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Abstract—For humans and robots, variable impedance control
is an essential component for ensuring robust and safe physical
interaction with the environment. Humans learn to adapt their
impedance to specific tasks and environments; a capability which
we continually develop and improve until we are well into our
twenties. In this article, we reproduce functionally interesting
aspects of learning impedance control in humans on a simulated
robot platform.

As demonstrated in numerous force field tasks, humans
combine two strategies to adapt their impedance to perturba-
tions, thereby minimizing position error and energy consump-
tion: 1) if perturbations are unpredictable, subjects increase
their impedance through co-contraction; 2) if perturbations are
predictable, subjects learn a feed-forward command to offset
the perturbation. We show how a 7-DOF simulated robot
demonstrates similar behavior with our model-free reinforcement
learning algorithm PI2, by applying deterministic and stochastic
force fields to the robot’s end-effector. We show the qualitative
similarity between the robot and human movements.

Our results provide a biologically plausible approach to
learning appropriate impedances purely from experience, without
requiring a model of either body or environment dynamics.
Not requiring models also facilitates autonomous development
for robots, as pre-specified models cannot be provided for each
environment a robot might encounter.

Index Terms—robots with development and learning skills, us-
ing robots to study development and learning, motor system and
development, variable impedance control, force field experiments,
motion primitives, reinforcement learning

I. INTRODUCTION

To achieve robustness towards stochastic disturbances, hu-
mans adapt the impedance of their biomechanical system. The
ability to adapt impedance is developed “over the course of
years [as] the stability of particular behaviors is reinforced
and is more robust to perturbations.” [3]. On a smaller time
scale, humans are also able to learn task-specific adaptations
to achieve robustness against the specific perturbations arising
in a particular task. In windsurfing or skiing for instance, we
must be compliant enough to deal with small, high frequency
perturbations caused by small waves or uneven snow, but still
have a high enough impedance to be able to control the board

or skis. Learning this balance is one of the aspects that make
these sports difficult to master. In summary, impedance control
in humans is the result of learning and development; the aim
of this article is to reproduce functionally interesting aspects
of this learning process on a simulated robot platform.

The standard paradigm for studying task-specific perturba-
tion rejection in humans is by applying a force field to a
subject’s hands with a robotic manipulandum. Numerous force
field experiments have demonstrated that humans develop two
strategies to deal with perturbations [19], [17], [2], [14], [4],
[18]. Deterministic, and thus predictable, perturbations are
countered by learning a feed-forward term, whereas stochastic
perturbations lead to an increase in stiffness through muscle
co-contraction.

The general rule of thumb thus seems to be “be compliant
when possible; stiffen up only when the task requires it”. Task-
specific adaptation of impedance allows humans to combine
the advantages of high stiffness (accurate tracking, stable under
unforeseen perturbations) and compliance (lower energy con-
sumption, safer interaction with the environment, decoupling
from perturbations). It takes humans more than two decades
of experience to develop and tune this rule [3].

In contrast, robots have traditionally been controlled with
constant high gain negative error feedback control [20]. Espe-
cially for industrial robots, the rule of thumb is rather “be
stiff”. Achieving high position accuracy has thus come at
the cost of high energy consumption, and the necessity to
build cages around robots to avoid human-robot contact. For
autonomous mobile robots operating in human environments,
safety and energy efficiency requirements are very different,
and low-gain variable impedance control will be an essential
characteristic of such robots.

We have recently shown that the PI2 reinforcement learning
algorithm is able to learn such variable impedance control on
real robots in high-dimensional tasks [1]. In this article, as
in [22], we use PI2 to learn variable impedance controllers in
deterministic and stochastic force fields. In particular, we show
that the robot learns behavioral adaptations similar to those of
humans, i.e. the two-fold strategy of combining a feed-forward
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term for deterministic perturbations with increased impedance
for stochastic perturbations.

In contrast to model-based optimal control, which is com-
monly used to simulate human behavior in computational
motor control [11], PI2 does not require a model and scales
to high-dimensional tasks [23], thus making it a biologically
more plausible learning algorithm. Not requiring models also
facilitates autonomous development for robots, as pre-specified
models cannot be provided for each environment a robot might
encounter. Furthermore, as PI2 converges to local optimal
solutions [27], our results lends support to the idea that
learning based on stochastic optimality is a good model for
human learning and development of motor skills.

The rest of this article is structured as follows. In the
next section, we discuss related work from computational
motor control and robotics. We present a analysis of variable
impedance control in stochastic force fields in Section III, and
use this to make several predictions about learned behaviors
for perturbation rejection. In Section IV, we summarize the
experimental design and models used in this article, being
Dynamic Movement Primitives [8] and the PI2 reinforcement
learning algorithm [27]. The results of our empirical evaluation
are presented in Section V. We conclude with Section VI.

II. RELATED WORK

In this section, we discuss related work on biophysics
experiments that investigate the role of human stiffness adap-
tations to perturbations, as well as state-of-the-art in variable
impedance control for robots.

A. Variable impedance control in force field experiments

The standard paradigm for studying perturbation rejection
in humans is by applying a force field to a subject’s hands with
a robotic manipulandum. With this paradigm, Shadmehr and
Mussa-Ivaldi [19] demonstrated that, with practice, humans
learn to compensate for external perturbations caused by a
deterministic force field. When suddenly removing the force
field, the observed trajectories (after-effects) were approxi-
mately mirror images of the trajectories before learning. This
suggests that humans learn an internal model of the force field
and compensate for it.

