Learning Motion Primitive Goals for Robust Manipulation

Freek Stulp!, Evangelos Theodorou', Mrinal Kalakrishnan!, Peter Pastor!, Ludovic Righetti', Stefan Schaal®»?
!Computational Learning and Motor Control Lab, University of Southern California, Los Angeles, CA 90089, USA
2Max-Planck-Institute for Intelligent Systems, 72076 Tiibingen, Germany

Abstract— Applying model-free reinforcement learning to
manipulation remains challenging for several reasons. First,
manipulation involves physical contact, which causes discon-
tinuous cost functions. Second, in manipulation, the end-point
of the movement must be chosen carefully, as it represents a
grasp which must be adapted to the pose and shape of the
object. Finally, there is uncertainty in the object pose, and even
the most carefully planned movement may fail if the object is
not at the expected position.

To address these challenges we 1) present a simplified,
computationally more efficient version of our model-free re-
inforcement learning algorithm PI?; 2) extend PIZ so that it
simultaneously learns shape parameters and goal parameters
of motion primitives; 3) use shape and goal learning to acquire
motion primitives that are robust to object pose uncertainty.
We evaluate these contributions on a manipulation platform
consisting of a 7-DOF arm with a 4-DOF hand.

This paper is accompanied by a video, which can also be down-
loaded at: http://www—clmc.usc.edu/movies/iros2011/

I. INTRODUCTION

In recent years, model-free reinforcement learning algo-
rithms that search directly in policy parameter space have
been able to learn a variety of motor skills, such as baseball
batting [13], dart throwing [6], table tennis [6], pancake
flipping [7], and archery [8]. These are quite intricate tasks,
which even most humans find difficult to master. We believe
however, that the main potential of direct model-free rein-
forcement learning lies in applying it to learning everyday
object manipulation skills, as required in for instance pick-
and-place tasks. Reinforcement learning promises to provide
robots with a new level of autonomy and flexibility for
acquiring skills for everyday manipulation tasks.

Applying model-free direct reinforcement learning (RL) to
manipulation remains challenging for several reasons. First,
manipulation involves physical contact, and the transition
from non-contact to contact can cause discontinuities in the
cost function. Computing a gradient on discontinuous, noisy
cost functions is problematic; hence the recent trend from
using gradient-based methods [13] to algorithms based on
reward-weighted averaging [6], [18]. We recently introduced
the Policy Improvement with Path Integrals (PI?) algorithm,

This research was supported in part by National Science Founda-
tion grants ECS-0325383, IIS-0312802, IIS-0082995, 11S-9988642, ECS-
0326095, ANI-0224419, DARPA program on Advanced Robotic Manip-
ulation, and the ATR Computational Neuroscience Laboratories. F.S. was
supported by a Research Fellowship from the German Research Foundation
(DFG). E.T. was supported by a Myronis Fellowship.

which can outperform existing direct RL algorithms by an
order of magnitude both in terms of learning speed and final
cost of the learned movement [18].

The second challenge is that in manipulation, the end-point
of the movement must be chosen carefully, as it represents
a grasp which must be adapted to the pose and shape of
the object. However, direct reinforcement learning has so far
only been applied to learning the shape of the movement, not
the end-point, i.e. the goal. In this paper we therefore apply
several simplifications to PI> which enable us to derive a new
update rule for goal learning with PIZ.

Finally, the pose and/or shape of the object to be ma-
nipulated is hardly ever known with perfect accuracy. A
previously successful grasp might fail because the object
is not at the expected position, which leads to stochastic
cost functions [17]. Rather than learning a movement that
successfully grasps the object at the expected position, the
movement should maximize the expectation of successfully
grasping the object over all possible positions that the object
might have due to uncertainty, as depicted in Fig. 1. There-
fore, we propose to use reinforcement learning of shape and
goal to learn to maximize this expectation, to yield motion
primitives that are robust to object position uncertainty.

Perceived object positi@)rj’

Fig. 1. Left: The manipulation platform used in this paper. Right: The
aim is to learn one motion that successfully grasps the object at all of the
positions shown. To do so, we simultaneously learn the goal and shape of
a motion primitive with the PI? algorithm.

Summarizing, the main contributions of this paper are: e Pre-
senting a simplified, computationally more efficient version
of PI? (Section IV-A). e Adapting simplified PI? to simul-
taneously learning shape parameters and goal parameters of
motion primitives (Section IV). e Using these methods to
learn reaching trajectories and grasps for manipulation, which
are robust towards uncertainty in the object position (Sec-
tion V). e Empirically evaluating each of these contributions

on a manipulation platform consisting of a 7-DOF arm with
a 4-DOF hand, depicted in Fig. 1 (Section V-D)!

