Reinforcement Learning of Impedance Control
in Stochastic Force Fields

Freek Stulp*, Jonas Buchli*f, Alice Ellmer*, Michael Mistry*, Evangelos Theodorou* and Stefan Schaal*
*Computational Learning and Motor Control Lab, University of Southern California, Los Angeles, CA 90089, USA
TDept. of Advanced Robotics, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
iDisney Research, Pittsburgh, PA 15213, USA

Abstract—Variable impedance control is essential for ensuring
robust and safe physical interaction with the environment. As
demonstrated in numerous force field experiments, humans
combine two strategies to adapt their impedance to external
perturbations: 1) if perturbations are unpredictable, subjects
increase their impedance through co-contraction; 2) if pertur-
bations are predictable, subjects learn a feed-forward command
to counter the known perturbation.

In this paper, we apply the force field paradigm to a simulated
7-DOF robot, by exerting stochastic forces on the robot’s end-
effector. The robot ‘subject’ uses our model-free reinforcement
learning algorithm PI? to simultaneously learn the end-effector
trajectories and variable impedance schedules. We demonstrate
how the robot learns the same two-fold strategy to perturbation
rejection as humans do, resulting in qualitatively similar behavior.
Our results provide a biologically plausible approach to learning
appropriate impedances purely from experience, without requir-
ing a model of either body or environment dynamics.

I. INTRODUCTION

To ensure robust and safe physical interaction with the
environment, humans adapt the impedance of their biome-
chanical system to different task requirements and stochastic
disturbances. Numerous force field experiments have demon-
strated that humans combine two strategies to deal with
perturbations [15], [14], [2], [11], [3], [10]. Deterministic,
and thus predictable, perturbations are countered by learning
a feed-forward term, whereas stochastic perturbations lead
to an increase in stiffness through muscle co-contraction, as
illustrated in Fig. 1 and 2. The general rule of thumb thus
seems to be “be compliant when possible, stiffen up only when
the task requires it”. Task-specific adaptation of impedance
allows humans to combine the advantages of high stiffness
(accurate tracking, stable under unforeseen perturbations) and
compliance (lower energy consumption, safer interaction with
the environment, decoupling from perturbations).

In contrast, robots have traditionally been controlled with
constant high gain negative error feedback control [16]. Espe-
cially for industrial robots, the rule of thumb is rather “be
stiff ”. Achieving high position accuracy has thus come at
the cost of high energy consumption, and the necessity to
build cages around robots to avoid human-robot contact. For
autonomous mobile robots operating in human environments,
safety and energy efficiency requirements are very different,
and low-gain variable impedance control will be an essential
characteristic of such robots.

Deterministic perturbation F = 1.0 Stochastic perturbation F = {0.5, 1.0, 1.5}

Zq Tq

1

< 7 7 ="0000000008>¢«—
- I F |
L RS e——— < T0000RE
Pe = 1

= F=—Kp(x—a) ~O00SEEoET>e—
< 00000000 Cé==p €=
g9 |
S R e— (000G e
=& |
Q= >
(&) \UAUMMVvvvvAVEE @

Fig. 1. Tllustration of using different impedances (gains) in deterministic and
stochastic perturbations. The perturbation pushes from the right; its force F' is
igdicated with a red arrow. In the left column, perturbaLions are deterministic
F = 1.0, and in the right column they are stochastic ' = {0.5, 1.0, 1.5}.
The ‘robot manipulator’ is depicted as a gray bar pushing from the left; its
force F is indicated by a black arrow. It is computed with F' = —Kp(z —
Zq), i.e. a proportional controller based on the position error between the
desired position x4 and actual position z. The desired position x4 is indicated
by the vertical lines, and the gain Kp = {2,20} is represented by the
thickness of the spring in the robot manipulator. In this illustration, all forces
are in equilibrium, i.e. F = —F and & = 0. This illustration highlights that
higher impedance (upper row) leads to higher forces for small position error,
and position errors are therefore low with both deterministic and stochastic
perturbations. Low impedance (lower row) leads to higher overall position
errors in the face of perturbations.