Further experiments demonstrated that in stochastic force
fields, subjects learn to adapt to the mean disturbance regard-
less of the statistical distribution of disturbances [17], and
that the after-effects decrease with increasing stochasticity [2].
Takahashi et al. [2] suggest that the nervous system adopts
a dual strategy: learning an internal model of the mean of
the random environment, while simultaneously increasing arm
stiffness to minimize the consequence of errors. They thus
conclude that “the results of this study suggest that impedance
control can coexist with the application of internal models for
control” [2]. The analytical and empirical results presented
in this article further support this hypothesis. A similar dual
effect was shown by Mistry et al. [14]. Here, it was also
demonstrated that a small amount of stochasticity in force
field strength leads to better learning of an internal model

than in the deterministic case. This suggests that some noise
is beneficial to exploration.

Franklin et al. [4] present a model which combines three
principles to learn stable, accurate and efficient movements:
1) positive error (the muscle was stretched more than expected)
leads to an increase in feedforward muscle activity; 2) negative
error (muscle shortening) leads to a similar increase; 3) the
feedforward activation of a muscle is reduced if the error is
below some threshold. The three principles are combined in a
simple algorithm, which is able to accurately model empirical
data gathered in force field experiments.

B. Variable impedance control in robotics

Since variable impedance control allows a trade-off between
the minimization of error and energy, it is a desirable property
for robots as well. We believe that compliant robots which
interact safely with the environment (by avoiding high contact
forces), are especially relevant to developmental robotics,
which emphasizes the role of continual interaction with the
environment. When learning continually through trial-and-
error interaction, it is important that exploration does not lead
to dangerously high forces due to (unexpected) physical con-
tact with the environment – a prerequisite for developmental
robotics is that an error may never be so grave that no more
trials can be performed by the robot.

However “[t]he selection of good impedance parameters
[. . . ] is not an easy task” [20]. The main reason is that
deriving useful impedance controllers usually involves models
of both the environment and the robot, as well as deep
knowledge about designing and parameterizing such con-
trollers [7]. Therefore, recent work in variable impedance
control for robotics has investigated learning these models,
or using methods that are all together model-free.

Mitrovic et al. [15] make a strong case for the limitations of
analytical dynamic models. First, the accuracy of the model
is limited to the level of detail in the physical model, and
the amount of effort put in the system identification process.
Second, it is not obvious how changes in the dynamics
over time can be modelled. Finally, the dynamic stochastic-
ity, incorporated in the noise model, often depends on the
task and physical interactions with the environments. These
problems already arise for the 1-dimensional antagonistic
actuator Mitrovic et al. consider, and only become more severe
when considering high-dimensional systems such as humanoid
robots [23]. Therefore, Mitrovic et al. propose to learn a
model of the dynamics and the noise through supervised
learning, using Locally Weighted Projection Regression [28].
This model is then used in a model-based stochastic optimal
controller to control a 1-DOF antagonistic actuator. Our goal
is rather to circumvent modelling all together, by learning
directly in the space of the policy parameters.

An early model-free impedance learning approach was
presented in [10], where a simulated 2DOF simulated robot
arm with antagonistic muscle learns to reach for a target object
whilst minimizing motor commands. The reinforcement learn-
ing algorithm is implemented as an actor-critic architecture,
where the critic learns the value function by minimizing the
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temporal-difference error, and the actor determines the muscle
forces. Both are implemented as feed-forward neural networks.
The learning problem is simplified by generating exploration
noise along two subspaces, one in which the joint stiffness
remains constant, and another in which it does not. Most
relevant to this article is the fact that the agent learns to
increase the impedance through co-contraction when the arm
is perturbed with a force of randomly varying orientation [9]
or strength [10]. However, applying this approach to higher-
dimensional systems or real robots might be challenging, as it
requires tuning of the time-constant for learning, appropriately
setting the bias for the initial stiffness, and determining the
appropriate neural network structure. A similar more recent
actor-critic approach is presented in [13]. In this work, the
reference trajectory of the end-effector is fixed. Therefore this
approach cannot be used to simulate the dual strategy seen in
humans, as it relies adapting the reference trajectory.

We recently proposed the use of model-free reinforcement
learning to simultaneously learn reference trajectories and
variable impedance controllers [1], [22]. To do so, we use the
Policy Improvement with Path Integrals (PI2) algorithm; a very
general algorithm which scales up to very high-dimensional
problems [23]. This approach, which will be described in detail
in Section IV, has been applied to simulated and real robots
in viapoint tasks and tasks involving physical contact with the
environment [1], for instance flipping a light switch or opening
a door. This article presents the first results of applying PI2

to tasks involving stochastic perturbations, and demonstrating
how the resulting movements are similar to those observed in
humans.

Most closely related to our work is the implementation of
the model by Franklin et al. [4] (described in the previous
section) in the context of a 1-DOF robot [5]. Here, co-
contraction of muscles is also modelled by increasing the gains
of the robot, and the robot learns to adapt its impedance, the
forces it applies and reference trajectories. Our work differs
in that PI2 is a generic policy improvement algorithm, which
can not only be used to learn gain schedules, but also for very
different tasks, i.e. learning to grasp under uncertainty [25] or
pick-and-place manipulation tasks [24]. Also, whereas [5] has
been applied to 1-DOF robots, PI2 has been shown to work
on action spaces of very high dimensionality [23].

