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Abstract— We present an approach that enables robots to
learn motion primitives that are robust towards state estimation
uncertainties. During reaching and preshaping, the robot learns
to use fine manipulation strategies to maneuver the object into
a pose at which closing the hand to perform the grasp is more
likely to succeed. In contrast, common assumptions in grasp
planning and motion planning for reaching are that these tasks
can be performed independently, and that the robot has perfect
knowledge of the pose of the objects in the environment.

We implement our approach using Dynamic Movement
Primitives and the probabilistic model-free reinforcement learn-
ing algorithm Policy Improvement with Path Integrals (PI2 ).
The cost function that PI2 optimizes is a simple boolean that
penalizes failed grasps. The key to acquiring robust motion
primitives is to sample the actual pose of the object from a
distribution that represents the state estimation uncertainty.
During learning, the robot will thus optimize the chance of
grasping an object from this distribution, rather than at one
specific pose.

In our empirical evaluation, we demonstrate how the motion
primitives become more robust when grasping simple cylindri-
cal objects, as well as more complex, non-convex objects. We
also investigate how well the learned motion primitives gener-
alize towards new object positions and other state estimation
uncertainty distributions.

I. INTRODUCTION

In force-closure analysis and motion planning for grasp-
ing, the object and its pose are often assumed to be known
accurately [18], [3]. However, as Zheng and Qian [18] argue,
“friction uncertainty and contact position uncertainty may
have a disastrous effect on the closure properties of grasps.”.
Effective grasps also depend on the kinematic structure of the
hand, and the movement of the hand towards the grasp, i.e.
hand preshaping [1]. That theoretically successful grasps and
motion plans for reaching need not necessarily be successful
in practice has been demonstrated empirically [13], [3]. The
aim of this paper is to address these issues by model-
free learning of motion primitives for integrated reaching,
preshaping and grasping, and which have intrinsic robustness
towards state estimation uncertainty.

That this is feasible in principle has been shown in recent
psychophysics experiments. Christopoulos and Schrater [5]
demonstrate that humans adapt their grasp trajectories to
directional uncertainty in the position of the object to be
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grasped. It is also shown that these adaptations (changes
in approach direction and maximum grip aperture) lead to
significantly better force-closure performance. As depicted
in Fig. 1, the problem humans face here is to execute a
movement that is likely to be successful for all of the possible
positions the cylinder might have.

Fig. 1. Humans are able to generate grasping trajectories that are adapted
to the direction of the state estimation uncertainty, which leads to better
force-closure performance [5] (image reproduced with permission of the
authors). The aim in this paper is to achieve similar adaptations in robots
through reinforcement learning.

In this paper, we use a similar experimental methodology
to that proposed in [5], to acquire movement primitives for
a robotic manipulator. These primitives are implemented as
Dynamic Movement Primitives (DMPs) [9]. First, a DMP is
initialized with a preshape and grasp posture as determined
by the open-source grasp planner GRASPIT! [12]. This DMP
is then optimized for successful grasping with model-free
probabilistic reinforcement learning, where the cost function
is a boolean that specifies whether the grasp was successful
or not.

The key to acquiring DMPs that are robust to state estima-
tion uncertainty is to randomly sample the actual object pose
from a probability distribution that represents a model of the
uncertainty in the object’s pose. Christopoulos and Schrater
call this environmentally induced position uncertainty [5].
The robot is thus not learning to grasp the object at one
position, but rather optimizes the probability of grasping
the object at any of the possible positions given by the
distribution.

This approach yields a very challenging reinforcement
learning (RL) problem, because: 1) the problem space is
continuous and high-dimensional; 2) the terminal reward is
boolean, and hence not very informative; 3) the actual and
observed location vary randomly during learning, so the same
grasp might sometimes succeed and sometimes fail, which
leads to a noisy reward signal; 4) the reaching trajectory
and actual grasp are not independent, and must be optimized
simultaneously. Only recently have RL methods scaled up to



tasks of this complexity, and we show that our state-of-the-
art reinforcement learning algorithm (Policy Improvement
with Path Integrals – PI2 [17]) is able to learn robust grasp
trajectories in a reasonable number of exploration trials.