Tq Ty Tg Tr

i 1 1
He l=— ; -J@W
E‘L 000 s6eee>e— -W
Lo) - F=-Kp(z— o) i - v Vi) —< T :
— —
F/Kp E(F)/Kp
Fig. 2. With a deterministic perturbation (left), low error (x — z4) can be

achieved despite low impedance if a feed-forward term is learned, as humans
do [15]. In our simple example, this can be achieved analytically by providing
a reference position z, to the proportional controller (FF = —Kp(z — x))
that is diffe{ent from the desired position x4, and contains a fixed offset
xr = 24— F /K p based on the strength of the force field F'. With stochastic
perturbations, F' is not known in advance, but the average position error E(z—
xq) can still be reduced by using the average force of the field z, = 24 —
E(F)/Kp. However, this offset term does not reduce the variance in the
position error due to the stochasticity in the perturbations; this can only be
reduced by increasing the gain, as in the upper row of Fig. 1. In humans,
adaptation to the average of a stochastic force field whilst increasing the
impedance was observed in [2], [11].

Although variable impedance control for robots is desirable,
“[Tlhe selection of good impedance parameters [...] is not
an easy task” [16]. The main reason is that deriving useful
impedance controllers usually involves models of both the
environment and the robot, as well as deep knowledge about

designing and parameterizing such controllers [5]. Recently,
Mitrovic et al. [12] proposed to learn these models, which
are then used in a model-based stochastic optimal controller
to control a 1-DOF antagonistic actuator. As an alternative
to model-based methods, we recently proposed the use of
model-free reinforcement learning to simultaneously learn
reference trajectories and variable impedance controllers [1].
We have implemented this approach on real robots with the PI?
algorithm, which is derived from stochastic optimal control,
and does not require a model of the robot or the environment.

In this paper, we use PI? to learn variable impedance con-
trollers in deterministic and stochastic force fields, and show
that the robot learns behavioral adaptations similar to those
of humans, i.e. the two-fold strategy of combining a feed-
forward term for deterministic perturbations with increased
impedance for stochastic perturbations. In contrast to model-
based optimal control, which is frequently used to simulate hu-
man behavior in computational motor control [8], PI? does not
require a model and scales to high-dimensional tasks [17], thus
making it a biologically more plausible learning algorithm.
Furthermore, as PI2 converges to local optimal solutions [18],
our results lends support to the idea that learning based on
stochastic optimality is a good model for human learning.

Most closely related to our work is the model described by
Franklin et al. [3], which is used to simulate human data, and
has also been implemented the context of a 1-DOF robot [4].
In [4], co-contraction of muscles is modelled by increasing the
gains of the robot, and the robot learns to adapt its impedance,
the forces it applies and reference trajectories. In contrast to
our method, which is a generic policy learning algorithm,
their learning method is specific to gain scheduling, and has
not been demonstrated on more high-dimensional systems.
Other reinforcement learning approaches to impedance control
include [7], which has not been applied to higher-dimensional
systems, and [9], where impedance is learned, but the reference
trajectory is kept fixed.

In summary, we have previously shown that PI?> learns
variable impedance control on real robots in high-dimensional
tasks, and in this contribution we demonstrate that it is
also able to simulate human behavior based on stochastic
optimality, without requiring a model.

II. METHODS

Our robot ‘subject’ is a 7-DOF Barret arm, depicted in
Fig. 3. We use an accurate physical simulation of the robot
with the SL software package [13].

A. Experimental Protocol

In this paper, we consider the learning of reaching move-
ments to a discrete, specified goal, and follow the experimental
protocols in [3], [8], [11]. In particular, the experimental
parameters below are taken from Experiment 1 in [11], and
Experiment 3 in [8].