In summary, we observe that computational motor control
models and robotics are converging towards the same solution:
adaptively learning impedance control. The quote “motor
adaptation should incorporate . . . two adaptive processes:
internal model formation as well as impedance regulation. [2]”
applies equally well to both fields. The motivation behind this
article is to demonstrate that model-free reinforcement learn-
ing based on stochastic optimality is 1) an excellent basis for
controlling high-dimensional robot systems, as demonstrated
in [1] 2) able to qualitatively reproduce the two adaptive
processes as seen in human behavior.

III. ANALYSIS

In this section, we model the force field and robot as a sim-
ple 1-dimensional spring system, depicted in Fig. 1. The aim of

this section is two-fold: 1) introduce the concepts used in the
experimental design in Section IV; 2) demonstrate that, despite
the simplicity of the static model, the model is able to make
predictions that have been observed in dynamic biophysics
experiments. This supports the hypothesis that variable gain
scheduling is an appropriate paradigm for modelling variable
stiffness in humans.

A. Deterministic force fields

We consider a scenario in which the forces are in equilib-
rium; the model thus represents a steady state, rather than a
movement over time. The ‘robot’ is simply a spring, which
models a resistance to the force field with a proportional
controller1. Without loss of generality, we assume that the
desired position is zero, i.e. xd = 0. In Fig. 1, this corresponds
to the tip of the gray arrow coinciding with the green line.

F = −F̃ Assume equilibrium (1)

F = −KP (x− xr) Proportional controller (2)

F̃ = KP (x− xr) Combine 1 and 2 (3)

x = xr + F̃ /KP Solve for x (4)

Given this scenario, we can now readily compute the actual
position x from the force field strength F̃ with Eq. 4. An
example is given in Fig. 1A, where F̃ = 1, KP = 2, xr =
xd = 0, and thus x = 0 + 1/2 = 0.5.

Fig. 1. Illustration of using different impedances (gains) in deterministic and
stochastic perturbations. The perturbation pushes from the left; the magnitude
of the perturbation force F̃ is indicated by the width of the left (red) arrow. The
‘robot manipulator’ is depicted as a (gray) arrow pushing from the right; its
force F is computed with F = −KP (x− xr), i.e. a proportional controller
based on the position error between the reference position xr and actual
position x. The gain KP ∈ {2, 20} is represented by the thickness of the
spring to the right. The robot’s goal is to minimize the error (xd−x) between
the actual (x) and desired (xd) position. In this illustration, all forces are in
equilibrium, i.e. F = −F̃ and ẋ = 0.

Since x represents the deviation from the desired position
xd = 0, we would like to keep x = 0 to minimize the position
error:

1In Section IV, we will rather use a proportional-derivative controller F =
−KP (x − xr) − KD(ẋ − ẋr) to implement damping. In this article, we
assume the reference velocity ẋr is zero. Since the system is assumed to be
in equilibrium in this section, ẋ is also zero. Hence, the derivative term drops,
and is ignored in this section for simplicity.
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x = 0 Position error should be zero (5)

xr + F̃ /KP = 0 From Eq. 4 (6)

xr = −F̃ /KP Solve for xr (7)

For the running example, the offset is xr = −1/2 = −0.5,
as depicted in Fig. 1B. Thus, to achieve a zero deviation x = 0
in deterministic force fields, xr = −F̃ /KP . Learning to move
the reference position can be considered the learning of an
internal model to counter the force field. However, the force
field or the robot are not modeled directly, but rather implicitly
in the policy parameter xr. Note that with the constant offset
term, the equilibrium will move to x = xr = −0.5 if the force
field is removed (F̃ = 0), as depicted in Fig. 1C.

Prediction 1. Eq. 7 shows that deterministic force fields
can be countered with a constant offset term. This leads to
after-effects in catch trials, as observed in [19].

B. Stochastic force fields

In stochastic force fields, F̃ should be rather interpreted as
a random variable. The position x is therefore also a random
variable, denoted X .

F̃ ∼ N (µ, σ2) Gaussian force field (8)

X ∼ xr +N (µ, σ2)/KP Combine (4) and (8) (9)

X ∼ N (xr + µ/KP , (σ/KP )
2) Gauss. transform. rule (10)

As before, we would like to minimize the position error. Since
X represents the deviation from the desired position xd = 0,
this now corresponds to E(X) = 0.

E(X) = 0 As (5) (11)

E(N (xr + µ/KP , (σ/KP )
2)) = 0 From (10) (12)

xr + µ/KP = 0 E(N (a, b)) = a (13)
−µ/KP = xr Solve for xr (14)

Thus, to achieve an expected X of zero, xr = −µ/KP .
This is analogous to Eq. 7, except now we use the expected
value of the force field µ, rather than the known value. For
our running example we again have xr = −1/2 = −0.5, as
depicted in Fig. 1D.

Prediction 2. Eq. 14 predicts that the offset should be
adapted to the mean strength of the force field. This adaptation
to the mean was observed in [17].

Now let’s plug the offset term xr = −µ/KP back into
Eq. 10.

