
Adaptive Exploration for Continual Reinforcement Learning

Freek Stulp
Cognitive Robotics, École Nationale Supérieure de Techniques Avancées (ENSTA-ParisTech), Paris, France

FLOWERS Research Team, INRIA Bordeaux Sud-Ouest, Talence, France
freek.stulp@ensta-paristech.fr

Abstract— Most experiments on policy search for robotics
focus on isolated tasks, where the experiment is split into
two distinct phases: 1) the learning phase, where the robot
learns the task through exploration; 2) the exploitation phase,
where exploration is turned off, and the robot demonstrates
its performance on the task it has learned. In this paper, we
present an algorithm that enables robots to continually and
autonomously alternate between these phases. We do so by
combining the ‘Policy Improvement with Path Integrals’ direct
reinforcement learning algorithm with the covariance matrix
adaptation rule from the ‘Cross-Entropy Method’ optimization
algorithm. This integration is possible because both algorithms
iteratively update parameters with probability-weighted aver-
aging. A practical advantage of the novel algorithm, called PI2-
CMA, is that it alleviates the user from having to manually
tune the degree of exploration. We evaluate PI2-CMA’s ability
to continually and autonomously tune exploration on two tasks.

I. INTRODUCTION

The exploration/exploitation trade-off in reinforcement
learning refers to two opposing objectives: 1) explore the
environment to determine a policy that minimizes costs;
2) exploit what has been learned. For instance, to learn that
bumping into an obstacle leads to a penalty, a robot must first
explore and make this experience. But once this is known,
the robot should avoid this behavior [12].

In policy improvement for robotics, this trade-off is usu-
ally achieved by separating an experiment into two distinct
phases: 1) learn the task through trial-and-error exploration;
2) stop learning by turning off exploration, and demonstrate
the learned skill. As experiments usually focus on learning
isolated tasks [6], [8], [11], this approach is feasible. But it
is not suitable for life-long learning scenarios, as it limits the
ability to adapt to changing tasks or environments.

In this paper, we focus on continual reinforcement learning
(RL), and present the PI2-CMA algorithm, which allows the
robot to continually determine the exploration/exploitation
trade-off over time. With PI2-CMA, the robot automatically
reduces the degree of exploration when the task is learned,
allowing the robot to exploit what it has learned. On the other
hand, the algorithm is also able to increase exploration, for
instance to re-learn a task when it has changed.

We thank the three anonymous reviewers for their thorough reviews; in
particular for providing several novel insights into the relation of our work
to gradient-based methods and the Natural Evolution Strategy. This work is
supported by the French ANR program (ANR 2010 BLAN 0216 01), more
at http://macsi.isir.upmc.fr

PI2-CMA achieves this by combining update rules from
direct RL and evolutionary optimization strategies. The ba-
sis of the algorithm is the Policy Improvement with Path
Integrals algorithm (PI2), which enable robust, efficient
learning in continuous, high-dimensional action spaces [11],
but which has a constant degree of exploration. Adaptive ex-
ploration arises from integrating the covariance matrix adap-
tation rule from the Cross-Entropy Method (CEM) in PI2.
Hence PI2-CMA’s name, for Policy Improvement with Path
Integrals and Covariance Matrix Adaptation. Even though
CEM and PI2 are derived from very different principles,
combining these algorithms is feasible as they both iteratively
update parameters with probability-weighted averaging.

In summary, the main advantages of PI2-CMA are: 1) the
degree of exploration is continuous, and there is no dis-
crete transitions between the exploration and exploitation
phase; 2) the robot determines the degree of exploration
autonomously, based on the same trials used to optimize the
policy parameters; 3) it alleviates the user from having to
manually tune the degree of exploration, the only parameter
in PI2 which is not trivial to tune.

The rest of this paper is structured as follows. In the next
section, we present related work, and describe the CEM and
PI2 algorithms. In Section III we integrate PI2 and CEM into
the PI2-CMA algorithm. Section IV then evaluates PI2-CMA
on two separate tasks. We conclude with Section V.