Initially the robot makes a straight movement with
minimum-jerk velocity profile along the x-axis (distance 0.2m,
duration 1s), away from its body [8]. This movement is

desired path (and initial reference trajectory) —=——
force field for g = p+ {-0.0.0} —=
actual trajectories

110

920 |

30 x(cm) 35

Fig. 3. The 7-DOF robotic arm used in this paper, simulated in SL. The
reaching trajectory and force fields are depicted in the right graph (for o =
0.2886). Note that although the visualizations in this paper are in 2D for ease
of interpretation, the robot is simulated in full 3D space.

depicted in Fig. 3. We use a velocity dependent force field
[f;;} = B8] [%]. where F,,F, is the force applied
to the subject’s end-effector along the x/y-axis respectively,
and /y is the velocity of the end-effector along the x/y-
axis [11]. The strength of the force field [is sampled at
the beginning of each trial from a Gaussian distribution
N(1,0). We apply four different force fields with ¢ =
{0.0000, 0.1442, 0.2886,0.4330} [11]. The effect of the force
field with o = 0.2886 is depicted in Fig. 3.

The robot receives feedback about joint positions, end-
effector position, and joint torques. After each trial, feedback
on task achievement is given by the cost function:

tN 7 . .
J(ri) = / 10%d(x;) + 102> (K}, — KET™) +107° % |
t; J=1
(D

where o d(x) is the distance in meters from the end-effector
to the line connecting start and end-point of the movement,
i.e. similar to Eq. 2 in [3]; this cost expresses that we do
not want large errors in position from the straight desired
path. Note that this desired path is invariant, and is not the
same as the reference trajectory which is adapted through
learning (i.e. compare z, and z4 in Fig. 2). Using such an
invariant desired path is also frequently assumed in modelling
of human behavior [4], [3], [19]. e Z;Zl(KfD - K3™™)
is the sum of the proportional gains (minus their minimum
values) over all joints j; this cost expresses that we prefer
low gains, as they lead to lower torque commands and safer
human-robot interaction. In principle, we would expect similar
results when penalizing motor commands directly. Penalizing
the gains stems from our explicit goal of achieving compliant
robots with low-gain control [1]. e |X| is the end-effector
acceleration in m/s?; this cost expresses that we do not want
motions with high accelerations.

We now describe how the reference trajectory (Section 1I-B)

Basis functions Parameters ¢ ,_Transformation system >
7 =) Dynamic Movement Primitives
i = a(Blg —) — i) + 870 =
5000 ' : o
i o o N ‘
o Q d)o ool ;‘ ~e= a(B(g — x¢) —d¢) + g 0 Transform. system (2)
. Canonical system l i g [] w](sz)-st () Basis functios (3)
= — & asis unctions
-5000 g Gl i:l wk(5t> J !
w Li = —as 0, =4 -)
- o0y " 0 1 time (5 A w; = exp (—0.5h; (st — ¢;)°) Gaussian kernel (4)
05 Basis functions Parameters 0y Function approximator ls} — _as: Canonical. system (5)
" T
1 - g
) = st 8 6 Kr = gl -% Gain schedules
% 05 1 5 4 o
time (5) o
A o = a7 q 5
%05 4 < 4 Q Kp: = g,{KOK Function approximator (6)
5 w;(ste)
© _ J asis ions
2 TTT TT 8 [gt_K]] = m Basis functions (7)
2 k=1 t
Oy 05 7 15 Oy 5 10 0 15
time (s) i time (s)
Fig. 4. Dynamic Movement Primitives (DMPs). The core idea behind DMPs is to perturb a simple linear dynamical system (the first part of Eq. 2) with

a non-linear component (g?ﬂ) to acquire smooth movements of arbitrary shape. The non-linear component consists of basis functions g, multiplied with a
parameter vector 0. The canonical system s; represents the phase variable, which is 1 at the beginning of the movement, and O at the end. The movement
in the left figure (upper row) has a duration of 1 second, after which x has reached the goal, i.e. x¢>1.0 = g. Proportional gain schedules Kp; (lower row)
are not transformation systems, but rather represented directly with the function approximator gg: xOk.

and variable gain schedules (Section II-C) are represented.
In Section II-D we present the model-free reinforcement
algorithm that learns to minimize the cost function in Eq. 1,
by adapting the reference trajectories and gain schedules.

