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Abstract—Physical contact events often allow a natural decom-
position of manipulation tasks into action phases and subgoals.
Within the motion primitive paradigm, each action phase cor-
responds to a motion primitive, and the subgoals correspond to
the goal parameters of these primitives.

Current state-of-the-art reinforcement learning algorithms are
able to efficiently and robustly optimize the parameters of motion
primitives in very high-dimensional problems. These algorithms
usually consider only shape parameters, which determine the
trajectory between the start- and end-point of the movement.
In manipulation however, it is also crucial to optimize the goal
parameters, which represent the subgoals between the motion
primitives. We therefore extend the Policy Improvement through
Path Integrals (PI2) algorithm to simultaneously optimize shape
and goal parameters. Applying simultaneous shape and goal
learning to sequences of motion primitives leads to the novel
algorithm PI2SEQ.

We use goal learning and reinforcement learning with se-
quences of motion primitives to address a fundamental challenge
in manipulation: improving the robustness of everyday pick-and-
place tasks.

I. INTRODUCTION

In almost all activities of daily living, related tasks are
encountered over and over again. Therefore, humans “tend to
solve similar or even identical instances over and over, so we
can keep recycling old solutions with minor modifications” [7].
Motor primitives are an effective way of representing solutions
to specific tasks, because they drastically reduce the search
space for control, make learning control in high-dimensional
movement systems feasible [21], facilitate the design and on-
line adaptation of the control systems [6], have negligible
computational cost during execution, and allow for sensory
prediction [15].

The motion primitive paradigm is particularly well suited for
object manipulation tasks, as such tasks “typically involve a
series of action phases in which objects are grasped, moved,
brought into contact with other objects and released.” [5].
These phases are especially obvious in manipulation, as they
are “usually bound by mechanical events that are subgoals of
the task” [5], which arise due to contact events between the
manipulator and the object, or the object and the environment.

Thus, the physical contact inherent in manipulation tasks
implies a natural decomposition of the overall task into distinct
phases and subgoals. Within the motion primitive paradigm,
each phase corresponds to a motion primitive, and the subgoals
correspond to the goal parameters of the primitives.

In recent years, several direct reinforcement learning al-
gorithms have been introduced that are able to optimize
motion primitive parameters efficiently and robustly in very
high-dimensional problems [27], [28]. One challenge in using
motion primitives and reinforcement learning for manipulation
tasks is that the end-point of the movement often represents
a grasp, which must be carefully adapted to the pose of
the object. The first contribution of this article is therefore
to extend the state-of-the-art Policy Improvement with Path
Integrals (PI2) algorithm so that it is able to learn the optimal
goal of a motion primitive, i.e. the end-point of the trajectory
it generates. We demonstrate how learning the optimal goal is
easily integrated into learning the shape of a motion.

Fig. 1. Most direct reinforcement learning algorithms optimize only shape
parameters (left), but do not consider the end-point of the movement, which we
denote g. In this article, we extend the PI2 algorithm so that it simultaneously
learns shape and goal parameters (center). This approach is also applied to
sequences of motion primitives (right).

Because each motion primitive has only a limited scope in
terms of duration and the tasks it can achieve, more complex,
temporally extended tasks “involve sequentially organized
action plans at various levels of complexity.” [5]. Therefore,
the second contribution of this article is to apply PI2 to
sequences of motion primitives, which leads to the novel
PI2SEQ algorithm.

Our first two contributions advance path integral policy
improvement beyond learning only shape parameters, and
learning only with single motion primitives. We leverage these
general contributions to address a fundamental challenge in1552-3098/$31.00 c©2012 IEEE
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the specific domain of autonomous manipulation: improving
the robustness of skills for everyday pick-and-place tasks.
Our contributions in the domain of manipulation – which we
explain in more detail below using two application tasks – are
learning to grasp under uncertainty with simultaneous shape
and goal learning, and applying PI2SEQ to a pick-and-place
task that involves a sequence of motion primitives.

In the first task, depicted in Fig. 2, we consider grasping
under uncertainty, where the object position is not known
exactly but rather represented as a probability distribution.
We formulate grasping under uncertainty as a reinforcement
learning problem, where failed grasps are penalized. The
third contribution of this article is to demonstrate that PI2

is able to adapt the shape and goal of the trajectory to the
uncertainty distribution of the object, as humans do [3]. The
robot thus acquires intrinsically robust skills for manipulation
under object position uncertainty.

Fig. 2. Learning to grasp under uncertainty, the task that is used to evaluate
goal learning. This task was inspired by behavioral experiments that analyze
human grasping behavior under uncertainty [3].

The second task is a pick-and-place task where the robot has
to reach for and grasp an object from a shelf, transport it, and
place it on another shelf in the same cupboard, as depicted in
Fig. 3. The fourth contribution is to demonstrate that learning
on multiple levels of temporal abstraction with PI2SEQ leads
to adaptations that exploit the fact that “subsequent actions
influence motor control parameters of a current grasping ac-
tion” [20]. This leads to more robust pick-and-place behavior
with sequences of motion primitive.

The experimental set-up for the two manipulation tasks we
consider is equivalent to those in recent behavioral experi-
ments [3], [20]. Though not intended as a modelling approach,
it is interesting to see that our robot mimics the behavior of
humans in both tasks.

The rest of this article is structured as follows. In the next
section, we discuss related work. In Section III we present the
main theoretical contributions: goal learning and reinforcement
learning with sequences of motion primitives based on the
direct policy algorithm PI2. The practical application tasks –
learning to grasp under uncertainty and pick-and-place with
sequences of motion primitives – are presented in Section IV
and V respectively. We conclude with Section VI.

Fig. 3. The pick-and-place task that is used to evaluate direct reinforcement
learning with sequences of motion primitives. This task was inspired by a sim-
ilar experimental set-up used to analyze human pick-and-place behavior [20].