Before presenting these contributions, we first describe
related work (Section II), and the existing algorithms on
which this work is based (Section III).

II. RELATED WORK

Goal Learning. Nemec et al. [11] optimize the goal
parameters of a DMP through reinforcement learning, by
iteratively approximating a continuous value function in state
space. Learning a manipulation task (pouring a liquid) takes
place in a 2D space, as 4 of the 6 degrees of freedom at the
end-effector pose are kept fixed. Learning directly in policy
parameter space without a value function allows us to scale
to higher dimensional problems, enabling us to learn goal
and shape parameters simultaneously in the full 11D action
space (3D end-effector position, 4D end-effector quaternion
orientation, and 4D hand posture).

Kober et al. [6] present a variant of goal learning, where
the robot learns a function v(s), which maps the current
situation s to a set of meta-parameters, which are the goal and
duration of the movement. The aim is to learn the mapping
~(s) that minimizes a cost. Kromer et al. [9] also determine
low-dimensional meta-parameters that automatically adapt
the shape of the movement to a pre-specified goal, and apply
it to grasping. Our specific aim in this paper is to rather
learn the goal and shape parameters simultaneously in the
full dimensionality of the motion primitive.

There are several other methods that could potentially be
used for learning optimal motion primitive goals, such as
cross-entropy methods [14] or reward regression [8]. How-
ever, learning the goal of the movement is tightly coupled
to learning the shape of the movement, and these methods
do not readily apply to learning shape parameters, as shape
parameters have a temporally extended effect. Therefore, we
propose a method that simultaneously learns shape and goal
using the same cost function and update rule.

Grasping Under Uncertainty. Uncertainty in an object’s
position can make even the most carefully planned motion
fail, as the object might simply not be at the location where
the planner expects it to be [10], [1]. There are several strate-
gies to dealing with object pose uncertainty in grasping. One
strategy is based using a sampling-based motion planner to
generate a robust motion plan that is consistent with all object
pose hypotheses [1]. This approach has high computational
cost, and requires an accurate model of the robot and the
environment. The second strategy uses exploratory actions to
acquire more information to actively reduce the uncertainty.
An example is using Partially Observable Markov Decision
Processes to determine when and which exploratory actions
are required to reduce the object pose uncertainty [3]. A

'We previously considered the task of learning to grasp under uncertainty
in [17]. In contrast to the work in [17], here we e use a simplified version of
PI2? e apply simultaneous learning of goal and shape parameters, rather than
learning shape alone. As the grasp is the end-point of a reaching movement,
this is a more natural representation of the problem than in [17] @ we perform
experiments with a real robot.

third strategy uses reactive control during execution, based
on feedback from tactile or force/torque sensors, enabling the
robot to adapt on-line to cases where the object is not at the
expected location [4], [12]. In Section V, we shall see that
humans use a fourth strategy, which forms the inspiration for
the work described in this paper.

III. DIRECT REINFORCEMENT LEARNING

In this section, we briefly introduce Dynamic Movement
Primitives and the reinforcement learning algorithm Pol-
icy Improvement with Path Integrals (PI?), thus laying the
groundwork for the contributions in Sections IV and V.

A. Dynamic Movement Primitives

Dynamic Movement Primitives (DMPs) are a flexible
representation for motion primitives [5], which consist of a
set of dynamic system equations:

Dynamic Movement Primitives

1
—i; = a(B(g — xt) — @) + g @ Transform. system (1)
p

_ _wilse) s o o
[&:]; = b wi(se) (9= 20)
w; = exp (705h3 (St - 01)2)
1

*ét = — Q'S¢
T

Basis functions (2)

Gaussian kernel (3)

Canonical. system (4)

The core idea behind DMPs is to perturb a simple linear
dynamical system (the first part of Eq. 1) with a non-linear
component (g] 6) to acquire smooth movements of arbitrary
shape. The non-linear component consists of basis functions
g:, multiplied with a parameter vector 6.