B. Dynamic Movement Primitives

The reaching trajectory is represented by a Dynamic Move-
ment Primitive (DMP) [6], which consists of a set of dynamic
system equations listed, visualized, and explained in Fig. 4.
We leave the details to [6], [18]. For this paper, the important
features of DMPs are that ¢ When integrating a DMP over
time, it generates a 1-dimensional output trajectory [z; &y Z¢]
e DMPs converge from the initial value =y towards the
goal parameter g. e The general shape of the trajectory is
determined by the parameters 6.

Multi-dimensional DMPs are represented by coupling sev-
eral transformation systems as in Eq. 2 with one shared phase
variable s. In this paper, the DMP has three transformation sys-
tems, which represent the 3-dimensional reference trajectory
of the robot’s end-effector in Cartesian space [X,; Xyt Xr).

The initial parameters € are trained with supervised learn-
ing [6], so that the reference trajectory has a minimum-jerk
velocity profile, and generates the trajectory depicted in Fig. 3.
The reference end-effector positions are converted into joint
space using the Jacobian pseudo-inverse. The resulting joint
velocities q,.; are integrated and differentiated, to get joint
positions q,.; and accelerations q,.; respectively.

C. Representing Variable Gain Schedules in DMPs
Given the reference joint trajectory [q,; 4, 4] generated
above, the motor command torques u for our robot are
calculated via a PD/feed-forward control law:
u=-Kp(q—q,) - Kp(q—4q,)+urp (®)
Kp =CVKp)

where Kp, Kp are the positive definite position and velocity
gain matrices, and C' is a constant scale factor set manually

for each joint. The feed-forward control term u;p is com-
puted with an inverse dynamics (ID) controller! based on a
Newton-Euler algorithm?. Thus, the impedance of a joint is
parameterized by the choice of the gains Kp (stiffness) and
K p (damping).

The key to variable impedance control is to allow Kp
to vary as the movement is executed. As introduced in [1],
this can be achieved by representing the gain schedules as
extra dimensions in the DMP. Since the gains do not have a
specific goal value, the proportional gains are not represented
as transformation systems that converge to g, but computed
directly as a function approximator Kp; = ggKBK, as
depicted in Fig. 4.

In our experiments, we use supervised learning to ini-
tialize @k such that the proportional gains of the 7 joints
are constant over time, and have the values K’}”" =
{60, 60,16, 16,6,6, 1.6}. These are 0.4 times the default gains
we use for this robot, and the minimum gains we allow during
learning, as too low gains lead to poor tracking such that the
robot frequently runs into its joint limits. Although we start
out with a gain schedule that is constant over time, we shall
see in the next section that varying @ leads to varying gain
schedules, which are adapted to external perturbations through
reinforcement learning.

In summary, in the Dynamic Movement Primitive used
in this paper, there is one canonical system (representing
the phase variable s;) which drives 3 transformation systems
(representing the 3-D end-effector position over time) and 7
function approximators (representing the gain schedules of the
7 joints). We chose to specify the reference trajectory in end-

'The inverse dynamics feed-forward torques u;p only compensate for
forces due to gravity, inertia and Coriolis effects, but not for the force fields
we generate. Therefore, the feed-forward term which is learned to compensate
for the force field perturbation F' is completely independent of uyp.

2 Although our learning method is model-free, our inverse dynamics con-
troller does require a model of the robot. This general model is not used to
learn the specific task of compensating for the force fields.

effector space since this is the element the ‘subject’ has to
regulate to fulfill the task and receives feedback on. In contrast
we chose to regulate gains in joint space to avoid to have to
specify and additional, arbitrary null-space behavior.