II. RELATED WORK

A. Learning Motion Primitive Goals

Tamosiumaite et al. [26] optimize the goal parameters of a
DMP through reinforcement learning, by iteratively approxi-
mating a continuous value function in state space. The robot
learns to pour liquid into a container in a 2D parameter space,
as 4 of the 6 degrees of freedom at the end-effector pose are
kept fixed. Learning directly in policy parameter space without
a value function allows us to scale to higher dimensional
problems, enabling us to learn goal and shape parameters
simultaneously in the full 11D action space (3D end-effector
position, 4D end-effector orientation, and 4D hand posture).

Kober et al. [11], [16] present a variant of goal learning,
where the robot learns a function γ(s), which maps the current
situation s to a set of meta-parameters, which are the goal and
duration of the movement. The aim is to learn the mapping
γ(s) that minimizes a cost. Krömer et al. [12] also determine
low-dimensional meta-parameters that automatically adapt the
shape of the movement to a pre-specified goal, and apply
it to grasping. Our specific aim in this article is to rather
learn the goal and shape parameters simultaneously in the full
dimensionality of the motion primitive.

Mülling et al. [14] determine the moving goal of a move-
ment such that a pre-specified velocity vector is achieved when
coming into contact with a table tennis ball. In the pick-and-
place task we consider, physical manipulation leads to discrete
contact events that naturally define subgoals and transitions
between controllers [5]. Given these discrete transitions and
the fact that we want to grasp objects rather than dynamically
hit them, having zero-velocity boundary conditions between
the motion primitives is an advantage.

There are several other methods that could potentially
be used for learning optimal motion primitive goals, such
as cross-entropy methods [18] or reward-weighted regres-
sion [11]. However, learning the goal of the movement is
tightly coupled to learning the shape of the movement, and
these methods do not readily apply to learning shape param-
eters, as shape parameters have a temporally extended effect.
Therefore, we propose a method that simultaneously learns
shape and goal using the same cost function and update rule.
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B. Grasping Under Uncertainty.

Uncertainty in an object’s position can make even the most
carefully planned motion fail, as the object might simply not
be at the location where the planner expects it to be [13],
[2]. There are several strategies to dealing with object pose
uncertainty in grasping, for example: using sampling-based
motion planners to generate a robust motion plan that is
consistent with all object pose hypotheses [2]. This approach
has high computational cost, and requires an accurate model of
the robot and the environment; using exploratory actions to ac-
quire more information to actively reduce the uncertainty [8];
using reactive control during execution, based on feedback
from tactile or force/torque sensors, enabling the robot to
adapt on-line to cases where the object is not at the expected
location [9], [15]. In Section IV, we shall see that humans
use yet another strategy, which forms the basis for the work
described in Section IV-B.

III. FROM PI2 SHAPE LEARNING TO PI2SEQ

In Section III-A and III-B, we briefly introduce Dynamic
Movement Primitives and the PI2 reinforcement learning
algorithm respectively. They are presented in more detail
in [10] and [27]. These algorithms constitute the foundation
which the main contributions of this article are built on.
These contributions – goal learning and path integral policy
improvement with sequences of motion primitives (PI2SEQ) –
are explained in Section III-C and III-D respectively.

A. Dynamic Movement Primitives

Dynamic Movement Primitives (DMPs) are a flexible rep-
resentation for motion primitives [10], which consist of a set
of dynamic system equations, listed below.

Dynamic Movement Primitives

1

τ
ẍt = α(β(g − xt)− ẋt) + gᵀ

t θ Transform. system (1)

[gt]j =
wj(st) · st∑p
k=1 wk(st)

(g − x0) Basis functions (2)

wj = exp
(
−0.5hj(st − cj)2

)
Gaussian kernel (3)

1

τ
ṡt = −αst Canonical. system (4)

Fig. 4. The core idea behind DMPs is to perturb a simple linear dynamical
system (the first part of Eq. 1) with a non-linear component (gᵀ

t θ) to acquire
smooth movements of arbitrary shape. The non-linear component consists of
basis functions gt, multiplied with a parameter vector θ. Eq. 1 describes a
1-dimensional system. Multi-dimensional DMP are represented by coupling
several dynamical systems equations as in Eq. 1 with one shared phase variable
s. For an n-DOF arm for instance, an n-dimensional DMP can be used to
generate desired joint angle trajectories. In multi-dimensional DMPs, each
dimension has its own goal (g) and shape (θ) parameters.

We leave the details of DMPs to [10], [27]. For this article,
the important features of DMPs are: when integrated over
time, DMPs generate trajectories [xd,t ẋd,t ẍd,t], which, for

instance, are used as desired joint angles or desired end-
effector positions; DMPs converge from the initial value x0
towards the goal parameter g. So at the end of the movement,
xt = g; the general shape of the movement (i.e. the values of
xt between x0 and g) is determined by the shape parameters θ.

B. Reinforcement Learning of Shape

The shape parameters θ are commonly acquired through
imitation learning, i.e. a DMP is trained with an observed
trajectory through supervised learning [10]. The aim of policy
improvement methods is to tune the policy parameters θ such
that they minimize a cost function. The imitated trajectory is
thus not the end result, but rather an initialization for further
improvement through learning. In this article, we consider the
generic cost function

J(τ i) = φtN +

∫ tN

ti

(rt +
1

2
θᵀ
t Rθt) dt Traj. cost (5)

where J is the finite horizon cost over a trajectory τ i starting at
time ti and ending at time tN . This cost consists of a terminal
cost φtN , an immediate cost rt, and an immediate control
cost 1

2θ
ᵀ
t Rθt. The cost function J is task-dependent, and is

provided by the user. Policy improvement methods minimize
cost functions through an iterative process of exploration and
parameter updating, which we explain using Fig. 5.

Fig. 5. Generic loop of policy improvement algorithms.