II. RELATED WORK

Reinforcement Learning problems are traditionally mod-
elled as discrete Markov Decision Processes (MDPs), which
have a discrete state and action space. Most research on
adaptive exploration has been done in the context of discrete
MDPs, which has lead to adaptive exploration algorithms
such as E3 [3], R-MAX [2], and others [12]. However, the
curse of dimensionality and the discrete nature of MDPs
makes it difficult to apply it to the high-dimensional, contin-
uous spaces typically found in robotic control tasks.

An alternative to discrete state and action spaces is use
a parameterized policy π(θ), and search directly in the
space of the parameters θ to find the optimal policy π(θ∗).
REINFORCE was an early direct reinforcement learning al-
gorithm [13], and especially Natural Actor-Critic [6] demon-
strated that this approach is applicable to robotics tasks.
However, these algorithms are based on estimating a gradient
from the trials, which cannot always be done robustly with a

limited number of trials, noisy data, or discontinuous cost
functions. Also, there are several algorithmic parameters
which are difficult to tune by hand.

Instead of estimating a gradient, PI2 and POWER there-
fore use probability-weighted averaging [11], [4]. Interest-
ingly enough, an almost identical covariance matrix update
rule was derived for POWER (in Appendix A.3 of [4]),
but not included in the POWER algorithm. In POWER, the
immediate costs must behave like an improper probability,
i.e. sum to a constant number and always be positive. This
can make the design of cost functions difficult in practice. PI2

places no such constraint on the cost function, which may be
discontinuous. When a cost function is compatible with both
POWER and PI2, they perform essentially identical [11]. In
a different context [5], also update the mean parameters θ
and exploration matrix σ2I (Equation 36/37), but only update
a scalar step-size parameter σ, rather than the full covariance
matrix. The Fisher information matrix enables gradient-based
algorithm to find a more direct path to the optimal solution in
parameter space [6], and, although not investigated well from
this perspective, may also be considered a form of adaptive
exploration. The relationship between the natural gradi-
ent and probability-weighted averaging was recently made
explicit through the framework of Information-Geometric
Optimization [1].

An excellent discussion of the relationship between di-
rect reinforcement learning algorithms (such as PI2) and
evolution strategies (such as CEM) is given by Rückstiess
et al. [8], where extensive empirical comparisons between
several gradient-based methods in both fields are made. The
focus in our paper is on methods based on probability-
weighted averaging (e.g. POWER, PI2) rather than gradients
(e.g. REINFORCE, NAC), as these have proven to be supe-
rior in the context of direct RL for robotics problems [11].
Rückstiess et al. [8] motivate and empirically demonstrate
the advantages of searching in parameter space for gradient
methods, e.g. as in PGPE and NES. By using constant explo-
ration noise over time, PI2-CMA demonstrates the same for
probability-weighted averaging. The superior performance of
PGPE/NES and PI2-CMA may thus have a common cause.

A. Cross-Entropy Method (CEM)

Given a n-dimensional parameter vector θ and a cost
function J : Rn 7→ R, the Cross-Entropy Method (CEM)
for optimization searches for the global minimum through
iterative sampling from and updating of a probability distri-
bution [7]. A commonly used distribution is a multi-variate
Gaussian distribution N (θ,Σ) with parameters θ (mean) and
Σ (covariance matrix). With this distribution, one iteration
of CEM is implemented as: 1. sample – Take K samples
θk=1...K ∼ N (θ,Σ) 2. evaluate – Determine the cost J(θk)
of each sample. 3. sort – Sort the samples in ascending
order w.r.t. the costs J(θk). 4. update – Recompute the
distribution parameters, based only on the first Ke ‘elite’
samples in the sorted list, as in (1) and (2). Throughout
this paper, it will be useful to think of CEM as performing
probability-weighted averaging, where the elite samples have

probability 1/Ke, and the non-elite have probability 0. One
such iteration of CEM is visualized in Fig. 1, along with the
assignment of probabilities to the elite samples.

θnew =

Ke∑
k=1

1

Ke
θk (1)

Σnew =

Ke∑
k=1

1

Ke
(θk − θ)(θk − θ)ᵀ (2)

Fig. 1. Visualization of an update with CEM and PI2. The upper right
graph shows the 2D parameter space, with the current Gaussian distribution
(dashed black), and K = 10 random samples taken from it. The cost of a
sample is its distance to the origin in Cartesian space. The lower left graph
shows the mapping from cost to probability for CEM and PI2. For CEM,
the elite samples are highlighted in gray.

