
Emergent Proximo-Distal Maturation
through Adaptive Exploration

Freek Stulp, Pierre-Yves Oudeyer
Cognitive Robotics, ENSTA-ParisTech, Paris, France

FLOWERS Team, INRIA Bordeaux Sud-Ouest, Talence, France

Abstract—Life-long robot learning in the high-dimensional real
world requires guided and structured exploration mechanisms.
In this developmental context, we investigate here the use of
the recently proposed PI2

CMAES episodic reinforcement learning
algorithm, which is able to learn high-dimensional motor tasks
through adaptive control of exploration. By studying PI2

CMAES in
a reaching task on a simulated arm, we observe two develop-
mental properties. First, we show how PI2

CMAES autonomously
and continuously tunes the global exploration/exploitation trade-
off, allowing it to re-adapt to changing tasks. Second, we
show how PI2

CMAES spontaneously self-organizes a maturational
structure whilst exploring the degrees-of-freedom (DOFs) of the
motor space. In particular, it automatically demonstrates the so-
called proximo-distal maturation observed in humans: after first
freezing distal DOFs while exploring predominantly the most
proximal DOF, it progressively frees exploration in DOFs along
the proximo-distal body axis. These emergent properties suggest
the use of PI2

CMAES as a general tool for studying reinforcement
learning of skills in life-long developmental learning contexts.

I. INTRODUCTION

Building robots capable of life-long learning of skills poses
many challenges. For instance, the limited number of physical
experiments a robot can make within its life-time severely
limits the regions in which it is able to explore its high-
dimensional sensorimotor space. Also, a robot should be able
to adapt its skills to changing environments or to novel tasks.
To achieve efficient life-long learning in such complex spaces,
humans benefit from various interacting developmental mech-
anisms, which generally structure exploration from simple
learning situations to more complex ones [4], [10], [22],
[7]. Recent research in developmental robotics has proposed
several ways to transpose these developmental learning mech-
anisms to robots. This includes mechanisms of intrinsically
motivated active learning, which automatically select training
examples or tasks of increasing complexity [16], [2], social
learning where a teacher can scaffold a training program of
increasing difficulty [11] and also curriculum learning [3],
as well as maturation and body growth, where the degrees-
of-freedom in the sensori- and motor spaces evolve through
phases of freezing and freeing [6], [8], [1].

Mechanisms for structured exploration and data collection
strongly interact with the learning algorithms that process
data, jointly aiming to optimize the parameters of an action

This work is partly supported by the French ANR program MACSi (ANR
2010 BLAN 0216 01).

policy to achieve a given task. Due to its generality, tem-
poral abstraction, and ability to learn without models, rein-
forcement learning (RL) has been proposed as an appealing
paradigm for organizing learning and behavior in developmen-
tal robotics [18]. Using RL in the context of robotics, and
developmental robotics in particular, introduces several chal-
lenges, including high-dimensional continuous action spaces,
adaptation to changing tasks and environments, and continual
reconsideration of the exploration/exploitation trade-off.

Recently, we have proposed to address these challenges by
combining state-of-the-art evolutionary optimization strategies
with direct reinforcement learning [20], [19]. In particular,
we use the “Policy Improvement with Path Integrals” algo-
rithm (PI2) [21] to enable robust, efficient learning in high-
dimensional action spaces, with features from the “Covariance
Matrix Adaptation - Evolutionary Strategy” [12] to continu-
ously determine the best exploration/exploitation trade-off over
time. Even though CMA-ES and PI2 are derived from very
different principles, combining these algorithms is feasible,
as they both iteratively update parameters with probability-
weighted averaging to reduce future costs.

The research focus of this paper is on using the PI2CMAES

algorithm for continual adaptive exploration, and in particular
for re-adaptation to changing tasks, as well as self-organization
of structured maturational exploration. After summarizing
the PI2CMAES algorithm (Section II), we therefore focus on using
PI2CMAES in the context of developmental robotics by investigat-
ing two complementary phenomena through an experiment,
described in Section III, where a robot arm with parameterized
motor synergies learns to reach a point while minimizing
energy.

First, Section IV presents PI2CMAES’s ability to automatically
adapt to changing tasks by determining the appropriate explo-
ration magnitude autonomously – exploration decreases once
a task has been learned (exploitation), but increases again
automatically if the task or environment changes such that
the task must be re-learned. This exploration behavior is not
explicitly encoded in the algorithm, but is rather an emergent
feature of updating the covariance matrix, which governs
exploration, with probability-weighted averaging.