X ∼ N (−µ/KP + µ/KP , (σ/KP )
2) (10) and (14) (15)

X ∼ N (0, (σ/KP )
2) Simplify (16)

With the appropriate offset term, the deviation is thus a
zero mean Gaussian with variance (σ/KP )

2. Therefore, the
only way to decrease the variance in the deviation is by
increasing the gain KP . This can be seen when comparing

Fig. 1D and Fig. 1E. In D, the gain is low (KP = 2),
and the variance in the position error is thus high (X ∼
N (0, (0.5/2)2) ∼ N (0, 0.252)). In D, gains are high
(KP = 20), and the variance in the position error is thus
low (X ∼ N (0, (0.5/20)2) ∼ N (0, 0.0252)).

Prediction 3. Eq. 16 predicts that if we want to enforce an
upper bound on the variance in the deviation, we are required
to increase KP when the force field stochasticity σ increases.
This effect is observed in humans, where impedance is in-
creased when stochasticity of the force field is increased [2].

Prediction 4. Another interesting effect predicted by this
analysis is that with an increasing gain KP , the magnitude of
the offset term xr = −µ/KP decreases, and thus the after-
effect are predicted to decrease. This is seen in Fig. 1E, where
xr is much closer to xd than in Fig. 1D. In humans it was
also observed that increased stochasticity in force fields leads
to smaller after effects [14].

Prediction 5. Finally, this analysis predicts that to achieve
a pre-specified error variance, the gains must increase linearly
with increasing stochasticity. This is supported by our empir-
ical results presented in Section V, but partially contradicts
observations made in [14]. An possible explanation for this
contradiction is given in Section V-A.

IV. METHODS

Our robot ‘subject’ is a 7-DOF Barret arm, depicted in
Fig. 2. We use an accurate physical simulation of the robot
with the SL software package [16]. Note that although the
visualizations in this article are in 2D for ease of interpretation,
the robot is simulated in full 3D space.

Fig. 2. The 7-DOF robotic arm used in this article, simulated in SL. The
reaching trajectory and force fields are depicted in the right graph (for σ =
0.2886).

A. Experimental Protocol

In this article, we consider the learning of reaching move-
ments to a discrete, specified goal, and follow the experimental
protocols in [4], [11], [14]. In particular, the experimental
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parameters below are taken from Experiment 1 in [14], and
Experiment 3 in [11].

Initially the robot makes a straight movement with
minimum-jerk velocity profile along the x-axis (distance 0.2m,
duration 1s), away from its body [11]. This movement is
depicted in Fig. 2. We use a velocity dependent force field[
Fx
Fy

]
= β [ 0 10

0 0 ]
[
ẋ
ẏ

]
, where Fx, Fy is the force applied

to the subject’s end-effector along the x/y-axis respectively,
and ẋ/ẏ is the velocity of the end-effector along the x/y-
axis [14]. The strength of the force field β is sampled at
the beginning of each trial from a Gaussian distribution
N (1, σ). We apply four different force fields with σ =
{0.0000, 0.1442, 0.2886, 0.4330} [14]. The effect of the force
field with σ = 0.2886 is depicted in Fig. 2. The deterministic
case is represented by σ = 0

The robot ‘subject’ receives feedback about joint positions,
end-effector position, and joint torques. After each trial, feed-
back on task achievement is given by the cost function2:

J(τ i) =

∫ tN

ti

103d(xt) + 10−2
7∑

j=1

(Kj
P,t −K

j,min
P,t ) + 10−3|ẍt|

(17)

This cost functions consists of the following components:

• Position error. d(x) is the distance in meters from the
end-effector to the line connecting start and end-point
of the movement, i.e. similar to Eq. 2 in [4]; this cost
expresses that we do not want large errors in position
from the straight desired path. Note that this desired path
is invariant, and is not the same as the reference trajectory
which is adapted through learning (i.e. compare xr and
xd in Fig. 1). Using such an invariant desired path is also
frequently assumed in modelling of human behavior [5],
[4], [29].

• Gains.
∑7
j=1(K

j
P − Kj,min

P ) is the sum of the pro-
portional gains (minus their minimum values) over all
joints j; this cost expresses that we prefer low gains, as
they lead to lower torque commands and safer human-
robot interaction. In principle, we would expect similar
results when penalizing motor commands directly, as
high gains generally lead to higher motor commands, cf.
Eq. 25. Thus penalizing motor commands should also
lead to lower gains. Penalizing the gains stems from our
explicit goal of achieving compliant robots with low-gain
control [1].

• End-effector acceleration. |ẍ| is the end-effector accel-
eration in m/s2; this cost expresses that we do not want
motions with high accelerations.

We now describe how the reference trajectory (Sec-
tion IV-B) and variable gain schedules (Section IV-C) are
represented. In Section IV-D we present the model-free rein-
forcement algorithm that learns to minimize the cost function
in Eq. 17, by adapting the reference trajectories and gain
schedules.

2These cost are all part of rt in the generic PI2 cost function to be discussed
in Section IV-D.

B. Movement Representation

The reaching trajectory is represented by a Dynamic Move-
ment Primitive (DMP) [8], which consists of a set of dynamic
system equations (Eq. 18- 22) which are visualized, and
explained in Fig. 3.

Dynamic Movement Primitives

1

τ
ẍt = ft + gT

t θ Transform. system (18)

ft = α(β(g − xt)− ẋt) Linear system (19)

[gt]j =
wj(st) · st∑p
k=1 wk(st)

(g − x0) Basis functions (20)

wj = exp
(
−0.5hj(st − cj)2

)
Gaussian kernel (21)

1

τ
ṡt = −αst Canonical system (22)

Gain schedules

KP,t = gT
t,KθK Time-dependent gain (23)

[gt,K ]j =
wj(st)∑p

k=1 wk(st)
Basis functions (24)

The intuition behind this approach is to generate trajectories
[xt, ẋt, ẍt] out of the time evolution of a nonlinear attractor
system, where the goal g is a point attractor and x0 the start
state3.