Exploration is done by executing a DMP K times, each time
with slightly different parameters θ + {εt}k, where {εt}k is
noise which is added to explore the parameter space. This
noise is sampled from a zero-mean Gaussian distribution with
variance Σ.

1

τ
ẍt = α(β(g − xt)− ẋt) + gᵀ

t ( θ + {εt}k︸ ︷︷ ︸
Shape exploration

) DMP (6)

Each of these ‘noisy’ DMP parameters generate slightly differ-
ent movements {τ i}k = {ẍti , ẋti , xti}k, which each lead to
different costs. We refer to the execution of a DMP as a ‘trial’,
and the set of K exploration trials as an ‘epoch’. Given the
costs and noisy parameters of the K DMP executions, policy
improvement methods then update the parameter vector θ such
that it is expected to generate movements that lead to lower
costs. The process then continues with the new θ as the basis
for exploration.

The most crucial part of the policy improvement loop in
Fig. 5 is the parameter update; it is here that the key differ-
ences between PI2 and other policy improvement methods lie.
Rather than focussing on its derivation from first principles
of stochastic optimal control, which is presented extensively
in [27], we provide a post-hoc interpretation of the resulting
update rule.
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PI2 Shape Parameter Update Rule

S({τ i}k) = {φtN }k +

N−1∑
j=i

{
rtj +

1

2
Θᵀ

tj
RΘtj

}
k

(7)

Θtj = θ + Mtj εtj , Mtj =
R−1gtj gᵀ

tj

gᵀ
tj

R−1gtj

P ({τ i}k) =
e−

1
λ
S({τ i}k)∑K

l=1[e−
1
λ
S({τ i}l)]

(8)

δθti =
K∑

k=1

[P ({τ i}k) Mti {εti}k] (9)

[δθ]j =

∑N−1
i=0 (N − i) wj,ti [δθti ]j∑N−1

l=0 wj,tl (N − l)
(10)

θ ←θ + δθ (11)

Fig. 6. Eq. 7 – Determine cost-to-go of each trial in the epoch. Compute
the cost-to-go S({τ i}k) at each time step i and for each trial k. This is an
evaluation of the cost function J(τ i) in Equation 5 , which is task-dependent
and provided by the user. Mtj ,k is a projection matrix onto the range space
of gtj under the metric R−1, cf. [27]. Eq. 8 – Compute probability of
each trial. Compute the probability P ({τ i}k) of each trial k at each time
step i by exponentiating the cost-to-go. The intuition behind this step is that
trajectories of lower cost should have higher probabilities. The interpretation
of Pk as a probability follows from applying the Feynman-Kac theorem to
the stochastic optimal control problem, cf. [27]. Eq. 9 – Average over trials.
The key algorithmic step. Compute the parameter update δθ for each time
step i through probability weighted averaging over the exploration ε of all K
trials, in short δθ =

∑K
k=1 Pkεk . Trajectories with higher probability, and

thus lower cost, therefore contribute more to the parameter update. Eq. 10 –
Average over time-steps. Average the parameter update δθti over all time
steps, where each parameter update at time step i is weighted according to
the number of steps left in the trajectory. This is to give earlier points in the
trajectory higher weights, as they influence a larger part of the trajectory. They
are also weighted with the activation of the corresponding basis function wj

at time ti, as the influence of parameter θj is highest when wj is highest.
Eq. 11 – Update parameters. Finally, add the parameter update to the current
parameters to acquire the new parameters.

As demonstrated in [27], PI2 often outperforms previous
RL algorithms for parameterized policy learning by at least
one order of magnitude in learning speed and also lower
final cost performance. It also scales up to high-dimensional
spaces, which enables PI2 to learn full-body humanoid motor
skills [21]. As an additional benefit, PI2 has no open algorith-
mic parameters, except for the magnitude of the exploration
noise εt over time, and the number of trials per update K. We
would like to emphasize that PI2 is model-free, and does not
require a model of the control system or the environment.

C. Reinforcement Learning of Goal and Shape

The PI2 algorithm can optimize multiple sets of parameters
at the same time [27]. Here, we exploit this PI2 feature to learn
both shape and goal parameters. To include goal exploration
in the DMP, we extend Eq. 6 for shape exploration as follows:

1

τ
ġt = αg( g + {εg}k︸ ︷︷ ︸

Goal exploration

−gt) (12)

1

τ
ẍt = α(β(gt − xt)− ẋt) + gᵀ

t ( θ + {εt}k︸ ︷︷ ︸
Shape exploration

) (13)

The goal exploration noise εg is drawn from a Gaussian with
variance Σg . The set of explorations corresponding to one
epoch {εg}k=1...K is sampled at the beginning of the epoch.
We assume that αg is chosen so large that, effectively, the
goal state gt converges immediately to g + εgk. Therefore, gt
is constant throughout the trial, with gt = g.

In the goal parameter update rule in Eq. 14–16, the cost-
to-go at t = 0 is used to compute the probability P ({τ 0}k).
This means that we are using the total cost of the trajectory.
The motivation behind this is that as the effect of g remains
constant during execution, there is no temporal dependency of
g on the cost. Note that P ({τ 0}k) in Eq. 14 is equivalent to
Eq. 8, with t = 0. Thus if shape parameters θ are updated first,
P ({τ 0}k) is shared with the shape parameter update, and this
probability need not be computed again. Probability weighted
averaging (Eq. 15) and goal updating (Eq. 16) are analogous
to the update rule for θ.