Second, Section V shows how PI2CMAES spontaneously self-
organizes a maturational structure while exploring the degrees-
of-freedom of the motor space. The algorithm automatically
generates the so-called proximo-distal maturation observed

when infants learn to reach [5], [13]: after a short phase of uni-
form body babbling, it begins by freezing distal DOFs/joints
while predominantly exploring with the most proximal joints,
and then progressively frees exploration in joints along an
ordered structure following the proximo-distal axis.

II. PI2CMAES ALGORITHM

The PI2CMAES, or “Policy Improvement with Path Integrals
and Covariance Matrix Adaptation – Evolutionary Strategy”,
was recently proposed in [20]. It is a combination of the
PI2 direct reinforcement learning algorithm [21] with the
evolutionary optimization strategy CMA-ES. For a discussion
of the similarities and differences between these algorithms,
and their relation to PI2CMAES, we refer to [20]; in this section
briefly describe the resulting algorithms.

The goal of PI2CMAES is to optimize a set of policy parameters
θ with respect to a cost function R(τ) = φtN +

∫ tN
ti

rt, where
τ is a trajectory that starts at time t0 in state xt0 and ends at
tN . φtN is the terminal reward at tN , and rt is the immediate
reward at time t. For example, φtN may penalize the distance
to a goal at the end of a movement, and rt may penalize the
acceleration at each time step during a movement. To optimize
R(τ), PI2CMAES uses an iterative approach of exploring and
updating in policy parameter space, as listed in Algorithm 1,
which we now describe in more detail.

A. Exploration

PI2CMAES first takes K samples θk=1...K from a Gaussian
distribution (line 9). The vector θ represents the parameters of
a policy, which for instance controls the sequence of desired
joint angle of an arm, or desired x-coordinate of an end-
effector. Executing the policy with parameters θk yields a
trajectory τ with N time steps (line 10). An entire trajectory
is referred to as τ , whereas τ i refers to the subtrajectory of
τ , starting at ti, and ending at tN . In this nomenclature, τ
is therefore just a convenient abbreviation for τ 0. From now
on, indices i and j refer to time steps, and k and l refer to
trials. A trial or roll-out is the full trajectory resulting from
executing the policy with parameters θk. The K executions
within one iteration of PI2CMAES are called an epoch.

B. Parameter Update for Each Time Step: Probability-
weighted Averaging

After exploration, a new parameter vector θnew is computed,
which is expected to lead to a lower trajectory cost than
the current θ. This parameter update is done in two phases:
1) compute different parameters θnew

i for each of the N
time steps i, using probability-weighted averaging; 2) compile
the N updates θnew

i into one vector θnew, using temporal
averaging.

Although exploration is performed in the space of θ, costs
are incurred by actually executing the policy, and are thus
defined in terms of the trajectory τ that results from this
execution. PI2CMAES optimizes the parameters θ not only for the
entire trajectory, but also for all subtrajectories τ i=1...N of τ .
The cost of a subtrajectory τ i is computed as the sum over

the costs throughout the rest of the trajectory starting at time
step i: S(τ i) = φtN +

∑N
i rti . This is known as the cost-

to-go, because it represents the accumulated ‘cost to go’ from
i to the end of the trajectory. The underlying principle (the
Bellman principle) is that a subtrajectory τ i starting at ti can
only be optimal if the subtrajectory τ i+1 is optimal too.

The probability of each trajectory in the epoch P (τ i,k) is
then computed by exponentiating the cost-to-go S(τ i,k) of that
trajectory at each time step (line 18). For illustration purposes,
this transformation from cost to probability is depicted in
Fig. 1. Here, we see the K = 10 samples in a two-dimensional
θ space. The mapping from cost to probability is visualized
in the lower-left graph. High-cost samples are assigned a
low probability, and low-cost samples a high probability. This
mapping follows directly from the PI2 derivation, and may be
interpreted as preferring trajectories with lower cost to occur
with a higher probability. The parameter h determines the
exact shape of the mapping from cost to probability, where
higher values of h lead to a more greedy search, that places
more emphasis on low-cost samples.

