. These points are often connected for visualisation purposes. Both the
model and its contour are appropriate for describing the object in the image, but usually
the contour consumes more memory space than the model becausen� dim(p). To facil-
itate the design of the global objective functionf (I ,p), it is usually defined to be a sum
of n local objective functionsfi(I ,ci(p)), one for each contour point.

Hanek [2] categorises objective functions into two groups: non-feature-extracting
methods and feature-extracting methods. Non-feature-extracting methods use the plain
image data to calculate the fitness of a model instance. Since those algorithms do not rely
on appropriately extracted image features, they promise to work even with difficult image
conditions. Feature-extracting methods reduce the vast image information to a smaller set
of appropriate features. Those features are most often obtained via edge detection algo-
rithms or region growing algorithms. The calculation rules of the objective function base
on the deviation between the model boundary and those features. The process of fitting a
model to a set of extracted image features is also calledmodel matching. Our approach
contributes to this category. We use local Haar-like features that are combined in a non-
linear way to create the calculation rules of the objective function. The calculation rules
are empirically learnt.

3

The traditional methodology for obtaining objective functions is to design them heuris-
tically. Humans pick salient image features and combine them in an intuitive way to for-
mulate the calculation rules. The contour is often split up into semantically meaningful
parts and thefi(I ,ci(p)) are then designed differently for each part. This approach is
characterised by a subjective decision of what features are appropriate and how to design
the calculation rules. Commonly used objective functions consider the edge values of the
image, see Cootes et al. [1]. It treats the fitness to be good if the contour of the model
overlaps the edges of the image. We design a similar objective function with the following
formula, whereE(I ,ci(p)) denotes the magnitude of the edge at the positionci(p). The
magnitudes are defined to range from 0 to 1.

f e(I ,p) =
1
n

n

∑
i=1

f e
i (I ,ci(p)) =

1
n

n

∑
i=1

(1−E(I ,ci(p))) (1)

Those design approaches have comprehensive shortcomings. Their calculation rules
primarily consider edges and region boundaries which are no salient image features in
unconstrained environments. The objective function shows no continuous behaviour be-
cause of the small local extent of those features. It consists of many local minima and
maxima, instead. Figure 3d) illustrates the behaviour of the designed objective function
f e
i (I ,ci(p)) by moving the contour point along its perpendicular towards the contour. It

produces several local minima and the desired position in the centre does not produce the
global minimum. Figure 3b) and 3c) show the image data and the magnitude of the edges
along the perpendicular.

3 Requirements for Robustness

We now formulate a set of soft requirements for robust objective functions. The extent
to which objective functions meet these requirements determines how appropriate they
are for fitting algorithms. Note thatR1 andR2 are no distinct requirements but they are
derived fromR3. In the following, the desired model parametersp∗ are those parameters
that describe the content of the image best. Those parameters are not calculated but need
to be annotated manually. Analogously,ci(p∗k) denote the desired contour points that are
related top∗.

b)

c)

d)

e)

f)

g)

image data

edge magnitude values

designed objective function

optimal objective functions

training data

learnt objective function

a)

Figure 3: a) depicts the 43rd contour point (black cross) and its perpendicular in the 22nd

image in the database b-g) show different values along this perpendicular. In e), the solid
line is f O

i .

4

R1: The objective functionf (I ,p) has a global minimum atp = p∗.

R2: The objective functionf (I ,p) has no local extreme value or saddle point atp 6= p∗.

R3: At any p 6= p∗ the slope falls most towardsp∗. Therefore, the direction of the
gradient∇ f (I ,p) needs to point away fromp∗.

We defineoptimalobjective functions to be the ones that exactly satisfy all of those
requirements. There are several of those functions and three examples are depicted in
Figure 3e). One of them is described by formula 2. There is a twofold need for an optimal
objective function: First, the accuracy of any other objective function is easily evaluated
by a comparison. Second, its result is essential for generating the training data, see Sec-
tion 4.2. The training phase requires us to split upf O into a sum of local partsf O

i . This
splitting does not exactly deliver the same result, but it serves as a good approximation.

f O(I ,p) := |p∗−p| ≈ 1
n

n

∑
i=1
|ci(p∗)−ci(p)| =:

1
n

n

∑
i=1

f O
i (I ,ci(p)) (2)

4 Learning Robust Objective Functions

In this section we will introduce the novel methodology that automatically determines an
objective functionf `(I ,p). This function is learned from images that have been annotated
with preferred model parameterisations, using model trees. This section describes the four
steps of our methodology.