The two main components in Eq. 18 are a linear (critically
damped) spring system ft, and a non-linear component con-
sisting of a set of Gaussian basis functions gTt , multiplied with
the parameter vector θ. The activation of the basis functions
during the movement is determined by the phase variable st,
which exponentially decays over time from 1 to 0 as the
movement progresses, as depicted in the left graph inFig. 3.
The centers cj of the basis functions (i.e. their maximum
activations), are positioned in phase space such that they are
equally spaced in time. Finally, the parameters θ determine the
shape of the attractor landscape. For each basis function [gt]j ,
there is one scalar value θj . This formulation allows a DMP
to represent almost arbitrary smooth trajectories, e.g., a tennis
swing, a reaching movement, or a complex dance movement.
On the other hand, convergence to the goal g is guaranteed
as it can be shown that ft converges to g, and gt converges
to 0 [8].

We leave the details to [8], [27]. For this article, the
important features of DMPs are that • When integrating a
DMP over time, it generates a 1-dimensional output trajectory
[xt ẋt ẍt] • DMPs converge from the initial value x0 towards
the goal parameter g. • The general shape of the trajectory is
determined by the parameters θ • Multi-dimensional DMPs
are represented by coupling several transformation systems as
in Eq. 18 with one shared phase variable s.

Parameters for the experiment. In this article, the DMP
has three transformation systems, which represent the 3-

3Having to start at the same initial condition is a limitation of the DMP.
Since force field experiments typically involve repeated movements from the
start to the same goal position, this limitation of DMPs coincides with the
constraints of the experiments.
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Fig. 3. Dynamic Movement Primitives (DMPs). The core idea behind DMPs is to perturb a simple linear dynamical system with a non-linear component
(gT

t θ) to acquire smooth movements of arbitrary shape. The non-linear component consists of basis functions gt, multiplied with a parameter vector θ. The
canonical system st represents the phase variable, which is 1 at the beginning of the movement, and 0 at the end. The movement (upper row) has a duration
of 1 second, after which x has reached the goal, i.e. xt>1.0 = g. Proportional gain schedules KP,t (lower row) are not transformation systems, but rather
represented directly with the function approximator gT

t,KθK .

dimensional reference trajectory of the robot’s end-effector
in Cartesian space [xr,t ẋr,t ẍr,t]. The initial parameters θ
are trained with supervised learning [8], so that the reference
trajectory has a minimum-jerk velocity profile, and generates
the trajectory depicted in Fig. 2. The reference Cartesian end-
effector velocities are converted into joint space using the
Jacobian pseudo-inverse. The resulting joint velocities q̇r,t are
integrated and differentiated, to get joint positions qr,t and
accelerations q̈r,t respectively.

C. Variable Gain Schedule Representation

Given the reference joint trajectory [qr,t q̇r,t q̈r,t] generated
above, the motor command torques u for our robot are
calculated via a PD/feed-forward control law:

u = −KP (qt − qr,t)−KD(q̇t − q̇r,t) + uID (25)

KD = C
√

KP (26)

where KP , KD are the positive definite position and velocity
gain matrices, and C is a constant scale factor set manually
for each joint. The feed-forward control term uID is computed
with an inverse dynamics (ID) controller based on a Newton-
Euler algorithm. The inverse dynamics feed-forward torques
uID only compensate for forces due to gravity, inertia and
Coriolis effects, but not for the force fields we generate. There-
fore, the feed-forward term which is learned to compensate
for the force field perturbation F̃ is completely independent
of uID. Our main motivation for using the ID controller is that
humans also use feed-forward control to cancel the dynamics
of their arm [29]; the results of the biophysics experiments we
model thus also depend on human subjects that use inverse
dynamics models. Note that although our learning method is

model-free, our inverse dynamics controller does require a
model of the robot. Although humans learn this model rather
than it being model-based, we believe this is not relevant to
the task we consider. Second, decoupling the inverse dynamics
from the task dynamics would allow the learned motion to
generalize better to similar tasks. For instance, the movement
could be moved 10cm to the right, and the same movement
would still arise. If the movement would involve both the
compensation of the task dynamics and arm dynamics this
generalization would no be possible.

In summary, the impedance of a joint is parameterized by
the choice of the gains KP (stiffness) and KD (damping).
The key to variable impedance control is to allow KP to
vary as the movement is executed. As introduced in [1],
this can be achieved by representing the gain schedules as
extra dimensions in the DMP. Since the gains do not have a
specific goal value, the proportional gains are not represented
as transformation systems that converge to g, but computed
directly as a function approximator KP,t = gTt,KθK , as
depicted in Fig. 3.

Parameters for the experiment. In our experiments, we
use supervised learning to initialize θK such that the propor-
tional gains of the 7 joints are constant over time, and have
the values Kmin

P = {60, 60, 16, 16, 6, 6, 1.6}. These are 0.4
times the default gains we use for this robot, and the minimum
gains we allow during learning, as too low gains lead to poor
tracking such that the robot frequently runs into its joint limits.
Although we start out with a gain schedule that is constant
over time, we shall see in the next section that varying θK
leads to varying gain schedules, which are adapted to external
perturbations through reinforcement learning.