B. Policy Improvement with Path Integrals (PI2)

PI2 is derived from first principles of optimal control,
and gets its name from the application of the Feynman-Kac
lemma to transform the Hamilton-Jacobi-Bellman equations
into a so-called path integral, which can be approximated
with Monte Carlo methods [11]. Rather than focussing on its
derivation from first principles of stochastic optimal control,
which is presented extensively in [11], we provide a post-hoc
interpretation of the resulting update rule. The PI2 algorithm
is listed in Algorithm 1.

As in CEM, PI2 takes K samples θk=1...K from a
Gaussian distribution. In PI2, the vector θ represents the
parameters of a policy, which, when executed, yields a tra-
jectory τ i=1...N with N time steps. This multi-dimensional
trajectory may represent the joint angles of a n-DOF arm, or
the 3-D position of an end-effector. So far, PI2 has mainly
been applied to policies represented as Dynamic Movement
Primitives (DMPs) [11], where θ determines the shape of the
movement, i.e. the trajectory between the start (xo) and end-
point (the goal g) of the movement. When applied to DMPs,
it is not necessary to take a different parameter sample θk,i
at each time step i, but it suffices to take one sample θk
before the execution [10].

Although the search space is in θ, the costs are defined in
terms of the trajectory τ generated by the DMP when it is
integrated over time. The cost of a trajectory is determined
by evaluating J for every time step i, where the cost-to-go

of a trajectory at time step i is defined as the sum over all
future costs S(τ i,k) = φN +

∑N
j=i qj,k.

Most policy improvement algorithms share the sampling
and evaluation step above. However, the most crucial part is
how the parameters θ are updated. As in CEM, PI2 also uses
the principle of probability-weighted averaging to perform
this update. For each time step i, PI2 therefore computes
the probability of a trajectory at i, by exponentiating the
cost-to-go S(τ i), as in line 18 of Alg. 1. This assigns high
probability to low-cost trials, and vice versa, as visualized
in Fig. 1. The key step is then to compute the new policy
parameters by performing probability-weighted averaging on
the samples, as in line 21. Samples with low cost, and
thus higher probability, therefore contribute more to the
update than high cost samples. Using probability-weighted
averaging avoids having to estimate a gradient, which can be
difficult for noisy and discontinuous cost functions.

In line 21, a different parameter update θnewi is computed
for each time step i. To acquire the single parameter update
θnew, the final step is therefore to average over all time steps
(line 26). This average is weighted such that earlier parameter
updates in the trajectory contribute more than later updates,
i.e. the weight at time step i is Ti = (N−1)/

∑N
j=1(N−1).

The intuition is that earlier updates affect a larger time
horizon and have more influence on the trajectory cost.

III. THE PI2-CMA ALGORITHM

When comparing CEM and PI2, there are several interest-
ing similarities1. Both iteratively update the parameters of a
distribution, both perform exploration by sampling parame-
ters from a Gaussian distribution, and both use probability-
weighted averaging to update the parameter distributions.
It is striking that these algorithms, although having been
derived from very different principles, have converged to
almost identical parameter update rules.

There are also some important differences between CEM
and PI2. First of all, in policy improvement algorithms,
θ represents the parameters of a policy, which must be
integrated over time to determine the costs. This temporal
component requires us to compute a parameter update for
each time step, and perform temporal averaging, which is
not required in CEM.

Second, the mapping from costs to probabilities is dif-
ferent. CEM implements a cut-off value for ‘eliteness’:
you are either elite (Pk = 1/Ke) or not (Pk = 0). PI2

rather considers eliteness to be a continuous value that is
inversely proportional to the cost of a trajectory, where the
‘eliteness’ parameter determines the slope of this inverse.
Our empirical comparison of the CEM and PI2 eliteness
mappingdemonstrate that the PI2 weighting scheme leads
to slightly quicker convergence [10] . Fig. 1 visualizes an

1For a more extensive comparison between PI2 and CEM (as well as
Covariance Matrix Adaptation - Evolutionary Strategy – CMA-ES [1]), we
refer to [10]. This paper extends our previous work by: 1) demonstrating
PI2-CMA’s capability to re-adapt to changing tasks; 2) evaluating PI2-CMA
on a more challenging, dynamic robotic task.

example where the different mappings lead to very similar
distribution updates.