We leave the details of DMPs to [5], [18]. For this paper,
the important features of DMPs are: e When integrated
over time, DMPs generate trajectories [zq,; £q4, Za,¢], Which
are used as for instance desired joint angles or desired
end-effector positions. ¢ DMPs converge from the initial
value x(towards the goal parameter g. So at the end of the
movement, x; = g. ® The general shape of the trajectory
(i.e. the values of z; between xy and g) is determined by
the shape parameters 0. The effects of changing 0 and g are
visualized in Fig. 2.

shape parameters
0 bnew

goal 9
parameters

0 time (s) 1

Fig. 2. Effects of changing shape parameters 8 and goal parameters g.

Eq. 1 describes a 1-dimensional system. Multi-dimensional
DMP are represented by coupling several dynamical systems

equations as in Eq. 1 with one shared phase variable s. For
an n-DOF arm for instance, an n-dimensional DMP can be
used to generate desired joint angle trajectories. In multi-
dimensional DMPs, each dimension has its own goal (g) and
shape (0) parameters.

B. Policy Improvement for Reinforcement Learning

The shape parameters 6 are commonly acquired through
imitation learning, i.e. a DMP is trained with an observed
trajectory through supervised learning [5]. The aim of policy
improvement methods is to tune the policy parameters € such
that they minimize a cost function. The imitated trajectory is
thus not the end result, but rather an initialization for further
improvement through learning. In this paper, we consider the
generic cost function

tN 1
J(Ti) = biy +/ (re + §0tTR0t) dt Traj. cost (5)
t

i

where J is the finite horizon cost over a trajectory 7, starting
at time ¢; and ending at time ty. This cost consists of a
terminal cost ¢;,, an immediate cost r;, and an immediate
control cost %0;{ RO;. This formulation of the cost function is
very generic indeed, as ¢, and r; may be chosen freely, and
must not be continuous or differentiable. The cost function
J 1is task-dependent, and provided by the user. Example
cost functions are given in the experiments in Section IV
through V.

Policy improvement methods minimize cost functions
through an iterative process of exploration and parameter
updating, which we explain using Fig. 3. Exploration is
done by executing a DMP K times, each time with slightly
different parameters 6 + €%, j., where €?, ;. is noise which is
added to explore the parameter space. This noise is sampled
from a Gaussian distribution with variance 3

1
iy =a(Blg—a) — @) +g (0+) (6
T ——

Shape exploration

These ‘noisy’ DMP parameters generate slightly different
movements [%; i, &1k, T.x), Which each lead to different
costs. Given the costs and noisy parameters of the X' DMP
executions, called frials, policy improvement methods then
update the parameter vector 6 such that it is expected to
generate movements that lead to lower costs in the future.
The process then continues with the new 6 as the basis for
exploration.

'Noisy' DMP .)

DMP parameters Trajectories Costs Updated
Parameters 4@?" parameters
ein’it 0 + € + a5, 1, T J grew
N 7 N / N / N /
Generate Execute Compute Parameter

€k=1...K DMPs cost-to-go update

Fig. 3. Generic loop of policy improvement algorithms.

C. PI? Algorithm

The most crucial part of the policy improvement loop
in Fig. 3 is the parameter update; it is here that the key
differences between PI? and other policy improvement meth-
ods lie. Rather than focussing on its derivation from first
principles of stochastic optimal control, which is presented
extensively in [18], we provide a post-hoc interpretation of
the resulting update rule. For an in-depth comparison with
related approaches, and a theoretical and empirical analysis
of the advantages of PI2, we also refer to [18].

PI? Shape Parameter Update Rule

N-1
S(Tik) =tk + D Te;ht
j=i
1 N=
5 Z (0 + My, k€ x)TR(0+Mtj7k€9tj1k) @)
M " & & @®)
kT T
tj tj;R 1gt]~
—38(Ti k)
e X B
P(rip) =——F—— 9
(74) S K [emxS(Ta) $2
K
00:, = Z [P (Ti’k) My, k eeti»k] (10)
k=1
_Zf\r:?)l(N — 1) Wj,t, [50%‘]]'
[66]; = =i : (11)
>imo Wit (N — 1)
0 <0+ 66 (12)

Fig. 4. PI? update rule:

Eq. 7 - Determine cost-to-go of each trial. Compute the cost-to-go
S(7;,,) at each time step ¢ and for each trial k. This is an evaluation
of the cost function J(7;) in Equation 5 , which is task-dependent and
provided by the user. The matrix M, & (Eq. 8) is needed to project the
exploration noise onto the parameter ﬂpace

Eq. 9 — Compute probability of each trial. Compute the probability
P (Ti,k) of each trial k£ at each time step ¢ by exponentiating the cost-
to-go. The intuition behind this step is that trajectories of lower cost should
have higher probabilities. This intuition also has a rigorous mathematical
representation through the exponentiation of the value function [18].