PI2 Goal Parameter Update Rule

P ({τ 0}k) =
e−

1
λ
S({τ 0}k)∑K

l=1[e
− 1
λ
S({τ 0}l)]

Probability (14)

δg =

K∑
k=1

[P ({τ 0}k) {εg}k] Weighted averaging (15)

g ←g + δg Parameter update (16)

By updating g in a similar fashion to updating θ, several
important advantages are inherited from the PI2 shape update
rule1: the update rule is robust to discontinuous and noisy
cost functions, as probability weighted averaging does not
rely on computing a gradient; due to the probability-weighted
averaging, g + δg always lies within the convex hull of
g = g+εk, which alleviates the need for setting a learning rate
– a crucial, but difficult to tune parameter in gradient-based
methods; since g and θ are updated simultaneously using the
exact same costs and thus the same probability weights, there
is no negative interference between learning g and θ.

1Shape parameters θ are usually kept fixed after having been optimized
with policy improvement methods, and the goal parameter g is used to adapt
the end-point of the motion to specific scenarios, for instance to reach to
different locations [10], [29]. Therefore, it might seem counter-intuitive to
optimize g to a specific task context. But g is only specific to that context
if it is learned in a global frame of reference. In the case of for instance
object grasping, g should be learned relative to the object, thus representing
an offset to the object (e.g. grasp 5cm to the right of the object). Therefore,
if the object moves 20cm to the left, so does g.
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D. Path Integral Policy Improvement with Sequences of Mo-
tion Primitives (PI2SEQ)

Now that simultaneous learning of goal and shape is in
place, we apply it to sequences of motion primitives. The most
straightforward way of doing so is to optimize the shape and
goal parameters of a DMP within the sequence with respect
to the cost accumulated during the execution of that particular
DMP. In sequences of DMPs however, the goal parameter g
of one primitive is also the start parameter x0 of the next
primitive in the sequence, and may therefore influence the cost
of executing the subsequent primitive. Therefore, we optimize
goal parameters g with respect to the cost of the current DMP
as well as the costs of the rest of the DMPs in the sequence.

We formalize this by denoting a sequence of trajectories as
Π = [τ 1

t0...tN , τ 2
t0...tN , . . . , τD

t0...tN ], which is generated
by a sequence of D DMPs. Furthermore, Πd refers to the
dth trajectory τ d in the sequence of D trajectories. Given this
notation, we define the cost-to-go of a trajectory in a DMP
sequence as follows:

S(Πd) =

D∑
j=d

S(τ j
t0) (17)

where S(τ j
t0) is the cost-to-go at t0, i.e. the total cost

of jth trajectory in the sequence. The cost-to-go S(Πd) is
thus the total cost of the current trajectory, and all subsequent
trajectories in the sequence.

When we add the notation for all K trajectories in an epoch
(Eq. 17), the similarity between Eq. 17 and Eq. 7 (partially
repeated in Eq. 18) becomes apparent. We are applying similar
cost accumulation rules for θ and g, but at different levels
of temporal abstraction: for shape parameter updating we use
S({τ i}k) over immediate costs rtj in a sequence of time steps,
and for goal parameter updating we use S({Πd}k) over total
trajectory costs S({τ j

t0}k) in a sequence of motion primitives.
The similarity of these accumulations at different time scales
is visualized in Fig. 7.

As a result, the update rule for subgoals in sequences of
motion primitives is very similar to the rule for updating
the goal of a single motion primitive, except that we use
S({Πd}k) instead of S({τ 0}k), and need to update each of
the subgoals gd=1...D in the sequence. During learning, shape
parameters θ are updated simultaneously according to Eqs. 7-
11, i.e. using probability weighted averaging.

PI2 Subgoal Parameter Update Rule

S({τ ti}k) = · · ·+
N∑
j=i

{rtj }k + . . . Cost-to-go (trajectory) (18)

S({Πd}k) =

D∑
j=d

S({τ j
t0
}k) Cost-to-go (sequence) (19)

P ({Πd}k) =
e−

1
λ
S({Πd}k)∑K

l=1[e−
1
λ
S({Πd}l)]

Probability (20)

δgd =

K∑
k=1

[P ({Πd}k) {εgd}k] Weighted averaging (21)

gd ←gd + δgd Update (22)

Fig. 7. The costs used to update θ and g are accumulated similarly, but
at different levels of temporal abstraction. The number of time steps tN is
usually much larger N > 100; it has been reduced to N = 3 for clarity of
visualization.

IV. APPLICATION I – GRASPING UNDER UNCERTAINTY

State estimation uncertainty can make even the most care-
fully planned motion fail, as the object might simply not be
at the location where the planner expects it to be [13], [2]. In
Section II-B, we listed three strategies for dealing with object
pose uncertainty in robotic grasping: generate a robust motion
plan [2]; execute exploratory actions to actively reduce the
uncertainty [8]; use reactive control during execution [15],
[9]. In recent experiments, Christopoulos and Schrater [3]
demonstrate that humans use a fourth strategy to deal with
position uncertainty.

In their experimental set-up, subjects perceived an object
to be at a certain position x̂. But when grasping the object,
the actual position, which was hidden from the subject, was
sampled from a Gaussian distribution X ∼ N (x̂,Σ). This
environmentally induced position uncertainty artificially in-
creases the uncertainty in the object’s position. It was shown
that over time, humans adapt their reaching motion and grasp
to the shape of the uncertainty distribution, determined by
the orientation of the main axis of the covariance matrix Σ.
Furthermore, these adaptations lead to significantly better
force-closure grasps [3]. Thus, rather than optimizing a grasp
that achieves force-closure for the expected object position x̂,
humans learn one motion that optimizes the average force-
closure for the grasps over all positions in the distribution
N (x̂,Σ).

In this article, we apply this experimental paradigm to
robotics, by formulating it as a reinforcement learning problem
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in which failed grasps are penalized, and inducing position un-
certainty during learning. Since the resulting motion primitive
has been trained off-line to deal with uncertainty that we have
induced, it is more robust to state estimation uncertainty on-
line during task execution.