4.1 Annotating the Images with the Preferred Model

Each of theK training imagesIk is first annotated with the preferred model parametersp∗k ,
as shown in Figure 4 left. This is the only labour intensive step in our procedure. Note that
preferredis defined with respect to the user’s judgement, not some predefined objective
measure, because such a predefined measure does not exist. We therefore avoid using the
word optimal parameters, because this would imply that it does exist. Note also that this
is not a consequence of our approach; the same holds for all annotated benchmarks.

4.2 Generating Further Image Annotations

To learn the objective function, the learning algorithm should not only be trained with
images that are annotated with the preferred parametersp∗k and the derived preferred con-
tour pointsci(p∗k), but also with other possible positions of the contour points. Otherwise,
f O
i would always return 0 by definition, and there would not be much to learn. Therefore

we automatically generate slightly relocated positions from the contour point along the
perpendicular, as shown to the right Figure 4. As can be expected from Equation 2, the
values for these deviations are larger than 0.

4.3 Specifying the Features and Generating Training Data

The result of the annotation step is a list ofK images with preferred parametersp∗k, with n
corresponding contour points and a list ofD deviations from this point, together with the

5

Manually annotated
preferred model ⇒ Automatically generated image annotations

f O
43(I22, c43(p∗I22)) f O

43(I22, c43(p∗I22)+∆c11) f O
43(I22, c43(p∗I22)+∆c30)

= 0 = 0.33 = 0.41

Figure 4: Each image is manually annotated with the preferred parameters and thus with
the preferred contour points at the same time. Here we show the 22nd image and how the
43rd contour point of the model is automatically relocated along the perpendicular (dotted
line) which generates more annotations for the subsequent training step.

value returned byf O
i : [Ik, ci(p∗k)+∆cd, f O

i (Ik, ci(p∗k)+∆cd)] with 1≤ k≤ K, 1≤ i ≤ n,
and 1≤ d≤ D. In Figure 4, examples fork = 22, i = 43 andd = (0,11,30) are shown.

The goal is to now learn from these examples the functionf ` that mapsI andp to
f O(I ,p). Analogously to the design approach explained in Section 2, we learn a local
function f `

i (I ,ci(p)) from f O
i , for each contour point. It might seem that we are relearning

the already known functionf O
i in Equation 2. However,f O

i referencesp∗, which of
course is unknown for novel images.f `

i will only base its value on an imageI and contour
pointci(p). To facilitate the learning off `

i , we extract a set of features fromI , givenci(p).
The idea is then to provide a multitude of features associated with the contour points, and
let the learning algorithm choose which features are relevant to the objective function.

We use Haar-like features [5] of different shapes, sizes, and locations around each
contour point. These locations are on several concentric circles around the contour point,
see Figure 5. When moving the contour point along its perpendicular, these features also
move along with it, and their values change. Contrary to edge-based and region-based
features, Haar-like features cope with noisy image data. They even allow for modelling
contours at non-distinctive borders, such as the chin line, see Figure 1. Haar-like features
are high-performance, as they are efficiently computed from the so-calledintegral image.

f O
i (I ,ci(p)) = 0.33 f O

i (I ,ci(p)) = 0 f O
i (I ,ci(p)) = 0.41

Figure 5: This figure shows two exemplary Haar-like features (black and white boxes) in
the vicinity of the 43rd contour point. This vicinity has been defined to consist of several
concentric circles.

6

Applying this feature mappingh to the list of examples[Ik,ci(p∗k) + ∆cd,
f O(Ik, ci(p∗k) + ∆ cd)] yields examples of the form[h(Ik, ci(p∗k)+∆cd)), f O(Ik, ci(p∗k)+
∆cd)]. The formula is getting quite complex, but actually,h simplifies matters. Sinceh
returns a list of real number values, one for each Haar-like feature, andf O

i is also just a
real number, the training examples are nothing more than a list of values.

4.4 Training

The objective functionf `
i for each contour point, which maps Haar-like feature values

to the values returned byf O
i , is learnt by training a model tree [4, 6], with the examples

described above. Model trees are a generalisation of decision trees. Whereas decision
trees have nominal values at their leaf nodes, model trees have line segments, allowing
them to also map features to continuous values. They are learnt by recursively partitioning
the feature space. A linear function is fitted to the data in each partition using linear
regression. Figure 3f) and 3g) show the training data generated byf O

i , and the plot of a
partial objective functionf `

43 that has been learnt for this contour point over all images
and deviations.