The two core steps in PI2CMAES (line 21 and line 22) are
then to update the mean and covariance matrix of the sam-
pling distribution by using probability-weighted averaging:
θnew =

∑
Pkθk. Since low-cost samples have a higher

probability, this means they will contribute more to the update.
The resulting update is visualized in Fig. 1. As we see,
the distribution mean θ is now closer to the minimum, and
the covariance matrix is also ‘pointing’ more towards to
the minimum. Using probability-weighted averaging avoids
having to estimate a gradient, which can be difficult for noisy
and discontinuous cost functions.

Fig. 1. Visualization of a parameter update at one time step i. The upper right
graph shows the 2D parameter space, with the current Gaussian distribution
(dashed black), and K = 10 random samples taken from it. The lower left
graph shows the mapping from cost to probability. The green circles represent
the probability for each sample. The new distribution θnew

i ,Σnew
i for time

step i (purple ellipse) is acquired through probability-weighted averaging.

C. Parameter Update: Temporal Averaging

In line 21, a different parameter update θnew
i is computed

for each time step i. If the trajectory has 500 time steps, we
therefore perform probability-weighted averaging 500 times.

To acquire a single new parameter vector θnew, the final step
is therefore to average over all time steps (line 27)1. This
average is weighted such that earlier parameter updates in the
trajectory contribute more than later updates, i.e. the weight
at time step i is Ti = (N − 1)/

∑N
j=1(N − 1). The intuition

is that earlier updates affect a larger time horizon and have
more influence on the trajectory cost [21].

input :
θ ; initial parameter vector
J(τ) ; cost function1
λinit, λmin, λmax, ; exploration level (initial,min,max)2
K ; number of roll-outs per update3
h ; eliteness parameter4

Σ = λinitI5
while true do6

Exploration: sample parameters and execute policies7
foreach k in K do8

θk ∼ N (θ,Σ)9
τk = executepolicy(θk)10

end11

Compute parameter update for each time step12
foreach i in N do13

Evaluation: compute probability for each time step and trial14
foreach k in K do15

S(τ i,k) =
∑N

j=i J(τ j,k)16

E(τ i,k) = e

(
−h(S(τ i,k)−min(S(τ i,k)))

max(S(τ i,k))−min(S(τ i,k))

)
17

P
(
τ i,k

)
=

E(τ i,k)∑K
l=1

E(τ i,l)18
end19

Update: Probability-weighted averaging over K trials20
θnew
i =

∑K
k=1

[
P
(
τ i,k

)
Mi,k(θk − θ)

]
21

Σnew
i =

∑K
k=1

[
P
(
τ i,k

)
(θk − θ)(θk − θ)ᵀ

]
22

Σnew
i = evolutionpaths(Σnew

i)23
Σnew

i = boundcovar(Σnew
i)24

end25

Update: Temporal averaging over N time steps26

θnew =
∑N

i=0(N−i)θnew
i∑N

l=0
(N−i)27

Σnew =
∑N

i=0(N−i)Σnew
i∑N

l=0
(N−i)28

end29

Algorithm 1: The PI2CMAES algorithm.

D. Covariance Matrix Updating: Evolution Paths

Line 23 uses the function ‘evolutionpaths’ to further update the
covariance matrix. This function is very specific to the CMA-
ES algorithm, and uses so-called evolution paths to make a
more robust update of the covariance matrix Σi. Since this is
not part of the core algorithm, we refer to equations (14)-(17)
in Hansen et al. [12] or equations (20)-(23) in Stulp et al. [20]
for the implementation of evolution paths.

1Temporal averaging over covariance matrices is possible, because 1) every
positive-semidefinite (PSD) matrix is a covariance matrix and vice versa 2) a
weighted averaging over PSD matrices yields a PSD matrix [9].

E. Covariance Matrix Updating: Lower Bounds

In PI2CMAES, the initial Σ is set to Σ = λinitIB , where
B is the dimensionality of the policy parameter vector θ,
which corresponds to the number of basis functions (cf.
Section III). In PI2CMAES, Σ is then subsequently adapted over
time. A common problem with covariance matrix adaptation is
premature convergence, and “[i]n the practical application, a
minimal variance [. . .] should be ensured” [12]. This problem
is illustrated in Fig. 2, where the solid ‘slim’ Σ is the result
of probability weighted averaging.