A. Initialization of the Motion Primitive

The task is to grasp a plastic bottle with a radius of 5cm,
as depicted in Fig. 2. The Dynamic Movement Primitive we
use for this task has 11 dimensions; 3 to represent the position
of the end-effector, 4 for its quaternion orientation, and 4 for
the joint angles of the hand. The initial, preshape and grasp
postures are demonstrated to the robot through kinesthetic
teaching. The grasp posture constitutes the goal g which is
optimized with PI2. The shape of the DMP is initialized with
two minimum jerk trajectories. One moves the hand from the
initial to the grasp posture in 3s. The second sub-motion closes
the gripper in 1s. The corresponding policy parameters θinit

for this trajectory are acquired by training the DMP through
supervised learning, as described in [10]. The parameters θ are
also optimized with PI2. Fig. 8 illustrates the grasp procedure.

Fig. 8. Grasp procedure used for learning to grasp under uncertainty. The
DMP generates desired trajectories for the 7-D end-effector pose (3-D position
and 4-D quaternion orientation) and the 4 joint angles of the hand, from the
initial state x0 to the grasp posture g. The shape of this reaching movement
is determined by θ. The whole movement takes 4 seconds. After grasping,
the robot lifts the object, after which the grasp is evaluated.

B. Formulation as a Reinforcement Learning Problem

The cost function for this task is

Jgr(τ i) = φtN +

∫ tN

ti

(10−9(ẍt)
2 +

1

2
θᵀ
t Rθt) dt (23)

φtN = (1− success of lifting) (24)

where R = 10−7I. The terminal cost φtN reflects if the robot
successfully grasped and lifted the object, and is determined
during the 1s lifting motion after executing the DMP. The
‘success of lifting’ is determined by measuring the time (0s-
1s) each finger was in contact with the object, and averaging
over the 3 fingers. For instance, if all three fingers were in
contact with the objects throughout the lifting motion, the cost
is φtN = (1 − 1) = 0, if the object was knocked over and
not lifted at all φtN = (1 − 0) = 1, and if only two fingers
were in contact and the object dropped out after 0.40s, φtN =
(1−E(0.40 + 0.40 + 0.00)) = 0.73. A finger is deemed to be
in contact with the object if the value of the strain gauge of the
finger exceeds a certain threshold. Accelerations are penalized
at each time step with 10−9(ẍt)

2 to avoid high-acceleration
movements.

The parameters for the PI2 learning algorithm are set as
follows. The exploration noise for shape is Σε = 3.0, 15.0
and 30.0 for the position, quaternion orientation and finger
joint angles respectively. For the goals Σg = 0.03, 0.07, 0.03
respectively. All exploration decays with γu, where u is the
number of updates so far, and γ = 0.85. For a discussion of
how these parameters are selected, we refer to Section IV-D.

1) Environmentally Induced Position Uncertainty: We use
two uncertainty distributions for the object position. The object
is placed {-6,-4,0,4,6} centimeters from the perceived object
position along either the x or y-axis. These distributions are
intended to represent the µ±2σ intervals for σ = {2cm, 3cm};
typical values for our state estimation module. The ‘perceived’
object position is made known to the robot, but not the actual
possibly displaced position, allowing us to control the amount
of uncertainty as in [3]. The robot must thus learn a motion
that not only successfully grasps the object at the expected
position, but also at the other positions in the distribution.

During learning, the robot executes the same exploratory
motion for each of the 5 object positions. The cost for this
exploratory motion is then the average of these 5 trials. We
thus use the expected cost of an exploratory motion. For
instance, if the robot successfully grasped 3 out of 5 objects,
the cost for failed grasping for this exploratory motion is
(0+0+0+1+1)/5=0.4. For each PI2 update, we perform 10 new
trials to compute the expected cost for 2 exploratory motions.
To accelerate learning, we also reuse the 10 best trials from
the previous update, as described in [21].

C. Empirical Evaluation

For each of the two uncertainty distributions (5 positions
aligned with either the x or y-axis), 3 learning sessions were
performed with 10 updates per session. Fig. 9 depicts the
learning curves for these 6 learning sessions. The variation
between learning session is rather large in the beginning.
But after 7 updates (80 trials), all motions lead to successful
grasping and lifting of objects at all the positions, although
one session ends with the robot lifting the object rather
precariously with only two fingers.

Fig. 9. Learning curves of the grasping under uncertainty experiments.
Left: Learning curves of the individual learning sessions, as well as their µ±σ.
Right: Mean learning curves, split into the three different cost components
that constitute the total cost of Eq. 23.

Initially before learning, the average cost over both un-
certainty distributions is 0.42, and after learning it is 0.04
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(averaged over the 6 learned movements). To analyze the
importance of learning shape and goal, we executed the
learned shape with the initial goal and vice versa. When the
goal g is set to the initial value, but the learned θs are used,
the average cost is 0.32. When the learned goals g are used,
but the initial θ, the average cost is 0.56. Learning both goal
and shape adaptation is thus essential in achieving the low cost
of 0.04, which corresponds to always successfully lifting the
object, with only small costs due to acceleration and command
cost.

Fig. 10. The location of the goals g during learning after 0. . . 10 updates,
averaged over 3 learning sessions per uncertainty distribution. The trajectories
towards the goal before (update=0) and after learning (update=10) are depicted
as well. The variance in the goal location after learning (update=10) over the
3 learning session is depicted as an error ellipse around the final location.
The legend depicts the two uncertainty distributions (horizontal and vertical).
The partial red circle depicts the outline of the bottle (radius of 5cm) when
it is at the mode of the distribution at (0,0).

To analyze the learned movements, Fig. 10 depicts how the
location of the goals change during learning. Here, the mode
of the object distribution is at (0,0). The goals are adapted
in different directions, depending on the orientation of the
uncertainty in object position. In both cases, they move closer
to the objects to reach far enough to grasp the furthest ones
in the distribution.