We now turn to the most interesting and relevant differ-
ence between the algorithms. In CEM, both the mean and
covariance of the distribution are updated, whereas PI2 only
updates the mean. In this paper, we insert the covariance
matrix adaptation rule from CEM in Eq. 2 into PI2, thereby
replacing the probabilities 1/Ke with the probabilities Pk as
computed by PI2. Thus, rather than having a fixed covariance
matrix, PI2 now adapts Σ based on the observed costs for
the trials, as depicted in Fig. 1. This novel algorithm –
‘Path Integral Policy Improvement with Covariance Matrix
Adaptation’ (PI2-CMA) – is listed in Alg. 1.

input :
θ ; initial parameter vector
qi and φN ; immediate and terminal cost function1
λinit, λmin, λmax, ; exploration level (initial,min,max)2
K ; number of roll-outs per update3
h ; eliteness parameter4

Σ = λinitI5
while true do6

Exploration: sample parameters and execute policies7
foreach k in K do8

θk ∼ N (θ,Σ)9
τk = executepolicy(θk)10

end11

Compute parameter update for each time step12
foreach i in N do13

Evaluation: compute probability for each time step and trial14
foreach k in K do15

S(τ i,k) = φN,k +
∑N

j=i qj,k16

E(τ i,k) = e

(
−h(S(τ i,k)−minl(S(τ i,l)))

maxl(S(τ i,l))−minl(S(τ i,l))

)
17

P (τ i,k) =
E(τ i,k)∑K

l=1
E(τ i,l)18

end19

Update: Probability-weighted averaging over K trials20
θnew
i =

∑K
k=1 [P (τ i,k) (θk − θ)]21

Σnew
i =

∑K
k=1 [P (τ i,k) (θk − θ)(θk − θ)ᵀ]22

Σnew
i = boundcovar(Σnew

i)23
end24

Update: Temporal averaging over N time steps25

θnew =
∑N

i=0(N−i)θnew
i∑N

l=0
(N−l)26

Σnew =
∑N

i=0(N−i)Σnew
i∑N

l=0
(N−l)27

end28

Algorithm 1: The PI2 and PI2-CMA update rule for a 1-D
parameterized policy. The green lines (line 22, 23 and 27)
only part of PI2-CMA, not PI2.

Because a covariance matrix update is computed for each
time step i (line 22), we need to perform temporal averaging
for Σ (line 27), just as we do for the mean θ (line 26).

A. Bounds on the covariance matrix

In the original PI2 algorithm, the covariance matrix Σ does
not change during learning. It is initially set to Σ = λR−1,
where R is the control cost matrix2. The value of λ must

2By enabling covariance matrix updating, we violate the constraint
Σ = λR−1. Although the derivation of PI2 is no longer possible with
this violation, the resulting algorithm is not affected. It does not seem to
have a negative effect in practice, as our results show. Also, it allows us to
set R = 0, and penalize accelerations directly through the immediate costs.

be tuned manually, and influences the convergence behavior
of the algorithm, as our experiments in Section IV show. In
PI2-CMA, the initial Σ is set to Σ = λinitIB , where B is the
number of basis functions used in the DMP.

In PI2-CMA, Σ is then subsequently adapted over time.
A common problem with covariance matrix adaptation is
premature convergence. To avoid degeneracy of Σ, we com-
pute its eigenvalues, place a lower bound of λmin on the
eigenvalues, and reconstruct the bounded covariance matrix
from the eigenvectors and the bounded eigenvalues. This
procedure is implemented in the ‘boundcovar’ function in
line 23 in Alg. 1. In Section IV-A.4, we demonstrate the
effects of setting different values for λmin. For robotics
applications, it is also recommended to put an upper bound
λmax on the eigenvalues of Σ, as too much exploration might
lead to dangerous behavior on the robot, e.g. reaching joint
limits, or large accelerations.

IV. EXPERIMENTAL EVALUATION

The rest of this paper is dedicated to two tasks, which
are used to highlight several advantages of the PI2-CMA
algorithm. Section IV-A: a simple 1D viapoint task is used to
illustrate the advantages of adaptive exploration.Section IV-
B: demonstrate automatic re-learning on a more challenging
task, involving a dynamically simulated humanoid robot
which uses a bat to hit a ball in a specific target area.