Fig. 2. Enforcing a lower bound on the eigenvalues of Σ, to avoid exploration
degeneracy along one of the axes (line 24 in Alg. 1).

To avoid such degeneracy of Σ, we compute its eigenvalues,
place a lower bound of λmin on the eigenvalues, and reconstruct
the bounded covariance matrix from the eigenvectors and the
bounded eigenvalues. The bounded Σ is also depicted in
Fig. 2. This procedure is implemented in the ‘boundcovar’
function in line 24 in Alg. 1. In our experience, covariance
matrix bounding is essential, as the algorithm always prema-
turely converges without it.

For robotics applications, we also recommend putting an
upper bound λmax on the eigenvalues of Σ, as too much
exploration might lead to dangerous behavior on the robot,
e.g. reaching joint limits, too high accelerations.

From now on, we will refer to the exploration magnitude
of a 1-D policy as the largest eigenvalue λ of the covariance
matrix Σ. Note that the initial covariance matrix Σ = λinitIB
has a ‘largest’ eigenvalue (they are all the same) of λinit. We
use Λ to denote the exploration magnitude of an M -D policy;
it is the sum over the exploration magnitudes of the individual
dimensions: Λ =

∑M
m=1 λm.

F. Multi-dimensional policies

Algorithm 1 is applied to the parameters of a 1-D policy.
Optimizing the parameters of an M -dimensional policy, e.g.
7-D for the 7 joints of an arm, or 3-D for the end-effector
position, is done by running the algorithm in parallel for
each of the dimensions of the policy, with the same costs but
different parameter vectors θm=1...M and covariance matrices
Σm=1...M

After having presented the PI2CMAES algorithm, we now
demonstrate its relevance to developmental robotics. We first
showing how PI2CMAES is able to adapt to changing tasks,
which enables life-long learning (Section IV). Then, we show
how PI2CMAES automatically freezes and frees joints in an arm,

thereby sequentially freeing joints in a proximo-distal order
(Section V). Before doing so, we introduce the evaluation task
in the next section.

III. EVALUATION TASK

The evaluation task in this paper consists of a kinematically
simulated arm with M = 10 degrees of freedom. The length
of each arm segment is 0.6 times the length of the previous
segment, and the total length of the arm is 1. The arm should
learn to reach for a specific goal [0.0 0.5] with minimal joint
angles (expressing a ‘comfort’ factor), and whilst minimizing
acceleration at each time step. Initially, all joint angles are 0,
as depicted in Fig. 3, and have a null speed.

Fig. 3. Visualization of the reaching motion (after learning) for ‘goal 1’ and
‘goal 2’

a) Cost function: The terminal costs of this task are
expressed in (1), where ||xtN − g|| represented the distance
between the 2-D Cartesian coordinates of the end-effector
(xtN) and the goal g1 = [0.0 0.5] or g2 = [0.0 0.25] at the end
of the movement at tN . The terminal cost also penalizes the
joint with the largest angle at max(qtN), expressing a comfort
effect, with maximum comfort being the initial position. The
immediate costs at each time step rt in (2) penalize joint
accelerations. The weighting term (M + 1 − m) penalizes
DOFs closer to the origin, the underlying motivation being
that wrist movements are less costly than shoulder movements
for humans, cf. [21]2.

φtN = 104||xtN − g||
2 + max(qtN) Terminal cost (1)

rt = 10−5

∑M
m=1(M + 1−m)(q̈t,m)2∑M

m=1(M + 1−m)
Immediate cost (2)

b) Policy representation: The acceleration q̈m,t of the
mth joint at time t is determined as a linear combination of
basis functions, where the parameter vector θm represents the
weighting of joint m.

q̈m,t = gᵀ
t θm Acc. of joint m (3)

[gt]b =
Ψb(t)∑B
b=1 Ψb(t)

Basis functions (4)

Ψb(t) = exp
(
−(t− cb)2/w2) Kernel (5)

2This cost term was taken from [21]. In the context of this paper, it cannot
be the reason for the proximo-distal maturation we shall see in Section V.
Rather than favoring a proximo-distal maturation, this cost term works against
it, as proximal joints are penalized more for the accelerations that arise due
to exploration.