D. Policy Improvement with Path Integrals — PI?

Given the DMP representation above, the goal is to learn
the parameters 6 and 0 which minimize the cost function in
Eq. 1. To do so, we use the policy improvement algorithm PI2
[18]. Since PI2 learns @ and O simultaneously with the same
method, from now on we simply denote these parameters for
the end-effector trajectory and gain schedules as one parameter
vector 0. Cost functions for PI? take the generic form:

tn
J(Ti) = bipy + / (re + %OTRB) dt Traj. cost (10)
ti
where J is the finite horizon cost over a trajectory T; starting at
time ¢; and ending at time ¢,y. This cost consists of a terminal
cost ¢, , an immediate cost 7, and an immediate control cost
%BTRO. The specific cost function for the task considered in
this paper was given in Eq. 1, and adheres to this generic
format.

Policy improvement methods minimize cost functions
through an iterative process of exploration and parameter
updating, which we explain using Fig. 5. Exploration is done
by executing a Dynamic Movement Primitive M times, each
time with slightly different policy parameters 6 + 69t7 , Which
is added to explore the parameter space, as in Eq. 11. This
noise is sampled from a Gaussian distribution with variance
3”. A similar Gaussian exploration is applied to the gain
schedules as in Eq. 12.

1

—iy=a(Blg—x) — @) + 8/ (O+ m) (1D
T ——

Shape exploration
Kpi =gl x(0k +€,) (12)

——

Gain exploration

These ‘noisy’ DMP parameters generate slightly different ref-
erence trajectories {X, ¢, X, ¢, Xyt }m=1...m and gain schedules
{Kpt}m=1..m, which each lead to different costs. Given
the costs and noisy parameters of the M DMP executions,
called roll-outs, policy improvement methods then update
the parameter vector @ such that it is expected to generate
movements that lead to lower costs in the future. The process
then continues with the new @ as the basis for exploration.

Initial 'Noisy" Trajectories and Costs Updated
parameters parameters galn schedules parameters
¢
emu 6+ G S xx %, Kp J grew
Vs N Vs N / N /
Generate Execute Compute Parameter
€m=1...M DMPs cost-to-go update

Fig. 5. Generic loop of policy improvement algorithms.

The most crucial part of the policy improvement loop in
Fig. 5 is the parameter update; it is here that the key differ-
ences between PI? and other policy improvement methods lie.

Rather than focussing on its derivation from first principles
of stochastic optimal control, which is presented extensively
in [18], we provide a post-hoc interpretation of the resulting
update rule in Fig. 6.

PI? Parameter Update Rule

N—-1

S(Tim) =pty.m+ Y Tijm+

=i

N-—1
1
5 30 (64 My e,) "R(O+Me;me®s;m) (1)

j=it+1
M R_lgtj gz;)
EAG gtT]. Rflgtj
() o= 55T, o)
P(Tim)=———F—""— (15)
Zz]\il[ei%swi’l)]
M
69*1‘ = Z [P (Ti,m) Mti,m esti,m] (16)
m=1
T (N — i) wie, [68+,);
[66]; = =T : 7
>ico whe; (N —1)
6 +0 + 60 (18)

Fig. 6. PI? parameter update rule:

Eq. 13 - Determine cost-to-go of each roll-out S(7; ,,,) at each time step
4. This is an evaluation of the cost function J(7;) in Eq. 10 , which is task-
dependent and provided by the user. The matrix Mg, ,m (Eq. 14) is needed
to project the exploration noise onto the parameter space.

Eq. 15 - Compute probability of each roll-out P (7; ,,) at each time
step 7 by exponentiating the cost-to-go. The intuition behind this step is that
trajectories of lower cost should have higher probabilities.

Eq. 16 - Average over roll-outs. Compute the parameter update 66 for each
time step ¢ through probability weighted averaging over the exploration €®
of all M roll-outs. Trajectories with higher probability, and thus lower cost,
therefore contribute more to the parameter update. Again, My, m projects
the exploration noise onto the parameter space.

Eq. 17 - Average over time-steps. In the final step, we average the parameter
update 08¢, per time step 4 over all time steps. Each parameter update is
weighted according to the number of steps left in the trajectory. This is to give
earlier points in the trajectory higher weights, as they influence a larger part of
the trajectory. They are also weighted with the activation of the corresponding
basis function w; at time ¢;, as the influence of parameter 6; is highest when
wj is highest. Finally, the actual parameter update is performed with Eq. 18.