The resulting motion primitive does not explicitly reason
about state estimation uncertainties on-line; these uncertain-
ties are rather compiled implicitly into the motion primitive
during learning. Therefore we call such motion primitives
intrinsically robust to state estimation uncertainty. That this
robustness indeed leads to better performance, the ultimate
goal of this work, is verified in an empirical evaluation.

The rest of this paper is structured as follows. In the
next section, we discuss related work. After summarizing
our reinforcement learning algorithm PI2 in Section III, we
demonstrate how it is used to learn intrinsically robust mo-
tion primitives in Section IV. After presenting the empirical
evaluation in Section V, we conclude with Section VI.

II. RELATED WORK

In the experiments by Christopoulos and Schrater [5],
human subjects were required to grasp a cylindrical object.
Successful grasping is defined as being able to lift the object.
The cylinder is visible initially, but occluded during the
actual reaching movement. During occlusion, the cylinder
is moved (with a robot) to a random position sampled
from a 2D Gaussian distribution. This is the environmentally
induced position uncertainty. Before reaching, the cylinder
is moved to 5 random positions from the same distributions,
allowing subjects to build a model of the distribution. The
variation along the major axis of the covariance matrix is
almost 50 times that of the minor axis, and the direction of
the major axis is rotated over different trials. It is shown
that humans adapt to the state estimation uncertainty by
changing their angle of approach, and increasing their grip
aperture. On average, this leads to better force-closure of the
grip. The approach presented in this paper is similar to the
experimental protocol of Christopoulos and Schrater [5], but
here the learner is a robot rather than a human. For the robot,
we see very similar adaptations, which increase the chance
of a successful grasp.

In compliant or fine motion planning [11], mechanical
compliance, .i.e. contact between the manipulator and object,
is used to reduce uncertainty. Using this approach, it has been
shown that a parts feeder with a parallel-jaw gripper is able
to manipulate polygonal objects into a specific orientation
without any sensing [6]. Lozano et al. [11] introduced the
concept of a preimage, a region in configuration space
in which a certain motion command guarantees that goal
will be achieved. Using preimage backchaining, the same
guarantees can be made for a sequence of commands, even
under pose and action uncertainty. However, subsequent
work demonstrated that this approach has prohibitive com-
putational cost [4]. In contrast to fine motion planning, our
approach 1) is model-free; 2) has negligible computational
cost on-line; 3) uses one motion primitive instead of a
sequence of actions; 4) considers manipulators with higher
kinematic complexity. In essence, fine motion planning is not

an explicit goal of our approach; the robot simply learns that
fine motion planning is required to solve the task.

Planning with Partially Observable Markov Decision Pro-
cesses (POMDPs) is an example of reasoning on-line about
the effects of uncertainty in state on the outcome of an action.
POMDPs have been used to determine when and which ex-
ploratory actions are required to reduce the uncertainty about
the object and its pose to levels that allow for grasping [8].
Note that our methods do not preclude exploratory actions,
or reasoning about state estimation uncertainty during task
execution. As we shall see in Section V-D, failure rates
after learning might still be too high if the level of state
estimation uncertainty is high, simply because no trajectory
that grasps all position in the distribution exist. In these cases,
a robot would be wiser to perform an exploratory action to
reduce uncertainty, rather than execute a motion primitive
with a 20% chance of failing. But whether used in an active
perception or high-level planning context, we believe it is
always preferable to use a motion primitive that has been
trained to deal with state estimation uncertainty, rather than
one that has not.

Planning for manipulation tasks commonly assumes that
the robot has perfect knowledge of the geometry and pose of
the objects [3]. However, theoretically successful grasps and
motion plans must not necessarily be successful in practice,
as has been demonstrated empirically [13], [3]. Berenson et
al. address these problems by generating a motion plan that is
consistent with all object pose hypothesis [3]. This has very
high computational cost, and requires an accurate model. Our
approach rather replays from memory a motion that has been
optimized off-line w.r.t. state estimation uncertainty.