Because not all adaptations are consistent across all move-
ments, we highlight some features of one of the learned
motions in Fig. 11, which depicts the desired postures of
the hand before and after a learning session where the object
uncertainty distribution is aligned along the y axis.

In summary, PI2 is able to adapt the shape and goal
of motion primitives so that they are robust towards state
estimation uncertainty in the position of the object to be
grasped.

In previous work, we used only shape learning to acquire
intrinsically robust motion primitives. We demonstrated that
learned movements generalize well to different object po-
sitions on the table [23]. For instance, a motion primitive
optimized to grasp an object at one perceived position was
able to successfully grasp all perceived objects (with the

Fig. 11. Hand posture during the motion of one of the learning sessions,
before (left) and after (right) learning. Larger graphs depict the reaching
motion for [0s-2.8s] and smaller insets the closing of the gripper [2.8s-4s].
Before and after learning, the fingers of the hand close symmetrically. But
after learning, the tip of the left finger moves less than the right finger (see
arrows). This is because the hand is pivoting around a point near the left finger
(see circle with arrow). In essence, the hand is wrapping around the object,
thus avoiding collisions. The S-curve motion during reaching is seemingly a
preparation for this pivoting. This leads to a higher success rate, and thus is
an adaptation to the uncertainty in the object position.

same position uncertainty distribution) within a 40x30cm area.
We also demonstrated that robust motion primitives can be
learned for more complex non-convex objects. In several other
tasks, we also previously demonstrated that learning goal and
shape simultaneously can substantially outperform learning
only shape [22], [24].

D. Parameter Selection for PI2

Before turning to the next application, we now present some
guidelines for setting the open parameters of PI2. In general,
as we and others have noticed: “PI2 shape learning is stable
and robust within large parameter regimes” [26].

a) Number of trials per update K: In general, increasing
K leads to parameter updates that are more robust to system
noise, but also leads to slower convergence. We recommend
K ≥ 5, where K = 10 has proven to be sufficient for almost
all tasks we have considered so far2. In the experiments in
this article, we have reused low-cost trials by copying them
from the set of trials gathered for the previous update. This has
the disadvantage that certain trials might persist over several
updates, and may cause parameter sets that do not conform to
the sampling distribution. Based on our current experience, we
would rather recommend importance mixing [30], as it does
not have these disadvantages.

b) Exploration noise Σ: In principle, higher exploration
noise at the beginning of learning is better because it leads to
quicker convergence. In practice, the magnitude of exploration
is usually constrained by safety issues: i.e. too vigorous
exploration might cause the robot to collide with the environ-
ment, go beyond joint limits, reach for objects outside of the

2The grasping under uncertainty experiment is an exception, as executions
of the same primitive will lead to very different costs, due to the different
positions of the object for each attempt. Therefore, the task leads to an
inherent necessity for the robot to gather statistics about the performance
of a particular policy parameterization, which requires multiple executions of
the same primitive. As described in IV.B.1, the robot thus executes the same
motion primitive 5 times, once for each object position. Executing 4 parameter
sets 5 times leads to K = 20 trials per update.
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workspace, etc. For real robots, we recommend to first execute
a few trials with low exploration, and increase exploration
magnitude until a certain safety margin is reached. Usually
20 trials before learning suffice to determine a safe initial
exploration noise level Σinit. For a particular robot, the same
Σinit can often be used over a variety of tasks. Once a task
has been learned, it is better to have low exploration noise, i.e.
to exploit the optimized parameters. To this end, exploration
decays during learning: Σ = γuΣinit with 0� γ < 1, and u
the number of updates so far. The value γ takes depends on
how many updates are needed to learn the task. Our default
value for γ is 0.9, which means that exploration is reduced
to 0.12Σinit after 20 updates. This parameter is not crucial to
convergence, and can be set to 0.99 to make sure the algorithm
still explores after even after hundreds of updates. In recent
work [25], we have shown that covariance matrix adaptation,
as in the Cross-Entropy Method [18], enables PI2 to determine
this parameter automatically and on-line during learning.

c) Initial policy parameters θinit: A disadvantage of
direct policy methods, and thus PI2, is that they are local
methods, i.e. convergence to the global optimum cannot be
guaranteed. This appears to be a general trade-off between
global optimality and tractability. A good initialization of the
policy parameters is therefore often required to converge to
a solution. In robotics, imitation is a common and intuitive
approach to providing an initialization, and we hence use it in
this article as well.

d) Cost function J(τ ): The cost function expresses the
goal of the task, and is therefore clearly task-specific. PI2

simplifies cost function design, as cost functions must not be
quadratic, and may be discontinuous. Given this freedom, cost
function design proceeds in two phases: 1) determine the rele-
vant cost components, e.g. success of lifting, acceleration, etc.
2) determine the scaling factors between them. This relative
scaling allows us to express the priorities of optimizing the
different components. A practical approach here is to execute
the initial motion primitive (or more efficiently: reuse the 20
trials that were recorded to determine the appropriate amount
of exploration noise), and separately record the different cost
components without scaling. Knowledge of the magnitudes of
the cost components allows us to set the scale factor to express
our priorities. In the grasping under uncertainty experiments
for instance, minimizing accelerations is only a secondary
objective; the main task is to successfully lift the object.
Therefore, the scale factor 10−9 in Eq. 23 was chosen such
that the accelerations initially do not constitute more than 5%
of the total cost; 95% is due to not lifting the object.