Eq. 10 — Average over trials. Compute the parameter update 06 for each
time step ¢ through probability weighted averaging over the exploration €?
of all K trials. Trajectories with higher probability, and thus lower cost,
therefore contribute more to the parameter update. Again, Mtj .k is needed
to project the exploration noise onto the parameter space.

Eq. 11 - Average over time-steps. In the final step, we average the
parameter update 66, per time step ¢ over all time steps. Each parameter
update is weighted according to the number of steps left in the trajectory.
This is to give earlier points in the trajectory higher weights, as they
influence a larger part of the trajectory. They are also weighted with the
activation of the corresponding basis function w; at time ¢;, as the influence
of parameter 6; is highest when wj is highest. Finally, the actual parameter
update is performed with Eq. 12.

IV. GOAL LEARNING WITH PI?

In this section, we explain how a simplified version of PI?
is used to not only update the shape parameters 6, but also the
goal parameters g. Learning the end-point of the movement
is a key aspect of learning motion primitives for grasping.

A. Simplification of PI?

In Eq. 8, we see that My, ; depends only on R, which
is constant, and g;,. When looking carefully at the basis
vector g;, in Eq. 2 one realizes that g;, depends only on
the phase variable s;, which is common for all sampled
trajectories. Thus the projection matrix can be pushed out
of the summation and Eq. 10 takes the form:

K

60:, =My, Z [P (Tik) eatwk] 13)

k=1

When the new parameters (6:, + 66;,) are used in the
policy (Eq. 1), they are multiplied by gtT Therefore we have

g, (01, +06:,) = (14)
=g/ 0. +g/ 00, (15)
K
=g0,00 +8 M,k Y [P(Tix) €%, 1] (16)
k=1
R’lgt. gr K
T T i t [?]
=elg, ‘S St P(r; . 17
g:,0¢, + 8¢, gtTinlgt,i kgl [(Tik)€ twk] (17)
=g/ 0. +gl 007" (18)

The term M,, thus drops, and the new update of the policy

is 607" = Zszl [P (i) €%, k). This is equivalent to
substituting M, = I in the previous version PI2. It should
be noted, however, that this simplification cannot be applied
in general, but rather it depends on how the parameter noise
e%k is generated, and which space is spanned by the basis
function g, .

B. Applying Simplified PI? Update Rule to Goal Learning

PI? can optimize multiple sets of parameters at the same
time [18]. To include goal learning, we add another differ-
ential equation to the DMP equations in form of:

1,
g =og(g+l —gi) (19)
T N——

Goal exploration

1, .
—&y = a(B(gr — x¢) — @) + g;jp(0+¢€ k) (20)
T N—_——

Shape exploration

The goal exploration noise €7 is drawn from a Gaussian with
variance X7 at the beginning of a trajectory and kept constant
throughout the roll-out. We assume that a4 is chosen so large
that, effectively, the goal state g; converges immediately to
g + €9;. In the goal parameter update rule in Eq. 21-23,
the cost-to-go at ¢ = 0 is used to compute the probability
P(70,). This means that we are using the total cost of the
trajectory. The motivation behind this is that as the effect
of g remains constant during execution, there is no temporal
dependency of g on the cost. Note that P(7) in Eq. 21 is
equivalent to Eq. 9, with ¢ = 0. Thus if shape parameters 6
are updated first, P(7o) is shared with the shape parameter
update, and this probability need not be computed again.

Probability weighted averaging (Eq. 22) and goal updating
(Eq. 23) are equivalent to the update rule for 6.

PI?> Goal Parameter Update Rule
e—%J(To,k)
ity e R To0)]

K

69 =2 [P (rox) €]

k=1
g +g+dg

P(tox) = Probability (21)

Weighted averaging (22)

Update (23)

By updating ¢ in a similar fashion to updating 6, several
important advantages are inherited from the PI? shape update
rule: e Discontinuous cost functions are not a problem, as
probability weighted averaging does not rely on computing
a gradient. e Due to the averaging, g + d¢g always lies within
the convex hull of ¢ = g + €. Thus, if the exploration is
safe (joint limits are respected, the robot does not collide with
itself or the environment), the new ¢ after updating will also
be safe. Since g and 0 are updated simultaneously using
the exact same costs and thus the same probability weights,
there is no negative interference between learning g and 6 2.