An important advantage of model trees is that they only use features that are relevant
to predicting the target values. This becomes apparent when inspecting the automati-
cally generated model trees. They use just a few features of the entire feature vectorh.
Apparently, only a few Haar-like features are relevant to predicting the objective value.
Interestingly, the objective functions for the different contour points use different subsets
of Haar-like features. Due to the partitioning in the model tree algorithm, it is even pos-
sible to use different features for different deviations from the contour point. This would
mean that for acquiring an initial approximation and fine tuning, different features could
be used. We still need to verify this assumption in the learned model trees.

These observations clearly demonstrate the main benefits of our approach. Instead of
manually specifying the objective function and the few features it uses, our approach au-
tomatically learns, from an abundance of features, which ones are relevant to the objective
function. Whereas contemplating exactly which features might be relevant is laborious
and the result error-prone, providing a plethora of features whose relevance or irrelevance
need not be contemplated is easily done. Furthermore, the selection of features is not
based on human intuition, but on the objective information theoretic measures that model
trees use to partition the state space. It is not an art, but science.

It also means that different types of features can be combined. Any other salient
feature that is representative for the position of a contour point may be used or appended
to a feature vector as well. We are currently investigating the combination of edges and
Haar-like features in a single learnt objective function.

5 Experimental Results

Current image understanding applications are often subdivided into two operational areas:
On the one hand, there arelifelike scenariossuch as mimic recognition, where the utilised
algorithms require robustness towards a lot of variations in the image data, e.g. fitting a
face model to an image. One the other hand, there areindustrial scenarioswith highly
constrained environments, such as quality analysis on assembly lines. We evaluate our
approach to both scenarios.

7

Concerning the lifelike scenario, we train an objective function that is capable of fit-
ting a face model. We gather about 700 images of frontal faces from the Internet and
the TV. Due to their widespread origin, they show large variations to background, illu-
mination, focal length, colour saturation, size, and orientation of the face. We evaluate
our approach with a 2DPoint Distribution Model[1] that consists of 134 contour points.
Its parameter vectorp = (x,y,α,σ ,b)T contains the model’s translationx andy, its rota-
tion α, its scalingσ , and a vector of deformation parametersb. Concerning the industrial
scenario, a robot takes 150 images while approaching the kitchenette in our laboratory.
We train another objective function to fit a 2D contour model to the stove. The model of
the stove is not deformable and contains 84 contour points and its parameters consist of
translation and rotation. In this case, the camera parameters, the illumination, and most
other environmental parameters are stable. Each image is manually annotated with the
desired model parametersp∗, which takes an experienced person less than 20 seconds per
image. Since the creation of the deformable face model already required us to manually
landmark hundreds of images, those annotated images are now reused, which saves us
a lot of time. The feature vectors consist of 50 different Haar-like features of different
sizes and different locations around the contour points. We train and test each objective
function with hundreds of images, see Table 1.

scenario # test images objective function � I1 � I2a � I2b � I3
lifelike 300 designed: f e(I ,p) 0.06 101 1.27 0.19

learnt: f `(I ,p) 0.02 27 1.91 0.57
optimal: f O (I ,p) 0.00 1 0.00 1.00

industrial 50 designed: f e(I ,p) 0.38 229 0.80 0.56
learnt: f `(I ,p) 0.05 96 0.31 0.85
optimal: f O (I ,p) 0.00 1 0.00 1.00

Table 1: The average indicator values show the result of our evaluation.

The result of the learnt objective function is compared to two other objective func-
tions: f e(I ,p) and f O(I ,p). We evaluate how well each of them satisfies the requirements
R1 – R3. For that purpose, we formulate indicatorsI1 – I3 that deliver a comparable value
for each requirement. They are calculated separately for each image and our evaluation
considers their mean values from all test images. It is impossible to evaluate every param-
eterisation of the model because most model parameters are continuous and the search
space is very high dimensional. We randomly assemble model instances and gather them
in a setP.

I1: Depending on the position of the global minimum this indicator is set to 0 or to 1.

I1 =
{

0 : f (I ,p∗) < f (I ,p) ∀p ∈ P∧p 6= p∗

1 : f (I ,p∗)≥ f (I ,p) ∃p ∈ P∧p 6= p∗

I2: This indicator denotes both the number of local minima and their function value
compared to the one of the desired model parametersf (I ,p∗).

I2a = |L| where L= { p ∈ P | p 6= p∗∧ p is a local minimum}

I2b =

{
0 : L = /0

1
|L| ∑p∈L

f (I ,p∗)
f (I ,p) : L 6= /0

8

I3: This indicator sums up the angles between the gradient vector and the optimal gra-
dient vector which points away fromp∗. Remember, the scalar product of two
vectors calculates the cosine value of the angle in between.