The centers cb=1...B of the kernels Ψ are spaced equidis-
tantly in the 0.5s duration of the movement, and all have a
width of w = 0.05s. Since we do not simulate arm dynamics,
the joint velocities and angles are acquired by integrating the
accelerations.

c) PI2CMAES parameterization: For all experiments, we use
PI2CMAES. Its input parameters are set as follows. The initial
parameter vector is θ = 0, which means the arm is completely
stretched, and not moving at all over time. The number of
trials per update is K = 10, and the eliteness parameter is
h = 10 (the default values suggested by [21]). The initial
and minimum exploration magnitude of each joint m is set to
λinit
m = λmin

m = 0.1, unless stated otherwise.

IV. RE-ADAPTATION TO CHANGING TASKS

In this first experiment, we evaluate PI2CMAES’s capability to
adapt to changing tasks, by changing the x-coordinate of the
goal for reaching both abruptly and gradually, as illustrated in
the top graph of Fig. 4. First the goal is set to ‘goal 1’ (cf.
Fig. 3) and after 150 update to ‘goal 2’. Between updates 200
and 250, the x-coordinate of the goal is a sinusoidal, and ends
up in ‘goal 1’ again at update 250.

The middle and bottom graph in Fig. 4 depict the learning
curves and total exploration magnitude Λ respectively. The
caption of this figure interprets these results,and explains
the interaction between changing the task, the automatic
adaptation of exploration, and the consequences for learning
progress.

Conclusion: PI2CMAES is able to automatically adapt its ex-
ploration magnitude to (re)adapt to abruptly or continuously
changing tasks. This complements our results on a dynamic
task in [19], where a simulated humanoid was to bat a baseball
in a specified region, and the position of the baseball was
changed abruptly.

V. EMERGENT PROXIMO-DISTAL MATURATION

In this experiment, our initial aim was to use the exploration
magnitude as a measure of competence to drive the release of
degrees of freedom over time, thus using competence progress
to adaptively maturing the action space such as proposed
and experimented in [1]. However, after running some initial
experiments we noticed that, without any modification, the
PI2CMAES already frees and freezes joints automatically. There-
fore maturation appears to be an emergent property of the use
of PI2CMAES in such a sensorimotor space, and there was no need
to implement a specific scheme to release degrees of freedom.
Rather than conducting a novel experiment, we therefore
investigate the first 100 updates of the first experiment in
Section IV, in particular the exploration magnitudes of the
individual joints λm=1...M . These are depicted in Fig. 5, and
interpreted in its caption.

Fig. 6 plots the movement of the arm during different stages
of learning, and visualizes λm for each joint as a bar plot.
This allows the interpretation of learning in terms of the
movement of the arm, and a more direct association between
the exploration magnitude of a joint and its position in the arm.

Fig. 4. Top: x-coordinate of the task goal. Center: Learning curve (µ±σ over
10 learning sessions). Note the logarithmic y-axis. Bottom: Total exploration
magnitudes over all joints Λ (µ± σ over 10 learning sessions).
Interpretation: In the first 30 updates, the exploration magnitude goes up,
which enables fast learning, and consequently the cost goes down rapidly.
Between updates 30-100, the exploration decreases, and after 100 updates it
approximately reaches its minimum level of M · λinit = 10 ∗ 0.1 = 1. Thus,
the task has been learned. When the goal changes abruptly at update 150,
exploration goes up again. Note that we do not notify the algorithm that the
task has changed; the increasing exploration is an emergent property of using
probability-weighted averaging to update the covariance matrix. At update
180, the task has again been learned, and exploration is minimal. Whilst the
goal is moving, exploration is constantly on, but when the goal remains still
again at update 250, it decreases again.

Here, we see that the different phases in exploration magnitude
tuning in Fig. 5 correspond to different phases of learning the
movement.

Conclusion: PI2CMAES freezes and frees joint sequentially,
depending on where the robot is on its self-organized devel-
opmental trajectory to learn the task. Furthermore, as learning
progresses, joints are freed in a proximal-to-distal order, as
is observed when infants learn to reach [5], [13]. Rather
than having to specify the order of freeing/freezing joints [1],
and/or their timing [15], structured maturation is an emergent
property of probability-weighted covariance matrix updating
in the PI2CMAES algorithm.

VI. RELATED WORK

In this paper, our aim was to demonstrate the potential of
the PI2CMAES RL algorithm for developmental learning of motor
tasks, through adaptive control of exploration magnitude and
self-organization of structured maturation.