In summary, in the Dynamic Movement Primitive used
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in this article, there is one canonical system (representing
the phase variable st) which drives 3 transformation systems
(representing the 3-D end-effector position over time) and 7
function approximators (representing the gain schedules of the
7 joints). We chose to specify the reference trajectory in end-
effector space since this is the element the ‘subject’ has to
regulate to fulfill the task and receives feedback on. In contrast
we chose to regulate gains in joint space to avoid to have to
specify and additional, arbitrary null-space behavior.

D. Reinforcement Learning Algorithm
Given the DMP representation above, the goal is to learn

the parameters θ and θK which minimize the cost function in
Eq. 17. To do so, we use the policy improvement algorithm PI2

[27]. Since PI2 learns θ and θK simultaneously with the same
method, from now on we simply denote these parameters for
the end-effector trajectory and gain schedules as one parameter
vector θ.

Cost functions for PI2 take the generic form:

J(τ i) = φtN +

∫ tN

ti

(rt +
1

2
θTRθ) dt Traj. cost (27)

where J is the finite horizon cost over a trajectory τ i starting at
time ti and ending at time tN . This cost consists of a terminal
cost φtN , an immediate cost rt, and an immediate control cost
1
2θ

TRθ. The specific cost function for the task considered in
this article was given in Eq. 17, and adheres to this generic
format.

1) Generic Policy Improvement Loop: Policy improvement
methods minimize cost functions through an iterative process
of exploration and parameter updating, which we explain using
Fig. 4. Exploration is done by executing a Dynamic Movement
Primitive M times, each time with slightly different policy
parameters θ + εt,k which is added to explore the parameter
space, as in Eq. 28. This noise is sampled from a Gaussian
distribution with variance Σθ . A similar Gaussian exploration
is applied to the gain schedules as in Eq. 29.

1

τ
ẍt = α(β(g − xt)− ẋt) + gTt ( θ + εt,m︸ ︷︷ ︸

Shape exploration

) (28)

KP,t = gTt,K( θK + εθKt,m︸ ︷︷ ︸
Gain exploration

) (29)

These ‘noisy’ DMP parameters generate slightly different ref-
erence trajectories {ẍr,t, ẋr,t,xr,t}m=1...M and gain schedules
{KP,t}m=1...M , which each lead to different costs. Given
the costs and noisy parameters of the M DMP executions,
called roll-outs, policy improvement methods then update
the parameter vector θ such that it is expected to generate
movements that lead to lower costs in the future. The process
then continues with the new θ as the basis for exploration.

2) Policy Improvement with Path Integrals – PI2: The most
crucial part of the policy improvement loop in Fig. 4 is the
parameter update; it is here that the key differences between
PI2 and other policy improvement methods lie.

The foundation of PI2 comes from (model-based) stochastic
optimal control for continuous time and continuous state-
action systems. The derivation of PI2 starts with the standard

Fig. 4. Generic loop of policy improvement algorithms.

Hamilton-Jacobi Bellman equation [21], which is a non-
linear partial differential equation (PDE). This equation is first
linearized by applying a log transformation and assuming that
the exploration noise is inversely proportional to the control
cost matrix [27]; the underlying intuition is that there should
be less exploration in directions where command costs are
high. The resulting linear PDE is then transformed into a path
integral with the Feynman-Kac theorem [12]. The importance
of this transformation is that it is now possible to evaluate
the path integral with Monte Carlo roll-outs, i.e. the optimal
control problem can be iteratively solved with the generic
policy improvement loop depicted in Fig. 4. Finally, the update
rule is applied it to Dynamical Movement Primitives, such that
the linear component ft and basis functions gt constitute the
‘system model’. Since ft and gt are known to the robot, this
renders the algorithm model-free.

Fig. 5. Visualization of PI2 exploration and the update rule. The upper
right inset shows the parameters θ and explorations θ+εm=1...10. The time
slice for ti=0 is in the foreground; those for ti=1...N are similar but hidden
from view. For reasons of clarity, this figure visualizes a DMP with only one
dimension and only two basis functions (and thus a parameter vector of length
two).

Rather than focussing on its derivation from first principles
of stochastic optimal control, which is presented extensively
in [27], we provide a post-hoc interpretation of the resulting
update rule in Fig. 6, with a visualization in Fig. 5.

As demonstrated in [27], PI2 often outperforms previous
RL algorithms for parameterized policy learning by at least
one order of magnitude in learning speed and also lower final
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PI2 Parameter Update Rule

S(τ i,m) =φtN ,m +

N−1∑
j=i

rtj ,m+

1

2

N−1∑
j=i+1

(θ +Mtj ,mεtj ,m)TR(θ +Mtj ,mεtj ,m) (30)

Mtj ,m =
R−1gtj gT

tj

gT
tj
R−1gtj

(31)

P (τ i,m) =
e−

1
λ
S(τ i,m)∑M

l=1[e
− 1
λ
S(τ i,l)]

(32)

δθti =

M∑
m=1

[P (τ i,m) Mti,m εti,m] (33)

[δθ]j =

∑N−1
i=0 (N − i) wj,ti [δθti ]j∑N−1

i=0 wj,ti (N − i)
(34)

θ ←θ + δθ (35)