A. An Illustratory Example

For this evaluation we use a via-point task, with a 1-
dimensional DMP that has only two basis functions. The
parameter search space is thus 2-dimensional. This simplicity
has been chosen because having only a 2-D parameter
space facilitates visualization on paper. Higher-dimensional
problems are considered in the other experiments.

The goal of this task is for the 1-D output of the DMP
to take the value 0.3 at time 0.5s. The cost function (3)
therefore penalizes the distance to the value v = 0.3 at
t = 0.5s, as well as the acceleration at each time step. The
acceleration penalty is divided by the number of time steps
N to be independent of the movement duration. To simulate
a change in the environment, we change v to 0.1 after 20
updates.

Jti =103δ(ti − 0.5)| xti − v |+ ẍ2ti/N (3)

The DMP is initialized as a 1s minimum-jerk trajectory.
PI2 performs K = 15 trials per update; a set of K trials
is called an epoch. The eliteness parameter is also set to
h = 15. For each learning session, we perform 40 updates,
i.e. 600 trials. Each learning session is performed 10 times,
and the values discussed in the following result sections
always refer to the means over 10 learning sessions.

1) Results: Constant Exploration: Graphs C1-3 in Fig. 2
depict the results of PI2 with constant exploration for
λ = {20, 200, 2000}. The left graphs show how the parame-
ters θ and Σ change as learning progresses. The values at the
axis ticks are only depicted in the bottom graphs for clarity,
and are shared amongst all graphs in Fig. 2. The center of the

distribution θ moves from the initial point before learning to
the center. When the viapoint changes, it moves even further
towards the lower left corner of the graph, as annotated in
C2. Since Σ = λI is constant, the (circular) error ellipse
does not change. We see that larger values of λ lead to larger
updates of θ, which leads to quicker convergence.

This is confirmed by the learning curves to the right, where
the dark blue graph shows the trajectory cost of the first trial
of the 15 trials for each update, which is an evaluation trial
executed without exploration noise. But fast convergence is
not all we are interested in. Once converged, we also want
to exploit what we have learned. To evaluate exploitation,
we also plot the standard deviation over the 14 exploration
trials for an update, as the light blue area around the learning
curve (± standard deviation). Higher degrees of exploration
λ lead to larger differences in cost between the exploration
trials, and thus a higher standard deviation. So although
convergence is fast for λ = 2000, the variance of the costs
in the exploration trials is very high. This means that the
algorithm is not exploiting what it has learned, because it is
still exploring a lot.

Summary: For constant exploration, there is an inherent
trade-off between fast convergence, which is achieved with
high exploration, and good exploitation of what has been
learned, for which we need low exploration.

2) Results: Decaying Exploration: To combine the advan-
tages of high and low degrees of exploration it is customary
to decay exploration over time, where λu at update u is
equal to λu = λinit ·D#updates, with decay factor 0 < D < 1.
Graph D in Fig. 2 shows the results of this approach, with
high initial exploration (λinit = 2000), and a decay factor
of D = 0.8. The left graph visualizes how the covariance
matrix slowly becomes smaller over time. Apart from the
learning curve, the right graph now also plots λ. The values
at the axis ticks are again only in the bottom plot. Note that
the plot is straight due to logarithmic y-axis for λ.

For the first 20 updates (before the via-point changes),
we see quick convergence (due to high exploration at the
beginning), as well as good exploitation once the task is
learned (due to the low, decayed exploration). So do we
now have the best of both worlds? Unfortunately not. The
disadvantage is that when the task changes (e.g. changing the
viapoint), exploration has decayed so much that the second
task cannot be learned.

Summary: Decaying exploration works well when learn-
ing isolated task, but not for continual learning, where the
environment or the task may change.

3) Results: Adaptive Exploration: Graph A1 shows the
results of automatically updating Σ with PI2-CMA, with
λinit=2000. As is the case for decaying exploration, con-
vergence is quick in the beginning in graph A1, but when
the task is learned and costs have converged, the degree
of exploration λ becomes lower3 and the variance in cost
decreases. The main advantage in the context of continual

3Initially, Σ is diagonal (λinitI), but must no longer be so after the first
update. For a given Σu, we therefore compute λu as its largest eigenvalue.
This is the green graph plotted in graph A1-A4.