V. APPLICATION II – PICK-AND-PLACE

We now go from goal learning in one motion primitive
to direct reinforcement learning of subgoals in sequences of
motion primitives with PI2SEQ. In this section, we apply
PI2SEQ to a realistic everyday manipulation task. We consider
a pick-and-place task, where the robot has to reach for grasp
an object from a shelf, and place it on another shelf in the
same cupboard [22]. Exactly this task was recently used in
experimental psychology [20], where humans are asked to

grasp a bottle, and then place it on a shelf, as depicted in Fig. 3.
Interestingly enough, humans grasp the bottle significantly
lower if they are required to place it on a higher shelf, and
vice versa [20]. Grasping the bottle in this way makes the
second motion – transporting the bottle to the next shelf and
placing it there – easier to perform due to the end-state comfort
effect [4], i.e. the muscles need to be extended less to place the
object at its final position. This task clearly shows that motion
parameters (where do I grasp the object?) are influenced by
subsequent motions (transporting it to another shelf), and that
there is a need to optimize intermediate goals of motions with
respect to the cost of the entire motion sequence.

In our set-up, the robot is placed in front of an off-the-
shelf cupboard with four shelves, the upper three of which
are within the workspace of the robot. A cylindrical tube with
30cm height and 4cm radius is placed on the center shelf, and
the robot is required to reach for the object, grasp it, transport
it to a lower or higher shelf, and release the object. This object
was chosen as it is quite easy to grasp; grasp planning for
complex objects is not the focus of this experiment.

A. Initialization of the Motion Primitive

The task is solved by a sequence of two 7-DOF motion
primitives, representing the position of the end-effector (3-
DOF) and the posture of the hand (4-DOF). The orientation of
the hand remains fixed throughout the entire motion, directly
pointing at the shelves. The first motion reaches from the
initial rest position x0 to the object position g1. The second
motion primitive transports the object from g1 to a position
on the other shelf g2. The parameters θ of both these motions
are trained through supervised learning, where the example
movement consists of a reach-close-transport-release sequence
as depicted in Fig. 12. This trajectory is acquired through
kinesthetic teaching, and supervised learning is used to acquire
the policy parameters θinit that reproduce this trajectory [10].

Fig. 12. Grasp procedure used for the pick-and-place task.

To avoid collisions between the dynamic object and the
static shelves, we implement a collision avoidance controller
based on a potential field. We first determine the vector p
from the point on the shelf that is closest to a point on the
object3. If ||p|| > 0.15m then there is no obstacle avoidance.
Otherwise an acceleration away from the shelf is computed
with ẍavoid = Fp/||p||, where the strength of the field is
F = 30.0(0.15 − ||p||). This field is visualized Fig. 13 by a

3Currently, avoidance is based on known positions of the shelves. This
approach could readily be replaced with a distance field based on point clouds,
where p is the vector from the closest point in the point cloud
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red gradient4. ẍavoid is added to the transformation system (see
Eq. 25) as a coupling term, as proposed in [6]. This causes the
end-effector, and thus the object it is transporting, to smoothly
move away from the shelf.

1

τ
ẍt = α(β(g − xt)− ẋt) + gᵀ

t θ + ẍavoid (25)

B. Formulation as a Reinforcement Learning Problem

The cost function for this task is

J(τ i) =φtN +
1

N

∫ tN

ti

( 4G(t) + |ẍavoid|+ |ẍ|/250 ) dt (26)

where the immediate costs consist three components:
1) G(t), which is 0 if the object is in the gripper during the
transport phase, and 1 otherwise (a high penalty for failing to
grasp the object or dropping it); 2) |ẍavoid| is the acceleration
due to the obstacle avoidance module, as we don’t want to
come so close to the shelf such that obstacle avoidance needs
to be active. Thus instead of penalizing collisions between
the object and the shelf (which might damage the robot
or cupboard), the obstacle avoidance ensures that the task
succeeds, and rather penalize the use of obstacle avoidance as
a proxy for collisions; 3) |ẍ|/250 is the overall acceleration of
the movement (we don’t want high acceleration movements).
The immediate costs are divided by the total number of time
steps N , to make the cost independent from the duration of the
movement. The terminal cost φtN is the height of the object
above the shelf at the time when releasing the object starts (we
don’t want to drop the object from too high). It only applies
to the second DMP.

The parameters for the PI2 learning algorithm are set as fol-
lows. The number of trials per update is K=5. The exploration
noise for the end-effector is Σθ = 1.0γu and Σg = 0.02γu,
where u is the number of updates so far. Exploration decays
as learning progresses, with γ = 0.9. The 4-DOF posture of
the hand over time is not learned, and exploration is therefore
0 for these transformation systems.

C. Empirical Evaluation

Our evaluation consists of two parts. In Section V-C1, we
compare the learned behavior for transporting the object up
or down to a higher/lower shelf, thus showing that the robot
learns a motion with the same features as humans do. In
Section V-C2, we compare the different learning strategies, i.e.
only shape, only goal, greedy goal and shape, and PI2SEQ.

1) Comparison of Upward and Downward Reaching: In
simulation, the robot performed five learning sessions with
PI2SEQ for both placing the object on a higher and lower
shelf. On the real robot, we performed one learning session
for transporting the object up to the higher shelf.

4The top of the shelf is not avoided, else the object cannot be placed on
the shelf. Also, the field is divided by 3 in the z direction, as the obstacle
is initially quite close to the bottom of the shelf; we don’t want the obstacle
avoidance to be on right at the beginning of the movement.

The end-effector paths before and after learning are depicted
in Fig. 13. The learning curves, i.e. the total cost of the noise-
free evaluation trials as learning progresses, for moving the
object up and down are depicted in the lower graph in Fig. 13.
After 60 trials, costs have converged towards the same costs
for all learning sessions, as the variance is very low. The
residual costs after 60 trials are all due to the end-effector
acceleration (|ẍ|/250); a certain amount of acceleration will
always be required to perform the motion.

Fig. 13. For the simulation experiments, the end-effector paths for moving
the object up (left) or down (right) both before (light gray) and after (dark
gray) learning. Red segments of the path indicate that obstacle avoidance is
active. The thin vertical lines (left) represent the base position of the object
at 30Hz (cf. Fig. 3 for clarity). For moving down (right) it represents the top
of the object. The learning curves for both the real robot (1 learning session)
and the simulated robot (µ± σ over the five learning sessions) are depicted
in the inset at the bottom.