Fig. 6. PI2 parameter update rule: Eq. 30 – Determine cost-to-go of each
roll-out S(τ i,m) at each time step i. This is an evaluation of the cost function
J(τ i) in Eq. 27, which is task-dependent and provided by the user. The matrix
Mtj ,m (Eq. 31) is needed to project the exploration noise onto the parameter
space. Note how each exploration in Fig. 6 leads to a different cost in the
cost landscape (Eq. 27), depicted here in gray scale.
Eq. 32 – Compute probability of each roll-out P (τ i,m) at each time step
i by exponentiating the cost-to-go. This exponentiation is visualized in the
lower left graph in Fig. 6. The intuition behind this step is that trajectories of
lower cost should have higher probabilities.
Eq. 33 – Average over roll-outs. Compute the parameter update δθ for each
time step i through probability weighted averaging over the exploration ε
of all M roll-outs. Trajectories with higher probability, and thus lower cost,
therefore contribute more to the parameter update. Again, Mtj ,m projects
the exploration noise onto the parameter space. The resulting update vector
δθi is depicted as an arrow in the inset in Fig. 6. Note how θ will move
towards a lower cost in the landscape.
Eq. 34 – Average over time-steps. In this step (not visualized in the Fig. 6),
we average the parameter update δθti per time step i (every ‘slice’ in the
inset) over all time steps to acquire one update vector δθ. Each parameter
update is weighted according to the number of steps left in the trajectory. This
is to give earlier points in the trajectory higher weights, as they influence a
larger part of the trajectory. They are also weighted with the activation of the
corresponding basis function wj at time ti, as the influence of parameter θj is
highest when wj is highest. Finally, the actual parameter update is performed
with Eq. 35.
Eq. 35 – Update the parameters. In the final step, δθ is added to the
parameters θ to acquire the new parameters which will be used in the next
round of explorations.

cost performance. It also scales up to very high-dimensional
spaces, which enables PI2 to learn full-body humanoid motor
skills [23]. The main reasons for its superior performance are:
• There is no need to calculate a gradient, which is sensitive to
noise and large derivatives in the value function. The update is
rather based on computing a weighted average (Eq. 33), which
does not involve a gradient. • No backward propagation of ap-
proximations of the value function are required, which allows
for a sampling (i.e. roll-out) based method. • Exploration is
done is DMP parameter space, rather than state space. For high
dimensional problems, it is simply not possible to sample the
whole state space.

As an additional benefit, PI2 has no open algorithmic
parameters, except for the magnitude of the exploration noise
εt (the parameter λ is set automatically, cf. [27]). We would

like to emphasize that PI2 is model-free, and does not require
a model of the control system or the environment.

Parameters for the experiment. In our experiments, we
performed 100 PI2 updates with M = 10 roll-outs per update
for each of the four force fields. The exploration noise was
Σθ = 102 for the Cartesian positions, and ΣθK = 10−3 ·
Kmin
P for the 7 gain schedules4, where Kmin

P are the minimum
gains as listed in Section IV-C.

V. RESULTS

After each PI2 update, three roll-outs were executed without
exploration noise for evaluation purposes. For these three roll-
outs, force fields with strength β = 1 − σ, 1, 1 + σ were
used. For all four forcefields (each with a different level
of stochasticity determined by σ), the reference trajectories,
force fields and actual trajectories at various stages of learning
are depicted on the last page in Fig. 9. For comparison, the
reference trajectories after 100 updates for the four force fields
are depicted together in Fig. 7. These correspond to the after-
effects that occur when the force field is turned off, similar to
the graphs in [19], [14].

Fig. 7. Left: After-effects (i.e. reference trajectories) after 100 updates for
each of the force fields. Center: Same, with x axis scaled ×2 for visualization
purposes. Right: Average after-effect (i.e. mean distance to the trajectory
before learning) as a function of force field stochasticity.

The learning curves for the four force fields are depicted in
the top row of Fig. 8. In this figure, the cost for each force
field are also split up into the different cost components of
Eq. 17. The cost due to acceleration is relatively low, and
hardly visible in Fig. 8. The sum over all gain schedules at
various stages during learning are depicted in the bottom row
of Fig. 8.

A. Discussion

A closer inspection of the individual cost components,
reference trajectories and gain schedules leads to the following
observations:

4The relatively low exploration noise for the gains does not express less
exploration per se, but is rather due to numerical differences in using the
function approximator to model the gains directly (Eq. 23) rather than as the
non-linear component of a transformation system (Eq. 18).
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Fig. 8. Top right: Learning curves for the different force fields. The y-axis represents the average costs over the three evaluation roll-outs performed after
each update. Top left: total costs over time for the four force fields. Right four graphs: costs for each force field, split up into the different cost components
of Eq. 17. Bottom: Sum of the individual gain schedules of the 7 joints after 10, 34, 100 updates. The gains before learning (which are also the minimum
gains) are depicted as dashed lines.