In our experiments, we performed 100 PI? updates with
M = 10 roll-outs per update for each of the four force
fields. The exploration noise was 0 — 102 for the Cartesian
positions, and X% = 1073 . K% for the 7 gain schedules’,
where K2*" are the minimum gains as listed in Section II-C.

III. RESULTS

After each PI2 update, three roll-outs were executed without
exploration noise for evaluation purposes. For these three roll-
outs, force fields with strength 8 = 1 — 0, 1, 1+ o were
used. For all four forcefields (each with a different level of
stochasticity determined by o), the reference trajectories, force
fields and actual trajectories at various stages of learning are

3The relatively low exploration noise for the gains does not express less
exploration per se, but is rather due to numerical differences in using the
function approximator to model the gains directly (Eq. 6) rather than as the
non-linear component of a transformation system (Eq. 2).

depicted on the last page in Fig. 10. For comparison, the
reference trajectories after 100 updates for the four force fields
are depicted together in Fig. 7. These correspond to the after-
effects that occur when the force field is turned off, similar to
the graphs in [15], [11].

0.8,

1<)
=]

y (cm)

0.6

©
o

mean after effect (cm)

0.4

90 0.2

28 30 32 02 0.4
X (cm) sigma

Fig. 7. Left: After-effects (i.e. reference trajectories) after 100 updates for
each of the force fields. Center: Same, with x axis scaled x2 for visualization
purposes. Right: Average after-effect (i.e. mean distance to the trajectory
before learning) as a function of force field stochasticity.

The learning curves for the four force fields are depicted
in Fig. 8. The sum over all gain schedules at various stages
during learning are depicted in Fig. 9.

g

12 0.000C
0.1442
10 0.288€
0.433C

8 0 1

i

cost

0 1 1 1 1
0 20 40 60 80 100

#updates

Fig. 8. Learning curves for the different force fields. The y-axis represents the
average costs over the three evaluation roll-outs performed after each update.
Curves are smoothed with a moving average filter of window size 7.

20 20 20
a

300 Qo 300 /A__ 300
01442 = ~——
20 et 20 20
04330 e .
260 260

% 20 S o0
€ ¢

£ 20

Fig. 9.
100 updates. The gains before learning (which are also the minimum gains)
are depicted as dashed lines.

Sum of the individual gain schedules of the 7 joints after 10, 34,

A. Discussion

A closer inspection of the individual cost components,
reference trajectories and gain schedules leads to the following
observations:

e The main adaptation of the reference trajectory happens
in the first 10 updates. As can be seen in Fig. 10, the reference
trajectories after 10 updates are already close to the shape they
have at the end of learning after 100 updates. This suggests that
the robot first learns the feed-forward term to compensate for
the average force field with 8 = 1. Since the force field pushes
from left to right, the reference trajectory is placed to the left,
and is approximately a mirror image of the perturbed trajectory
before learning. This is consistent with the observations on
human adaptation in [15], [2], [11].

e Between 10 and 30 updates, gains go up quickly (reaching
their maximum value after 34 updates) to compensate for
stochasticity in the force field. Higher stochasticity o leads
to higher peak values for the gains (center graph Fig. 9) and
smaller after-effects (right graph Fig. 7), which is consistent
with human adaptations observed in [2], [11].

e After 30 updates, gain schedules are fine-tuned to achieve
low position error with low gains. This lowering of gains
slowly continues even after 100 updates. Quick increases
in gains followed by slow decreases is consistent with our
observations in several robotic manipulation tasks [1], [17].

In summary, the robot adapts to the mean of perturbation
by moving the reference trajectory in the opposite direction of
the force field, and adapts to stochasticity in the perturbations
by increasing the impedance. These are qualitatively similar
results to those observed biophysics experiments [11].