Three relevant features are highlighted in Fig. 13: F1 and
F2 are the z-coordinate of g1 and g2 respectively, relative to
its initial value before learning. F3 is the minimum value of
the y-coordinate generated by the second DMP, also relative
to its initial value. The values of these variables as learning
progresses is depicted in Fig. 14.

When moving the object up, F1 decreases, i.e. the object
is grasped lower. This leads to a larger distance between the
bottom of the object and the shelf when transporting it to the
higher shelf (see Fig. 13, left), less activation of the obstacle
avoidance module, and thus lower cost. Since grasping the
object lower leads the object to be dropped from a higher
position on release, this leads to an increased terminal cost
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Fig. 14. Values of three features of the motion as learning progresses.
Simulation: µ±σ over five learning sessions, for transporting the object both
up and down. Real robot: one learning session for transporting up.

φN . This cost is reduced by simultaneously decreasing F25,
as seen in Fig. 14. When the object is to be moved downward,
the effect is inverted. F1 increases to achieve more headroom
for the object when transporting it, and F2 simultaneously
increases. Independent of whether the object is moved up or
down, F3 decreases over time, i.e. the distance to the shelf
is increased to reduce the cost due to the activation of the
obstacle avoidance module. This last adaptation depends on
changing the shape parameters θ of the second DMP in the
sequence.

In summary, PI2SEQ adapts both the shape and goal to
solve the task, and is able to reproduce the behavior seen in
humans, who similarly adapt their grasp height to subsequent
actions [20].

2) Comparison of Learning Strategies: We now compare
the four learning strategies in simulation for the upward
transport motion. We perform five learning session for each
of the strategies: 1) only shape; 2) only goal 3) shape and
goal w.r.t. the costs of each DMP individually, i.e. ‘greedy’ 4)
shape w.r.t the cost of each DMP individually, and goal w.r.t.
the cost of the entire sequence cost, i.e. PI2SEQ. The learning
curves and resulting end-effector paths are depicted in Fig. 15.

We see that PI2SEQ outperforms the other methods in
terms of convergence speed and final cost after learning. After
convergence of the costs at 60 trials, it achieves both a lower
mean and variance in cost over the five learning sessions. As
can be seen from the end-effector paths in Fig. 15, the goal is
not changed when only learning shape, and coincides with the
goal of the initial movement before learning. When learning

5The cost due to not grasping an object G(t) appears not to play a role in
these results. The reason is that any trial in which the object is not grasped
has such a high cost – and thus has almost zero probability – that it hardly
contributes to probability weighted averaging. It plays a role during learning,
but not in the end result.

Fig. 15. Left: Learning curves (µ±σ over five learning sessions) for each of
the learning strategies. Note that the greedy strategy soon jumps to a cost of
over 1.0, and does not achieve a lower value afterwards. Hence, only its first
two values are plotted. Right: End-effector paths for the different strategies
after 60 trials, averaged over the five sessions. The initial trajectory before
learning is light gray. For clarity, only the path generated by the second DMP
is depicted.

the goal or using PI2SEQ, the grasp is moved downward, as
we saw in the previous section. Interestingly enough, in the
greedy case, the object is grasped higher. This is because
the cost of the first DMP consists only of cost due to the
acceleration (|ẍ|/250), which can be reduced by placing the
goal of the first DMP closer to its initial positions, i.e. moving
the goal up. Unfortunately, this makes the second DMP much
more difficult to execute, which leads to a very high cost for
obstacle avoidance in the second DMP. This example clearly
demonstrates the suboptimality of the greedy approach, and
the necessity to optimize the goal of a DMP w.r.t. the cost of
the overall DMP sequence, not the current DMP alone.

VI. CONCLUSION

In this article, we propose an update rule for learning
motion primitive goals, based on the model-free reinforcement
learning algorithm PI2. Furthermore, we apply simultaneous
learning of goal and shape at different levels of temporal
abstraction in sequences of motion primitives with PI2SEQ.
This approach constitutes a new form of reinforcement learn-
ing with dynamical system equations as options, which makes
it particularly well-suited for high-dimensional robotics prob-
lems.

We apply these theoretical contributions to two tasks –
grasping under object position uncertainty and a pick-and-
place task – to improve the robustness of object manipulation
skills. We believe a key aspect of achieving more robust
behavior is to exploit the experience a robot gathers during its
operation; observed experience is the most important resource
a robot has for determining the actual effects of its actions
on the environment. Our reinforcement learning approach
leverages this experience to improve future behavior, without
requiring a model.

Our methods for learning robust motion primitives may well
be combined with methods that actively reduce uncertainty [8],
or use reactive control based on sensor feedback [15], [9]. In
fact, we believe that learning motions that have an intrinsic
capability to deal with uncertainty is one of many approaches,
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albeit an important one, which are necessary to achieve truly
robust robotic manipulation.

Appendix: Robot Platform

The robotic platform used in this article consists of a 7-DOF
Barrett WAM arm with a three-fingered 4-DOF Barrett BH280
hand. Low-level control and physical simulations of the robot
are done with the SL software package [19], and high-level
communications with the Robot Operating System [17]. De-
sired task-space position/orientation trajectories are converted
into joint space using the Jacobian pseudo-inverse. The result-
ing joint velocities are integrated and differentiated, to get joint
positions and accelerations respectively. Feed-forward inverse
dynamics torques for the arm are obtained from a recursive
Newton Euler algorithm. Feed-back joint torques are obtained
from low-gain joint PD controllers. All our controllers run
at a rate of 300Hz on a host computer with the Xenomai
real-time operating system. We thank Ludovic Righetti, Mrinal
Kalakrishnan, and Peter Pastor for their assistance.
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