• After learning, higher stochasticity σ leads to higher peak
values for the gains (correlation coefficient R = 0.86) and
smaller after-effects (right graph Fig. 7, R = −0.99), which
is consistent with human adaptations observed in [2], [14].
• The main adaptation of the reference trajectory happens

in the first 10 updates. As can be seen in Fig. 9, the reference
trajectories after 10 updates are already close to the shape they
have at the end of learning after 100 updates. This suggests that
the robot first learns the feed-forward term to compensate for
the average force field with β = 1. Since the force field pushes
from left to right, the reference trajectory is placed to the left,
and is approximately a mirror image of the perturbed trajectory
before learning. This is consistent with the observations on
human adaptation in [19], [2], [14].
• In each of the four force field experiments, the gains

initially go up, as reflected in the increasing costs due to
the gains in Fig. 8. After reaching a maximum value, the
gains then slowly decrease. This effect is consistent with
our observations in several robotic tasks [1], [23]. There, we
demonstrated that the algorithm initially increases the gains to
minimize the main cost component (low position error), and
then fine-tunes the gains to minimize the overall cost (low
position error and low costs). In this article, this hypothesis is
supported by the fact that the maximum cost due to the gains
is achieved earlier if the force field is more stochastic.
•We are not able to reproduce the effect seen in [14], where

a small amount of stochasticity leads to larger after-effect than
in the deterministic case. This supports the hypothesis that a
small amount of variance aids in learning the internal model.
These effects are difficult to reproduce for PI2, as it uses only
the exploration noise it generates itself to update the policy

parameters (see Eq. 28 and 33).
In summary, the robot adapts to the mean of perturbation

by moving the reference trajectory in the opposite direction of
the force field, and adapts to stochasticity in the perturbations
by increasing the impedance. These are qualitatively similar
results to those observed biophysics experiments [14].

For now, the results could not be modelled quantitatively,
as there are some clear differences between humans and our
robotic platform. In particular, the kinematics and dynamics of
the robot are not the same as the human body; this alone may
explain many of the quantitative differences. Also, humans
learn in ‘muscle space’, and higher impedance is caused by
co-contraction of the muscles. In contrast, our robot learns
in gain space, as in [5]. Finally, the robot learns much slower
than humans (1000 trials vs. 175 in [14]). We believe the main
reason for this is that in contrast to humans, our controller
and PI2 have no built-in reflexes, and start without any initial
knowledge about the domain. Also, humans learn continually
during and after each trial, whereas PI2 requires M trials
(M = 10 in this article) to be performed before updating the
parameters. Our current research focuses mainly on applying
our methods to more human-like kinematics, and biologically
plausible muscle models. We are also developing a version
of PI2 in which the last M trials are kept in a FIFO buffer,
allowing updates to be performed after each trial, which would
enable continual learning.

As in [4], [5], we assume a straight desired path to calculate
the task reward, i.e. deviations from this (invariant) desired
path are penalized. Without this position error penalty, we
are not able to simulate the human movement data. The
plausibility of a desired trajectory in biology [29] is still under
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Fig. 9. Reference and actual hand trajectories as learning progresses, for
the different force fields. Each row represents a force field with different σ.
The actual trajectories represent the perturbed motions when executing the
reference trajectories for force fields with strengths β = {1−σ, 1, 1+σ}.

debate, and the role of the desired trajectory in our system also
deserves further investigation.

An important part of the robot’s adaptation to the force
field is achieved by changing the reference trajectory, i.e. in
the analytical example in Fig. 1 this was F = −KP (x− xr),

with xr = xd − F̃ /KP . The position offset F̃ /KP leads to
larger errors between the reference path and actual trajectory
(xd−x) and thus larger forces, which counteract the force field.
Changing the reference position to exert a force is known as
indirect force control [20]. An alternative would be to directly
learn a reference force Fr to compensate for the force field,
and perform direct force control, i.e. F = −KP (x−xd)+Fr.
Since both direct and indirect force control will lead to similar
after-effects, it is not clear which approach humans use. In
our future work, we will compare the results of learning with
direct and indirect force control on our robot platform. Any
differences observed on the robot could assist us in designing
experiments to verify which form of control humans use to
compensate for stochastic perturbations.

VI. CONCLUSION

Variable impedance control is essential for safe physical
interaction with the environment, and in humans, achieving
it is the results of years of learning and development. Task-
specific adaptation of impedance in humans is commonly
studied within the force field paradigm, where human reaching
movements are perturbed by external forces, and compensation
strategies used to counter the perturbations are analyzed.

In this article we demonstrate how our reinforcement learn-
ing algorithm PI2 is able to find motor policies that qual-
itatively replicate human movement data in such stochastic
force field experiments. Dynamic Movement Primitives and
the PI2 algorithm have previously been applied to learning
reference trajectories and gain schedules for complex high-
dimensional robotic tasks [23], [1]. One advantage of PI2 is
that it does not require a model of the system or environment,
making it a more biologically plausible alternative to model-
based optimal control methods. That our algorithms required
no modifications to generate these results (only the cost
function and environment are specific to the task) highlights
the general applicability of model-free algorithms. That PI2

finds locally optimal solutions without a model of the force
field or the robot supports the hypothesis that human learning
in such situations is based on stochastic optimality, and that
such optimal policies can be learned from experience without
requiring a model.

Model-free learning is a prerequisite for autonomous de-
velopment, where models are extracted from observed data
rather than pre-specified by a designer. We also believe that
learning variable impedance control is especially relevant
to developmental robotics, as it allows for safe continual
exploration with the environment, and thus facilitates trial-
and-error learning.

Our current work is aimed at several research topics: First of
all, we use covariance matrix updating, a well-known strategy
in evolutionary optimization [6] to automatically determine the
right level of exploration over time, which enables life-long
reinforcement learning. In a second project, inspired by the
HORDE architecture [26], we are using machine learning to
determine which tasks can be used in which contexts, and how
existing tasks can be reused for novel task context. Further-
more, we are continuing our modeling of biophysics results,
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and are directing our efforts to reproducing the impedance
ellipsoids in [18].
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