Fig. 2. Left: Policy distribution parameters at each update. Right: The
learning curves (blue) and degree of exploration λ (green) at each update.

reinforcement learning is that when the task is changed after
20 updates, exploration automatically goes up again (green
graph), and again decays when the new task is learned.

It is important to realize that we are not specifying
explicitly that exploration should increase/decrease – it is
a property that arises automatically from using probability-
weighted averaging to update the covariance matrix4. If you

4An alternative (heuristic) approach could be: increase exploration when
the cost is low, decrease exploration when the cost is high. However this
requires knowledge about what ‘low’ and ‘high’ costs are, for every task
and in potentially changing environment. The exploration magnitude is, in
contrast, independent of task and environment.

are at a minimum, closer samples will have lower cost than
samples that are further away, which leaves θ approximately
where it is, but causes the covariance matrix Σ to shrink.

Summary: PI2-CMA is able to switch autonomously
between phases in which it learns and phases in which it
predominantly exploits what it has learned.

4) Results: Influence of minimum degree of exploration
λmin: Graphs A1-3 all have λinit=2000, but vary in the
minimum degree of exploration λmin = {2, 20, 200}, as
described in Section III-A. Setting a low λmin (A1) leads to
less variance in cost once the costs have converged, which
allows adaptive exploration to exploit more once the task is
solved. In A2-3, where λmin is higher, the variance in the
exploration trials is also higher, even after having converged
(10 < u < 20 for the first viapoint, and 35 < u < 40 for
the second). Setting a high λmin leads to a faster increase
in exploration if the task changes, which may lead to faster
convergence after a task has changed. This effect can also
be seen in graphs A1-3, after the viapoint change. For
λmin = {2, 20, 200}, the costs have approximately converged
at update 38, 32, 27 respectively.

Summary: λmin provides a trade-off between more ex-
ploitation after convergence (for lower λmin) and faster re-
adaptation when tasks change (for higher λmin).

5) Results: Automatic Tuning of the Exploration Mag-
nitude: Graphs A3 and A4 have the same minimum of
λinit = 200, but have a different initial exploration mag-
nitude, i.e. λinit = {200, 2000}. The main conclusion from
these two graphs are that for λinit = 200, the exploration
quickly goes up until, after 5 updates, the learning curves and
exploration magnitude develop almost identically. We have
demonstrated this effect on a different 10-D task as well,
and were able to show that even if the initial exploration
magnitude is varied by 4 orders of magnitude, it still adapts
and converges towards the same value [10]. PI2-CMA is thus
robust towards the value of λinit, which means this parameter
does not have to be tuned by the user.

B. Re-Adaptation to Changing Tasks

In this experiment, we show PI2-CMA’s re-adaptation
capability in a more challenging dynamic task.

1) Evaluation Task: Inspired by [6], the goal in this task
is for the robot to use a bat to hit a ball such that lands in a
designated area. We use the SL simulation environment [9]
to accurately simulate the CBi humanoid robot, as visualized
in Fig. 3. We keep the torso of the robot fixed, and use only
the 7 degrees of freedom of the right arm. The bat is fixed
to the end-effector. The cost function for this task is:

Jti =0.01

7∑
d=1

ä2ti/N + φ (4)

φ =

{
if in target area 0

else distance to target area in m
(5)

Where we penalize the acceleration of dth joint adti to
avoid high acceleration movement). We divide by the number
of time steps N so as to be independent of the movement

duration. The target area lies between -1 and -1.5m from the
robot in the y direction, as visualized in Fig. 3.

Fig. 3. The T-ball task for the CBi robot. The bat and ball trajectory are
those as learned after 20 updates.

The DMP has 7 dimensions to control the 7 joint angles
of the arm. Each dimension has 3 basis functions, and is
initialized as a minimum-jerk trajectory of duration 1s from
the start to the end pose as visualized in Fig. 3. The PI2

parameters are K = 10, h = 10. Initially Σinit = λinitI3

with λinit=20, and λmin=0.02.
2) Results and Discussion: The learning curve and degree

of exploration λ are depicted at the center of Fig. 4. The
trajectory of the ball after 1, 20, 21, 40 updates is depicted
in the top graph, and the trajectories of the end-point of the
bat for the 10 exploration trials after 1, 20, 27 and 40 updates
are depicted at the bottom.