III. POLICY IMPROVEMENT WITH PATH INTEGRALS - PI2

Dynamic Movement Primitives (DMPs) are a flexible
representation for motion primitives [9], which consist of
a set of dynamic system equations that generate goal-
directed movements. In the context of this paper, two DMP
parameters are important: 1) the weights θ, which determine
the shape of the movement, e.g. the end-effector trajectory
[q̈t, q̇t, qt] over time; 2) the goal g, which determines the final
destination of the movement qt=tfinal

, e.g. the position of an
end-effector at the end of the movement.

In this paper, the aim is to determine the parameters θ
that lead to end-effector and hand posture movements that
are most robust to state estimation uncertainty. To do, so we
use PI2 , our model-free probabilistic reinforcement learning
algorithm, which is derived from first principles of stochastic
optimal control [17]. PI2 optimizes the DMP parameters θ
w.r.t. a cost function. As depicted in Fig. 2, it does so by
executing a DMP K times, each time with slightly different
parameters θ+ε, where ε is Gaussian noise which is added to
explore the parameter space. These ‘noisy’ DMP parameters
generate slightly different movements [q̈kt , q̇

k
t , q

k
t ], which

each lead to different costs Sk
t . Given the costs and noisy

parameters of the K DMP executions, called roll-outs, PI2

then updates the parameter vector θ such that it is expected
to generate movements that lead to lower costs in the future.
After an update, the DMP is evaluated by executing it with



the new θnew, without noise, i.e. ε = 0. The process
then continues with the new θ as the basis for exploration.
This generic loop is similar to other reinforcement learning
algorithms [14]. PI2 achieves its superior performance in the
parameter update step, which is derived in full in [17].

Fig. 2. Overview of the PI2 algorithm.

Detailed descriptions of DMPs and PI2 are found in [9]
and [17] respectively. Open-source implementations of
DMPs and PI2 are available at:

http://www-clmc.usc.edu/Resources/Software

IV. ACQUIRING INTRINSICALLY ROBUST MOTION
PRIMITIVES WITH (ENVIRONMENTALLY INDUCED)

POSITION UNCERTAINTY

In this section, we describe how PI2 is used to learn
intrinsically robust motion primitives.

Initialization of the DMP. First, we determine the best
grasp and preshape posture of the hand with GRASPIT!,
an open-source grasp planner that searches for good grasps
by optimizing quality measures based on grasp wrench
space [12]. Then, we generate a minimum-jerk trajectory
that consists of two parts. 1) Reaching: Move the end-
effector from its initial pose to the preshape pose, which
is a 6D trajectory representing position and orientation
of the end-effector. During this end-effector movement,
the hand posture is the preshape posture determined by
GRASPIT! 2) Grasping: Move the hand posture from the
preshape to the final grasp, represented as a n-dimensional
minimum-jerk trajectory in the n-dimensional joint space of
the hand. In this second part, the end-effector pose is kept
constant. Finally, a 6+n-dimensional DMP is trained with
this trajectory, as described in [9].

In simulation, provide the probability distribution for
the state estimation uncertainty in the object pose. State-
of-the-art sensors for robots, such as cameras, laser-scanners,
and sonar sensors, are continuously improving in terms of fi-
delity and cost. However, these sensors are never perfect, and
the algorithms that operate on them are only able to localize
objects within some hypothetical probability distribution of
pose estimates. When applied in simulation, the approach we
present here mimics these imperfections by sampling object
poses from a model of the probability distribution for a given
robot. We thus induce position uncertainty. In principle, any
(multi-modal) distribution can be used, but in this paper we
use a 2D Gaussian, as in [5]. We assume that the z-coordinate
of the object is fixed, as it stands on a table of known height.

When learning on a real robot, there is no need to specify
a distribution, as position uncertainty must not be induced,
but arises ‘for free’ from the robot’s state estimation. Note
that the learning algorithm does not require a model of the

state estimation uncertainty. In fact, it is not even aware that
state estimation uncertainty exists at all. It simply performs
exploratory manipulation actions, observes the result, and
adapts future behavior to optimize the cost function. So
on the real robot, instead of adapting to a model of the
robot’s uncertainty, PI2 adapts the reaching and grasping
trajectories to the actual state estimation uncertainty, and the
stochasticity in the motor system.