C. Example Via-point Task

In the next section, we will consider the main application
task — learning to grasp under uncertainty. In this section,
we first evaluate shape and goal learning in the context of
a simple 3D via-point task for illustration purposes. In this
task, the output [xq; ©q; Z4.] of the 3-dimensional DMP
represents the desired end-effector trajectory in Cartesian
space. The initial DMP is trained with a straight minimum-
jerk trajectory of 2 seconds, from the initial position xg
to the goal position g. The aim of this task is to learn to
move the end-effector through a via-point, whilst minimizing
the acceleration at the end-effector. We express this aim by
implementing the cost function in Eq. 5 as follows:

tN 1
Tunl(r) = [(C(0) + 10757 + 61RO, e
ti

24)
C(t) =6(t — 1.0)] x — [0.55 0.90 1.20]" | (25)

Here, C(t) is the distance to the via-point [0.55 0.90 1.20]
at t = 1.0. Furthermore, end-effector accelerations are
penalized at each time step with 107#(%;)? to avoid large
accelerations. The control cost matrix is R = 107°1.

2Note that shape parameters @ are usually kept fixed after having been
optimized with policy improvement methods, and the goal parameter g is
used to adapt the end-point of the motion to specific scenarios, for instance
to reach to different locations [5]. Therefore, it might seem counter-intuitive
to optimize g to a specific task context. But g is only specific to that context
if it is learned in a global frame of reference. In the case of object grasping,
g should be learned relative to the object, thus representing an offset to the
object (e.g. grasp Scm to the right of the object). Therefore, if the object
moves 20cm to the left for instance, so does g.

With this set-up, we perform three experiments: 1) learning
only shape 6, 2) learning only the goal g, 3) learning both.
For all these experiments, the number of trials per update is
K = 5. The exploration noise for shape is Eeg = 20.0v",
and for goals is 3, = 0.05v", where u is the number of
updates so far, and v = 0.7. Learning of 6 or g is easily
switched off by setting the respective exploration noise to 0.
The results are depicted in Fig. 5.

120

r

0© Initial fandg ——
Learn shape § ——
Learngoal g ——

@
3

Learnfandg ——

cost of test trial
3

IS
S

20

0 5 #updates 15 20 0.4 0.5 06 07 08
0 25 #trials 75 100 X (m)

Fig. 5. Results of the via-point experiment on the real robot. The left
graph depicts the learning curves, and the right graph initial and optimized
end-effector trajectories, projected onto the x, z-plane for clarity.

From these results, we draw the following conclusions:
e In all experiments, the robot quickly learns to go through
the via-point. The update after which the distance to the via-
point drops below 5Smm is indicated by a dot in the learning
curves. After these points, optimization is mainly concerned
with fine-tuning € to minimize the acceleration. e Learning
only @ (blue) — as is to be expected, the robot adapts the
shape of the motion so that the trajectory passes through the
via-point. As ¢ is not learned, the DMP converges to the
same goal position as before learning. e Learning only g
(green) — as the shape parameters of the straight trajectory
are not changed, the robot places the goal behind the via-
point, such that the trajectory passes through it. Since the
robot cannot change 8, it can also do little to minimize the
cost due to acceleration, and the final cost is much higher
than when learning 6. e Learning both 8 and g (red) — here
the robot has the best of both worlds. The goal and shape of
the movement are adapted such that the final cost is lower
than when optimizing them individually. Since learning is as
quick as in the first two experiments, there is apparently no
interference between learning 6 and g.

In summary, learning shape 6 and goal g simultaneously
with PI? is as quick as learning shape @ alone, but leads to
lower costs in this task.

V. APPLICATION DOMAIN —
GRASPING UNDER UNCERTAINTY

In Section II, we discussed three strategies to dealing
with object position uncertainty: 1) generate a robust motion
plan; 2) actively reduce the uncertainty; 3) use reactive con-
trol. In recent bio-physical experiments, Christopoulos and
Schrater [2] demonstrate that humans use a fourth strategy

to deal with position uncertainty. In their experimental set-
up, subjects perceived an object to be at a certain position,
but the actual position (which was hidden from the subject)
when grasping the object was sampled from a Gaussian dis-
tribution. This environmentally induced position uncertainty
artificially increases the uncertainty in the object’s position.
It was shown that over time, humans adapt their reaching
motion and grasp to the shape of the uncertainty distribution,
and that these adaptations lead to significantly better force-
closure performance. Thus, rather than optimizing force-
closure for the expected object position, humans learn one
motion that optimizes the average force-closure over all
positions in the distribution.