Several previous works have also considered mechanisms
for progressive release of motor degrees of freedom. Some
models have studied the impact of pre-defined and fixed
stages of freeing and freezing DOFs [6]. Others have shown
how the pace of the sequencing of discrete stages [8] or of
the continuous increase of explored values of DOFs along
a proximo-distal scheme [1] could be adaptively and non-

Fig. 5. These plots present a closer look at the exploration magnitudes
during the first 100 updates of the experiment depicted in Fig. 4. Top:
Exploration magnitudes λm for each joint m = 1 . . . 10 separately. These
values are averaged over 10 learning sessions, and thus represents consistent,
reproducible behavior. Bottom: The total exploration magnitude Λ, split into
the individual components λm, i.e. the cumulative of the top graph. In this last
graph, λmin = 0.1 has been subtracted from all λm, as we want to emphasize
the exploration above the baseline, on which PI2CMAES has an influence. The
last graph therefore starts at 0.
Interpretation: When inspecting the development of λm as learning pro-
gresses, we notice the following. The exploration magnitude of the first joint
λ1 increases very quickly , i.e. it is freed. After 18 updates λ1 peaks, and
accounts for more than 50% of the total exploration Λ. Then, the second joint
is freed and even overtakes the first joint, peaking at update 26 . Subsequently,
joint 3 increases, and peaks at update 34. It thus becomes clear that the
first three joints, which have the largest effect on end-effector position, are
freed from proximal to more distal ones. At update 50, the goal is reached,
and the rest of the learning is concerned with minimizing joint angles and
accelerations, which involves all joints. At update 150 the task is learned, and
all exploration (beyond λmin) has decayed. Thus, when the task is learned,
the exploration in all joints ceases.

linearly controlled by learning progress and lead to efficient
motor learning in high-dimensional robots. In this article, we
have shown that without an explicit mechanism for motor
maturation, such efficient maturational schedules, alternating
freezing and freeing of DOFs, can be generated by PI2CMAES

entirely automatically.
Because our focus has not been on the algorithms on which

PI2CMAES is based, we have not been able to do justice to the
sound derivations on which these algorithms are based. For a
more in-depth discussion of the advantages of using update
histories to improve covariance matrix updates, as is done in
the CMA-ES is described in [12]. PI2 is derived from first
principles of optimal control, and gets its name from the appli-
cation of the Feynman-Kac lemma to transform the Hamilton-
Jacobi-Bellman equations into a so-called path integral, which
can be approximated with Monte Carlo methods. For the full
derivation, we refer to [21]. An excellent discussion of the rela-
tionship between direct reinforcement learning algorithms and
evolution strategies is given by Rückstiess et al. [17], where
extensive empirical comparisons between several methods in
both fields are made.

Fig. 6. The arm motion at different stages of learning. The numbers next to the arm indicates the number of updates. The exploration magnitude per joint
λm is plotted as a bar graph below each arm. Interpretation: In the first phase (update 1-17), a simple sweeping movement is made, using only the first
‘shoulder’ joint. This is the most effective way of quickly decreasing the low cost, which is why the ‘shoulder’ joint has the most exploration. In the second
phase (update 18-50), the arm starts using other joints (2 and 3) to ‘reach inward’ towards the goal. In phase 3 (after update 51-120), the algorithm learns to
minimize the maximum joint angle in the final posture. In the final phase (after update 120), the task has been learned, the joint are frozen (exploration has
decayed almost completely), and we hardly see any improvement.

VII. CONCLUSION

We have shown, in the context of a (changing) reaching task,
that PI2CMAES shows useful developmental properties for adap-
tive exploration and life-long learning of motor skills. First,
we demonstrated how it could continually and automatically
adapt to abruptly or continuously changing tasks, and without
direct external information about these changes. Second, we
have shown how the proximo-distal maturation structure well-
known in humans [5], [13], and previously demonstrated to be
highly useful for robot learning in high-dimensions [1], was
here entirely self-organized.

Self-organization of maturational structure can be intuitively
understood as a result of the interaction between a sensorimo-
tor space where there is intrinsic asymmetry (e.g. a uniform
variance over the control dimensions produces a non-uniform
variance over the cost) and a learning algorithm like PI2CMAES

capable to automatically leverage this asymmetry. Identifying
the detailed and respective roles of body structure, learning
algorithm and their coupling for maturational self-organization
will thus be a focus of future work.