For now, the results could not be modelled quantitively,
as there are some clear differences between humans and our
robotic platform. In particular, the kinematics and dynamics
of the robot are not the same as the human body; this alone
may explain many of the quantitive differences. Also, humans
learn in ‘muscle space’, and higher impedance is caused by
co-contraction of the muscles. In contrast, our robot learns
in gain space, as in [4]. Finally, the robot learns much slower
than humans (1000 trials vs. 175 in [11]). We believe the main
reason for this is that in contrast to humans, our controller
and PI? have no built-in reflexes, and start without any initial
knowledge about the domain. Also, humans learn continually
during and after each trial, whereas PI? requires M trials
(M = 10 in this paper) to be performed before updating the
parameters. Our current research focuses mainly on applying
our methods to more human-like kinematics, and biologically
plausible muscle models. We are also developing a version
of PI2 in which the last M trials are kept in a FIFO buffer,
allowing updates to be performed after each trial, which would
enable continual learning.

As in [3], [4], we assume a straight desired path to calculate
the task reward, i.e. deviations from this (invariant) desired
path are penalized. Without this position error penalty, we
are not able to simulate the human movement data. The
plausibility of a desired trajectory in biology [19] is still under
debate, and the role of the desired trajectory in our system also
deserves further investigation.

An important part of the robot’s adaptation to the force
field is achieved by changing the reference trajectory, i.e. in
the analytical example in Fig. 2 this was F = —Kp(x — 2,.),

sigma = 0.0000
update 10 update 34 update 100

sigma = 0.1442

update 1 update 1 update 10 update 34 update 100

110

update 1

sigma = 0.2886
update 10 update 34 update 100

sigma = 0.4330

update 1 update 10 update 34 update 100

105

g

y (em)

¥ (em)

&

105

yem 8

1

yem &
IR e

)

T

30 x(cm) 35 30 x(om) 35 30 x(om) 35 30 x(em) 35 30 x(cm) 35 30 x(em) 35 30 x(em) 35 30 x(cm) 35

30 x(cm) 35

30 x(em) 35 30 x(cm) 35 30 x(cm) 35 30 x(cm) 35 30 x(om) 35 30 x(cm) 35 30 x(em) 35

Fig. 10. Reference (blue) and actual (green) hand trajectories as learning progresses, for the different force fields. Each row represents a force field with different

o. The actual trajectories represent the perturbed motions when executing the reference trajectories for force fields with strengths = {1 — o, 1,

with =, = ©4 — ﬁ/Kp. The position offset ﬁ/Kp leads to
larger errors between the reference path and actual trajectory
(x4—) and thus larger forces, which counteract the force field.
Changing the reference position to exert a force is known as
indirect force control [16]. An alternative would be to directly
learn a reference force F). to compensate for the force field,
and perform direct force control, i.e. F = —Kp(x —x4) + F}.
Since both direct and indirect force control will lead to similar
after-effects, it is not clear which approach humans use. In
our future work, we will compare the results of learning with
direct and indirect force control on our robot platform. Any
differences observed on the robot could assist us in designing
experiments to verify which form of control humans use to
compensate for stochastic perturbations.

IV. CONCLUSION

Dynamic Movement Primitives and the PI? algorithm have
previously been applied to learning reference trajectories
and gain schedules for complex high-dimensional robotic
tasks [17], [1]. Our approach offers a pragmatic solution for
robotics applications, where exploiting the power of adaptive
impedance is desirable, but where it is difficult to tune
impedance controllers, even for deterministic problems.

In this paper we demonstrate how PI? is able to find
motor policies that qualitatively replicate human movement
data in stochastic force field experiments. As PI? is a model-
free algorithm based on stochastic optimal control, these
results 1) support the hypothesis that human learning in such
situations is based on stochastic optimality; 2) demonstrate that
locally optimal policies can be learned from experience with-
out requiring a model of the force field or the (bio)mechanical
system, thus making it a more biologically plausible alternative
to model-based optimal control methods.