Reinforcement Learning. During learning, the robot al-
ways assumes the object is at the mode of the probability
distribution representing the position of the object. But the
actual positions of the objects with which the movement is
executed are sampled randomly from the distribution for each
of the K roll-outs during exploration. The cost function for
PI2 is simple: 0 cost if the objects is grasped successfully,
1 if it is not. A grasp is deemed successful if the relative
position of the object to the gripper is within 3mm of the
relative position determined by GRASPIT! This implies that
the actual grasp that GRASPIT! computed is achieved.

Evaluation. The object positions for evaluation are sam-
pled from the same distribution as the training positions.
Instead of resampling the evaluation positions after each
update, we rather sample them once for an entire learning
session. This means fluctuations in the learning curve are
really due to learning, and not due to random changes in the
evaluation positions.

V. EMPIRICAL EVALUATION

The experiments described in this paper are performed in
simulation, with a Barret arm (7DOF) and hand (4DOF),
as depicted in Fig. 1. The robot is modeled in the SL
simulator [15], which accurately models robot dynamics, and
robot-object contacts. We have integrated the Open Dynam-
ics Engine [16] in SL, to accurately model the dynamics of
objects, and object-object contacts.

A. Grasping cylindrical objects
For the first set of evaluations, we use a cylindrical object.

The simplicity of this shape makes it feasible to interpret
features of the resulting movement primitives. We also chose
a cylindrical object to be able to compare our results to
similar experiments in psychophysics [5]. The best grasp for
this object (as determined by GRASPIT!) that satisfies the
constraints given by the table and robot arm kinematics is a
straightforward power grasp at the center of the cylinder.

In this paper, the state estimation uncertainty in object
position is modelled as a 2D Gaussian, where the standard
deviation along the two main axes are 5cm and 0.5cm, unless
stated otherwise. A standard deviation of 5cm to model the
state estimation uncertainty in object position is also used
in [8]. Learning was performed for 4 distributions, where the
main axis of the 2D Gaussian is rotated along the vertical z-
axis. In the remainder of this paper, we will refer to the
‘rotation/orientation along the z-axis of the main axis of
the distribution of objects’ simply as α for brevity. The 4
distributions are visualized in Fig. 3/4, where the gray circle
represents the cylinder at position µ, and the colorful star-
shaped figure the µ+ σ of the 4 different distributions with
α = {0, π4 ,

π
2 ,

3π
4 }.



The number of roll-outs per PI2 updates is K = 20, i.e. the
DMP is executed 20 times with varying parameters θ+ ε for
every PI2 update. The initial variance of the exploration noise
ε is chosen such that the average maximum mean absolute
error along the three Cartesian end-effector coordinates is
1.4cm, along the orientation of the end-effector is 0.5◦, and
along the joint angles of the hand 6.4◦. This means, for
instance, that the maximum deviation from the noise-less
trajectory along the x-coordinate of the movement is 1.4cm,
averaged over all exploration trials.

B. Learning curves and analysis of the resulting motions
The learning curves for these four different orientations

are depicted in Fig. 3. The initial success rate over the 20
evaluation trials lies between 0.85 and 0.75, so approximately
1 out of 5 grasps fails. Within 25 PI2 updates, corresponding
to 500 roll-outs, the success rate is increased to 1.0 for all
object distributions. PI2 is learning motion primitives that
are able to grasp all the 20 objects in the evaluation set, and
thus becoming intrinsically robust towards state estimation
uncertainty.

Fig. 3. Learning curves for the 4 orientations of the object distributions
(α). Their average is the thick dashed graph.

Adaptation in end-effector pose. Fig. 4A depicts the
trajectory of the end-effector position for each of the object
distributions. As can be seen, the position of the end-
effector at t = T/2 (i.e. when the end-effector motion stops
and the hand closes) is adapted to the object distribution.
In most cases, the end-effector moves beyond the initial
position, such that it comes into contact with the object, and
pushes it forward on the table before grasping it. By moving
further, the robot is able to grasp objects that are farther
away, whilst closer objects are pushed into place before
grasping. Essentially, the robot is learning to use exploit
physical contact with the object to increase the chance of
successfully manipulating it. It is thus learning to perform
fine manipulation without a model.