Future work will also study how perceptual maturation
[15], [14] could adaptively be driven using PI2CMAES, for ex-
ample using exploration magnitude a measure of competence
progress to drive the increase of perceptual capabilities, thus
transposing to PI2CMAES the perceptual maturation mechanism
proposed in [1].

A third strand of future work will consider how such adap-
tive exploration and maturational structures can be leveraged
in a multi-task setting, where maturational structures generated
to learn to reach a given set of goals can be generalized to
bootstrap even more efficiently the learning of novel goals.

REFERENCES

[1] A. Baranes and P-Y. Oudeyer. The interaction of maturational con-
straints and intrinsic motivations in active motor development. In IEEE
International Conference on Development and Learning, 2011.

[2] A. Baranes and P-Y. Oudeyer. Active learning of inverse models
with intrinsically motivated goal exploration in robots. Robotics and
Autonomous Systems, 2012.

[3] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum
learning. In International Conference on Machine Learning, ICML,
2009.

[4] N. Bernstein. The Coordination and Regulation of Movements. Perga-
mon, 1967.

[5] N. E. Berthier, R.K. Clifton, D.D. McCall, and D.J. Robin. Proximodistal
structure of early reaching in human infants. Exp Brain Res, 1999.

[6] L. Berthouze and M. Lungarella. Motor skill acquisition under environ-
mental perturbations: On the necessity of alternate freezing and freeing
degrees of freedom. Adaptive Behavior, 12(1):47–63, 2004.

[7] D.F. Bjorklund. The role of immaturity in human development. Psy-
chological Bulletin, 122(2):153–169, September 1997.

[8] Josh C. Bongard. Morphological change in machines accelerates the
evolution of robust behavior. Proceedigns of the National Academy of
Sciences of the United States of America (PNAS), January 2010.

[9] Jon Dattorro. Convex Optimization & Euclidean Distance Geometry.
Meboo Publishing USA, 2011.

[10] E.L. Deci and M. Ryan. Intrinsic Motivation and self-determination in
human behavior. Plenum Press, New York, 1985.

[11] J. Elman. Learning and development in neural networks: The importance
of starting small. Cognition, 48:71–99, 1993.

[12] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation
in evolution strategies. Evolutionary Computation, 9(2):159–195, 2001.

[13] J. Konczak, M. Borutta, T Helge, and J. Dichgans. The development
of goal-directed reaching in infants: hand trajectory formation and joint
torque control. Experimental Brain Research, 1995.

[14] M.H. Lee, Qinggang. Meng, and F. Chao. Staged competence learning
in developmental robotics. Adaptive Behavior, 15(3):241–255, 2007.

[15] Y. Nagai, M. Asada, and K. Hosoda. Learning for joint attention helped
by functional development. Advanced Robotic, 20(10), 2006.

[16] P-Y. Oudeyer, F. Kaplan, and V. Hafner. Intrinsic motivation systems for
autonomous mental development. IEEE Transactions on Evolutionary
Computation, 11(2):pp. 265–286, 2007.

[17] Thomas Rückstiess, Frank Sehnke, Tom Schaul, Daan Wierstra, Yi Sun,
and Jürgen Schmidhuber. Exploring parameter space in reinforcement
learning. Paladyn. Journal of Behavioral Robotics, 1:14–24, 2010.

[18] Andrew Stout, George D. Konidaris, and Andrew G. Barto. Intrinsically
motivated reinforcement learning: A promising framework for develop-
mental robot learning. In AAAI, 2005.

[19] Freek Stulp. Adaptive exploration for continual reinforcement learning.
In International Conference on Intelligent Robots and Systems (IROS),
2012.

[20] Freek Stulp and Olivier Sigaud. Path integral policy improve-
ment with covariance matrix adaptation. In Proceedings of the
29th International Conference on Machine Learning (ICML), 2012.
http://icml.cc/2012/papers/171.pdf

[21] Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. A generalized
path integral control approach to reinforcement learning. Journal of
Machine Learning Research, 11:3137–3181, 2010.

[22] B. Vereijken, R.E.A. van Emmerik, H.T.A. Whiting, and K.M. Newell.
Free(z)ing degrees of freedom in skill acquisition. Journal of Motor
Behavior, 24:133–142, 1992.