In this paper, we apply this experimental paradigm to
robotics, by formulating it as a reinforcement learning prob-
lem. We do so by inducing position uncertainty during
learning, and penalizing failed grasps with a cost. Since the
resulting motion primitive has been trained off-line to deal
with uncertainty that we have induced, it is more robust to
state estimation uncertainty on-line during task execution.

Our approach of learning robust motion primitives may
well be combined with methods that actively reduce un-
certainty [3], or use reactive control based on sensor feed-
back [4], [12]. In fact, we believe that learning motions
that have an intrinsic capability to deal with uncertainty is
one of many approaches, albeit an important one, which are
necessary to achieve truly robust robotic manipulation.

A. Initialization of the Motion Primitive for Grasping

The task is to grasp a plastic bottle with a radius of 5cm, as
depicted in Fig. 1. The Dynamic Movement Primitive we use
for this task has 11 dimensions; 3 to represent the position
of the end-effector, 4 for its quaternion orientation, and 4 for
the joint angles of the hand. The initial grasp is demonstrated
to the robot, which constitutes the goal g which is optimized
with PIZ.

Then, the shape of the DMP is initialized with two
minimum jerk trajectories. One moves the hand from the
initial pose to the final demonstrated pose in 3s. The second
sub-motion closes the gripper in 1ls. These trajectories are
represented with @, which is also optimized with PI?. Fig. 6
illustrates these trajectories. The video attachment also shows
the initial movement before learning.

B. Formulation as a Reinforcement Learning Problem

The cost function for this task is

tN 1
T (Ti) = by +/ (1077 (%)% + 59?1{@) dt (26)
t

i

¢t = 100(1 — success of lifting) (27)

where R = 10751 The terminal cost ¢, reflects if the robot
successfully grasped and lifted the object, and is determined
during the Is lifting motion after executing the DMP. The
‘success of lifting’ is determined by measuring the time (0s-
1s) each finger was in contact with the object, and averaging
over the 3 fingers. For instance, if all three fingers were in

Time Os 3s 4s 5s

State
Action
7-D end-
eff. pose

4-D hand
posture

initial state preshape grasp evaluate

reach | close | ift

DMP 6

Implementation

9

Fig. 6. Grasp procedure used in this section. The DMP generates desired
trajectories for the 7-D end-effector pose (3-D position and 4-D quaternion
orientation) and 4 joint angles of the hand, from the initial state xg to the
grasp posture g. The shape of this reaching movement is determined by 6.
The whole movement takes 4 seconds. After grasping, the robot lifts the
object, after which the grasp is evaluated.

contact with the objects throughout the lifting motion, the
cost is ¢, = 100(1 — 1) = 0, if the object was knocked
over and not lifted at all ¢;, = 100(1 — 0) = 100, and if
only two fingers were in contact and the object dropped out
after 0.4s, ¢¢,, = 100(1 — avg(0.4 + 0.4 4+ 0.0)) = 73.3. A
finger is deemed to be in contact with the object if the value
of the strain gauge of the finger exceeds a certain threshold.

The exploration noise for shape is 3 g = 3.0, 15.0 and
30.0 for the position, quaternion orientation and finger joint
angles respectively. For the goals X, = 0.03, 0.07, 0.03
respectively. Again, all exploration decays with v*, where
u is the number of updates so far, and v = 0.85.

C. Environmentally Induced Position Uncertainty

In this paper, we use two uncertainty distributions for the
object position. The object is placed {-6,-4,0,4,6} centimeters
from the perceived object position along either the x or y-
axis. The 5 positions along the z-axis are depicted in Fig. 1.
These distributions are intended to represent the p + 20
intervals for ¢ = {2cm, 3cm}; typical values for our state
estimation module. The ‘perceived’ object position is made
known to the robot, but not the actual possibly displaced
position, allowing us to control the amount of uncertainty
as in [2]. The robot must thus learn a motion that not only
successfully grasps the object at the expected position, but
also at the other positions in the distribution.

During learning, the robot executes the same exploratory
motion for each of the 5 object positions. The cost for this
exploratory motion is than the average of these 5 trials. We
thus use the expected cost of an exploratory motion. For
instance, if the robot successfully grasped 3 out of 5 objects,
the cost for failed grasping for this exploratory motion is
(0+0+0+100+100)/5=40. For each PI? update, we perform
10 new trials to compute the expected cost for 2 exploratory
motions. To accelerate learning, we also reuse the 10 best
trials from the previous update, as described in [16].