I3 =
1
|P| ∑

p∈P

∇ f O(I ,p)◦∇ f (I ,p)
|∇ f O(I ,p)||∇ f (I ,p)|

Our evaluation shows that the learnt objective function performs better in the industrial
scenario than in the lifelike scenario because of profoundly limited variations to the image
data in the industrial scenario. Table 1 illustrates the mean indicator values for both
scenarios and compares three objective functions. The indicator values off O(I ,p) denote
the best values to be reached.I1 shows that the global minimum of the design approach
is different from the desired positionp∗ in many images, whereas the global minimum
of our approach is located at the expected position in most images. The learnt objective
function produces a low number of local minima, seeI2a, and I2b visualises that the
function value of those local minima differs greatly from the function value of the desired
minimum atp∗. The design approach produces more local minima and, in addition to that,
their function values are similar to the one atp∗. Furthermore, our approach shows just a
small difference in orientation between the gradient vector and the optimal orientation.

a) b) c)

Figure 6: The three objective functions behave differently by changing their position
parametersx andy. a) f e(I ,p), b) f `(I ,p), c) f O(I ,p)

For visualisation purpose, we take the desired model parametersp∗ and continuously
change its position parametersx andy. Figure 6 illustrates three objective functions. The
x andy axes indicate the translation and thez axis indicates the value of the objective
function. The correlation between an increasing distance fromp∗ and an increasing value
of the objective functions is visible very well in Figure 6b). The proposed objective func-
tion produces a distinct minimum atp∗, which is the position of no spatial translation.
Around that position, the function rises constantly and shows no local extrema. It delivers
noise when the distance increases beyond a certain range. This range is closely linked to
the area∆c that is used for training. In opposite to that, the designed objective function
shows several local minima in which fitting algorithms tend to get stuck. Furthermore,
those local minima are likely to be as low as the desired minimum atp∗. Gradient vec-
tors of the designed objective function have often random orientation, resulting in a high
value forI3. Gradient vectors of the proposed objective function are shorter and they are
collectively oriented away fromp∗ around the centre. The gradient vectors of the optimal
objective function are solely oriented away fromp∗. Our evaluation shows that changing
entries of the parameter vector other than the translation entries causes similar variations
of the result values of the objective function.

9

We fit a face model on each image of our specific image database and measure the
distance between the obtained contour points and the contour pointsci(p∗k). The design
approach delivers a mean distance of 30.1 pixels and the learn approach improves this
value up to 7.8 pixels.

6 Conclusion and Outlook

In this paper, we have presented a novel approach to learning objective functions. We
have defined three requirements an objective functions should meet, and designed a sim-
ple optimalobjective function that meets these requirements. The training examples for
learning are manually annotated images, along with the corresponding value returned by
the optimal objective function. Model trees then learn a mapping from Haar-like features
in the image to the value of the optimal objective function for each contour point. A large
number of features can be used, as model tree algorithms only use relevant features.

This methods has several benefits: 1) annotating images is more intuitive and less
error-prone than explicitly designing an objective function. 2) having the model tree se-
lect only relevant features from a large set is more objective than using only a few based
on human intuition. 3) The learned objective function is close to optimal, facilitating the
fitting algorithms’ task of finding its optimum. Furthermore, we define three indicators
that compute how well an objective function meets the specified requirements. In our ex-
perimental evaluation, these indicators clearly show that our novel approach outperforms
the traditional design approach, and is close to the optimal objective function.

Currently we are integrating edge-based features, and combining them with the Haar-
like features. Preliminary results show that, contrary to traditional approach, edge features
are hardly used in the learned objective function. Our future work concentrates on apply-
ing our approach to other models such as 3D models or texture models. We will also
evaluate learned objective functions in the context of tracking algorithms.

References

[1] T.F. Cootes and C.J. Taylor. Active shape models – smart snakes. InProc. of the
British Machine Vision Conference 1992, pages 266 – 275. Springer Verlag, 1992.

[2] Robert Hanek and Michael Beetz. The contracting curve density algorithm: Fitting
parametric curve models to images using local self-adapting separation criteria.In-
ternational Journal of Computer Vision (IJCV), 59(3):233–258, 2004.

[3] M. Pantic and L. Rothkrantz. Automatic analysis of facial expressions: The state of
the art.IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000.

[4] R. Quinlan. Learning with continuous classes. In A. Adams and L. Sterling, editors,
Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, 1992.

[5] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple
features. InCVPR, 2001.

[6] Ian H. Witten and Eibe Frank.Data Mining: Practical machine learning tools and
techniques, 2nd Edition. Morgan Kaufmann, San Francisco, 2005.

10