Acknowledgments

This research was supported in part by National Science
Foundation grants ECS-0325383, 1IS-0312802, IIS-0082995,
11S-9988642, ECS-0326095, ANI-0224419, and the ATR
Computational Neuroscience Laboratories. F.S. was supported
by a Research Fellowship from the German Research Foun-
dation (DFG). J.B. was supported by an advanced researcher
fellowship from the Swiss National Science Foundation. E.T.
was supported by a Myronis Fellowship.

(1]
[2]

[3]

[4]

[5]

[6]

[7]
[8]
[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

1+o0}.

REFERENCES

J. Buchli, F. Stulp, E. Theodorou, and S. Schaal. Learning variable
impedance control. International Journal of Robotics Research, 2011.
C. Takahashi, D. Scheidt, and R. Reinkensmeyer. Impedance control and
internal model formation when reach in a randomly varying dynamical
environment. Journal of Neurophysiology, 86:1047-51, 2001.

D. Franklin, E. Burdet, K. Tee, R. Osu, C. Chew, T. Milner, and
M. Kawato. CNS learns stable, accurate, and efficient movements using
a simple algorithm. Journal of Neuroscience, 28(44):11165-73, 2008.
G. Ganesh, A. Albu-Schiffer, M. Haruno, M. Kawato, and E. Bur-
det. Biomimetic motor behavior for simultaneous adaptation of force,
impedance and trajectory in interaction tasks. In IEEE Int. Conf. on
Robotics and Automation (ICRA), pages 2705-2711, 2010.

N. Hogan. Impedance control - an approach to manipulation. I - theory.
II - implementation. III - applications. ASME, Transactions, Journal of
Dynamic Systems, Measurement, and Control, 107:1-24, 1985.

A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with
nonlinear dynamical systems in humanoid robots. In Proc. of the IEEE
International Conference on Robotics and Automation (ICRA), 2002.

J. Izawa, T. Kondo, and K. Ito. Biological arm motion through
reinforcement learning. Biological Cybernetics, 91(1):10-22, 2004.

J. Izawa, T. Rane, O. Donchin, and R. Shadmehr. Motor adaptation as
a process of reoptimization. Journal of Neuroscience, 2008.

B. Kim, J. Park, S. Park, and S. Kang. Impedance learning for robotic
contact tasks using natural actor-critic algorithm. IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, 40(2), 2009.

L. Selen, D. Franklin, and D. Wolpert. Impedance control reduces
instability that arises from motor noise. Journal of Neuroscience,
7(40):12606—-16, 2009.

M. Mistry, E. Theodorou, H. Hoffmann, and S. Schaal. the dual role
of uncertainty in force field learning. In Abstracts of the 18th Annual
Meeting of Neural Control of Movement (NCM), 2008.

D. Mitrovic, S. Klanke, M. Howard, and S. Vijayakumar. Exploiting
sensorimotor stochasticity for learning control of variable impedance
actuators. In Proc. IEEE-RAS International Conference on Humanoid
Robots, 2010.

S. Schaal. The SL simulation and real-time control software package.
Technical report, University of Southern California, 2009.

R. Scheidt, B. Dingwell, and F. Mussa-Ivaldi. Learning to move amid
uncertainty. Journal of Neurophysiology, 86:971-85, 2001.

R. Shadmehr and F. A. Mussa-Ivaldi. Adaptive representation of
dynamics during learning of a motor task. Journal of Neuroscience,
14(5):3208-3224, 1994.

B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo.
Modelling, Planning and Control. Springer, London, 2009.
F. Stulp, J. Buchli, E. Theodorou, and S. Schaal. Reinforcement learning
of full-body humanoid motor skills. In /0th IEEE-RAS International
Conference on Humanoid Robots, 2010.

E. Theodorou, J. Buchli, and S. Schaal. A generalized path integral
approach to reinforcement learning. Journal of Machine Learning
Research, 11(Nov):3137-3181, 2010.

D. Wolpert, Z. Ghahramani, and M. Jordan. Are arm trajectories planned
in kinematic or dynamic coordinates? An adaptation study. Experimental
Brain Research, 103:460-470, 1995.

Robotics —