D. Results

For each of the two uncertainty distributions (5 positions
aligned with either the x or y-axis), 3 learning sessions were
performed with 10 updates per session. Fig. 7 depicts the
learning curves for these 6 learning sessions. The variation

between learning session is rather large in the beginning.
But after 7 updates (80 trials), all motions lead to successful
grasping and lifting of objects at all the positions, although
one session ends with the robot lifting the object rather
precariously with only two fingers. The command costs and
costs due to acceleration increase, to enable the movement
that more successfully grasps the objects.

50 —
\

— Mean = Total cost

45

Mean = standard deviation
Indiviual learning sessions

Command cost
——— Acceleration cost

40

Cost due to failed liting

35

30

25

20

trajectory cost of test trial

4 #updates 6 8 10 0
50 drials 70 90 10 0 30

4 #updates 6 8 10
50 d#trials 70 % 110

Fig. 7. Learning curves of the grasping under uncertainty experiments.
Left: Learning curves of the individual learning sessions and their mean.
Right: Mean learning curves, split into the different cost components that
constitute the total cost.

Initially before learning, the average cost over both uncer-
tainty distributions is 42, and after learning it is 4 (averaged
over the 6 learned movements). To analyze the importance
of learning shape and goal, we executed the learned shape
with the initial goal and vice versa. When the goal g is set
to the initial value, but the learned Os are used, the average
cost is 32. When the learned goals g are used, but the initial
0, the average cost is 56. Learning both goal and shape
adaptation is thus essential in achieving the low cost of 4,
which corresponds to always successfully lifting the object.

-0.02
Uncertainty in object position parallel to N y-axis %

O xaxis

-0.03

E
;,5_, (N = PI2 updates)
8
5 004 -
2 02,
3 RS
© . N
& -0.05 %,
A X,
2 (% AN
B \ K IS
o -0.06 °% q
= %y

Yoy,

o

-0.07

-0.08
-0.01 0.00 0.01 0.02 0.03 0.04 0.05

x relative to perceived object (m)

Fig. 8. The location of the goals g during learning after 0. .. 10 updates,
averaged over 3 learning sessions per uncertainty distribution. The trajecto-
ries towards the goal before (update=0) and after learning (update=10) are
depicted as well. The standard deviation in the goal location after learning
(update=10) over the 3 learning session is depicted as a circle around the
final location.

To analyze the learned movements, Fig. 8 depicts how the
location of the goals change during learning. Here, the mode
of the object distribution is at (0,0). The goals are adapted
in different directions, depending on the orientation of the

uncertainty in object position. In both cases, they move closer
to the objects to reach far enough to grasp the furthest ones
in the distribution.

Because not all adaptations are consistent across all move-
ments, we highlight some features of the specific motion
shown in the video attachment in Fig. 9. It depicts the desired
postures of the hand before and after a learning session where
the object uncertainty distribution is aligned along the y axis.

After learning
1.1

Q

D SA \ N/

061 3/5 objects lifted 061 5/5 objects lifted

0.4 05 06 07 08 09 0.4 05
x x

9

Fig. 9. Hand posture during the motion of one of the learning sessions,
before and after learning. Larger graphs depict the reaching motion for [0s-
2.8s] and smaller insets the closing of the gripper [2.8s-4s]. Before and after
learning, the fingers of the hand close symmetrically. But after learning, the
tip of the left finger moves less than the right finger (see arrows). This
is because the hand is pivoting around a point near the left finger (see
circle with arrow). In essence, the hand is wrapping around the object,
thus avoiding collisions. The S-curve motion during reaching is seemingly
a preparation for this pivoting. As this leads to a higher success rate, and
thus is an adaptation to the uncertainty in the object position.

In summary, PI? is able to adapt the shape and goal
of motion primitives so that they are robust towards state
estimation uncertainty in the position of the object to be
grasped.

VI. CONCLUSION

In this paper we have derived a simplified version of the
PI? algorithm, and adapted it to learn goal parameters of
motion primitives. Learning goal parameters is especially
useful for manipulation tasks, where the goal represents a
grasp, which must be carefully adapted to the (uncertainty in
the position of the) object.

In our previous work, we have demonstrated that learned
movements generalize well to different object positions on
the table [17]. For instance, a motion primitive optimized to
grasp an object at one perceived position was able to suc-
cessfully grasp all perceived objects (with the same position
uncertainty distribution) within a 40x30cm area. We also
demonstrated that robust motion primitives can be learned
for more complex non-convex objects. We expect these
generalization properties to also hold when goal parameters
are learned, and we are continuing our empirical evaluations
to verify this.