Fig. 4. The center graph depicts the cost of the evaluation trial and the
degree of exploration as learning progresses. The trajectories of the ball (top
plot) and the trajectory of the end-point of the bat (bottom plot) after 1, 20,
21/27 and 40 updates.

Initially, the ball lands far from the target area A , which
leads to high costs B . After 20 updates, the ball lands in
the target area C (it does so for the first time after only 5
updates), and the costs are much lower D , and exploration

has been dramatically reduced D (note logarithmic y-axis for
λ). The lower exploration also becomes clear in the bottom
plots, where the variance in the bat’s movement is initially
much higher E than after 20 updates F .

After update 20, we position the ball 5cm lower, which
has several consequences: the ball no longer lands in the
target area G so costs immediately go up H , after which
exploration increases again I and costs go down J . After 27
updates, exploration reaches a maximum K , and decreases
again. After 40 updates, the costs and exploration are both
very low L . Note that because the penalty due to accel-
erations is quite high in this task (we recommend this for
ballistic movements as required for T-ball), the costs do not
converge as close to 0 as in the other task.

Summary: PI2-CMA is able to switch autonomously
between phases in which it learns and phases in which it
predominantly exploits what it has learned.

V. CONCLUSION

Determining an appropriate degree of exploration for a
good exploration/exploitation trade-off has extensively been
studied in the context of reinforcement learning with discrete
Markov decision processes [2], [3], [12]. In this paper, we
combine the PI2 and CEM algorithms to derive a direct
reinforcement learning algorithm, which explores directly in
policy parameter space, and adapts the degree of exploration
autonomously. As our experiments show, this alleviates the
user from manually tuning this parameter, and allows the
robot to both reduce exploration to increase exploitation and
increase exploration to adapt to changing tasks.

Our future work aims at applying PI2-CMA to dynamic
tasks on physical robots. Given the ability of PI2 to learn
complex tasks on real robots, we are confident that PI2-CMA
can also successfully be applied to real robots.

REFERENCES

[1] L. Arnold, A. Auger, N. Hansen, and Y. Ollivier. Information-
geometric optimization algorithms: A unifying picture via invariance
principles. Technical report, INRIA Saclay, 2011.

[2] R. Brafman and M. Tennenholtz. R-MAX - a general polynomial time
algorithm for near-optimal reinforcement learning. J. Mach. Learn.
Res., 3:213–231, March 2003.

[3] M. Kearns and S. Singh. Near-optimal reinforcement learning in
polynomial time. Mach. Learn., 49(2-3):209–232, 2002.

[4] J. Kober and J. Peters. Policy search for motor primitives in robotics.
Machine Learning, 84:171–203, 2011.

[5] J. Peters and S. Schaal. Learning to control in operational space. I.
J. Robotic Res., 27(2):197–212, 2008.

[6] J. Peters and S. Schaal. Natural actor-critic. Neurocomputing, 71(7-
9):1180–1190, 2008.

[7] R.Y. Rubinstein and D.P. Kroese. The Cross-Entropy Method: A
Unified Approach to Combinatorial Optimization, Monte-Carlo Simu-
lation, and Machine Learning. Springer-Verlag, 2004.

[8] T. Rückstiess, F. Sehnke, T. Schaul, D. Wierstra, Y. Sun, and
J. Schmidhuber. Exploring parameter space in reinforcement learning.
Paladyn. Journal of Behavioral Robotics, 1:14–24, 2010.

[9] S. Schaal. The SL simulation and real-time control software package.
Technical report, University of Southern California, 2007.

[10] F. Stulp and O. Sigaud, Path integral policy improvement with
covariance matrix adaptation In Proceedings of ICML, 2012.

[11] E. Theodorou, J. Buchli, and S. Schaal. A generalized path integral
control approach to reinforcement learning. Journal of Machine
Learning Research, 11:3137–3181, 2010.

[12] S B. Thrun. Efficient exploration in reinforcement learning. Technical
Report CMU-CS-92-102, Carnegie-Mellon University, 1992.

[13] R. Williams. Simple statistical gradient-following algorithms for
connectionist RL. Machine Learning, 8:229–256, 1992.