APPENDIX

The robotic platform used in this paper is depicted in Fig. 1, and
consists of a 7-DOF Barret WAM arm with a three-fingered 4-DOF
Barret BH280 hand. Low-level control and physical simulations of
the robot are done with the SL software package [15], and high-level

communications with the Robot Operating System www . ros.org.
Desired task-space position/orientation trajectories are converted
into joint space using the Jacobian pseudo-inverse. The resulting
joint velocities are integrated and differentiated, to get joint posi-
tions and accelerations respectively. Feed-forward inverse dynamics
torques for the arm are obtained from a recursive Newton Euler
algorithm. Feed-back joint torques are obtained from low-gain joint
PD controllers. All our controllers run at a rate of 300Hz on a host
computer running the Xenomai real-time operating system.

REFERENCES

[1] Dmitry Berenson, Siddhartha S. Srinivasa, and James J. Kuffner.
Addressing pose uncertainty in manipulation planning using task space
regions. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS, 2009.

[2] V.N. Christopoulos and Paul R. Schrater. Grasping objects with
environmentally induced position uncertainty. PLOS Computational
Biology, 5(10), 2009.

[3] K. Hsiao, L. Kaelbling, and T. Lozano-Perez. Task-driven tactile ex-
ploration. In Proceedings of Robotics: Science and Systems, Zaragoza,
Spain, June 2010.

[4] Kaijen Hsiao, Sachin Chitta, Matei Ciocarlie, and E. Gil Jones.
Contact-reactive grasping of objects with partial shape information. In
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2010.

[5]1 A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with
nonlinear dynamical systems in humanoid robots. In Proceedings
of the IEEE International Conference on Robotics and Automation
(ICRA), 2002.

[6] J. Kober, E. Oztop, and J. Peters. Reinforcement learning to adjust
robot movements to new situations. In Proceedings of Robotics:
Science and Systems, Zaragoza, Spain, June 2010.

[7]1 P. Kormushev, S. Calinon, and D. G. Caldwell. Robot motor skill co-
ordination with EM-based reinforcement learning. In Proc. IEEE/RSJ
Intl Conf. on Intelligent Robots and Systems (IROS), Taipei, Taiwan,
October 2010.

[8] P. Kormushev, S. Calinon, R. Saegusa, and G. Metta. Learning the
skill of archery by a humanoid robot icub. In Proc. IEEE Intl Conf.
on Humanoid Robots (Humanoids), Nashville, TN, USA, December
2010.

[9] O. Kroemer, R. Detry, J. Piater, and J. Peters. Combining active learn-
ing and reactive control for robot grasping. Robotics and Autonomous
Systems, 58(9):1105-1116, 2010.

[10] A. Morales, E. Chinellato, A. H. Fagg, and A. P. del Pobil. Using
experience for assessing grasp reliability. International Journal of
Humanoid Robotics, 1(4):671-691, 2004.

[11] B. Nemec, M. Tamosiunaite, F. Worgoter, and A. Ude. Task adap-
tation thorough exploration and action sequencing. In 9th IEEE-RAS
International Conference on Humanoid Robots, 2009.

[12] P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal. Online move-
ment adaptation based on previous sensor experiences. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), San Francisco, USA, 2011.

[13] J. Peters. Machine learning of motor skills for robotics. PhD thesis,
Department of Computer Science, 2007.

[14] R.Y. Rubinstein and D.P. Kroese. The Cross-Entropy Method: A
Unified Approach to Combinatorial Optimization, Monte-Carlo Simu-
lation, and Machine Learning. Springer-Verlag, 2004.

[15] Stefan Schaal. The SL simulation and real-time control software
package. Technical report, University of Southern California, 2009.

[16] Freek Stulp, Jonas Buchli, Evangelos Theodorou, and Stefan Schaal.
Reinforcement learning of full-body humanoid motor skills. In 70th
IEEE-RAS International Conference on Humanoid Robots, 2010. Best
paper finalist.

[17] Freek Stulp, Evangelos Theodorou, Jonas Buchli, and Stefan Schaal.
Learning to grasp under uncertainty. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2011.

[18] E. Theodorou, J. Buchli, and S. Schaal. A generalized path integral
approach to reinforcement learning. Journal of Machine Learning
Research, 11(Nov):3137-3181, 2010.