In Fig. 4B, the orientation of object distribution is plotted
against the orientation of the end-effector in the x, y-plane
at t = T/2. Although the effect is minor (the end-effector
orientation ranges from 1.64 to 1.68 rad, which is just 2◦)
there is a strong and significant correlation between them
(R = 0.998, p = 0.002), which indicates adaptation.

A more substantial effect is seen when considering the po-
sition of the end-effector relative to its initial position before
learning. In Fig. 4C, a line through each of the preshape
position of the end-effector of the learned trajectories is
drawn through the preshape position of the initial trajectory.
The orientations of these lines correlates strongly with the

orientation of the distribution (R = 0.992, p = 0.008) This
means that there is structure in the adaptation of the end-
effector position: it is a 1-dimensional translation relative to
the initial position along an axis rotated by α.

Fig. 4. A) End-effector trajectories near the object for different object
distributions. Trajectories are plotted in the x, y-plane up to t = T/2. The
position of the end-effector at t = T/2 is depicted by big dot. Colors of the
covariance matrices representing the object distributions correspond to the
colors of the trajectories. The initial trajectory before learning is black. B)
Correlation between orientation of the main axis of the covariance matrix
of the object distribution and the end-effector orientation... C) and relative
orientation of the end-effector position to the initial position.

Adaptation in hand posture. In Fig. 5, the posture of
the hand over time is depicted. The upper graph depicts
the finger span (i.e. the distance between the fingers) for
the 4 learned trajectories. In comparison to the hand posture
before learning as determined by GRASPIT!, the maximum
grip span increases for all trajectories. On average it is 31%
more. By opening up the gripper, the robot is less likely to
collide with the object during the approach. This might seem
like an obvious improvement over the preshape provided by
GRASPIT! Nevertheless, that is only because we know from
experience that it is better to be safe than sorry when we do
not know the exact position of an object. Any method (e.g. a
grasp or motion planner) that does not take state estimation
uncertainty or possible inaccuracies of models into account
does not have this experience, and has no reason to prefer
a more open gripper over one that moves very closely past
the object.

The lower graph in Fig. 5 depicts the three learned
joint angles of the fingers, averaged over all object dis-
tributions. The initial minimum-jerk trajectories (which are
hardly discernible from each other because all fingers close
simultaneously) are again depicted as black lines. From these
graphs, it is clear that the fingers open up more, which
we already knew from analyzing the increased maximum
finger span in the upper graph. More interestingly, the right
finger of the hand (i.e. the one that grasps the cylinder at a
higher position) opens more than the left finger. This effect
happens throughout almost the entire movement, but is only
significant (t-test, p < 0.05) around t = 2.0s as indicated by
the thicker lines.

We verified the adaptive value of this difference on another
100 object positions, randomly sampled from the distribution
with α = π

4 . With the learned movement for this distribution,



Fig. 5. Above: The finger span over time for each trajectory. Below: The
joint angles trajectories of the three fingers, averaged over the 4 trajectories.

3 objects were not grasped successfully. We then used the
joint trajectory of the left finger for both left/right fingers, in
which case 10 objects were not grasped successfully. When
setting both fingers to the trajectory of the right finger, this
number is 7. So not only is the difference in joint angles
between the left and right finger significant at t = 2.0, it also
has adaptive value, as they exchanging them (in an otherwise
symmetric hand) leads to lower performance.

The reason this is is that the right ‘upper’ finger grasps the
cylinder just above its center of gravity, and the left ‘lower’
finger just below. Therefore, when coming into contact with
the object, the upper finger is more likely to knock over
the object, whereas the lower finger is more likely to shove
it into a graspable position through fine manipulation. For
this reason, the left finger on average opens up more than
the right finger, to avoid premature contact with the object.
So around the t = 2.0s mark, the lower finger first pushes
the object inwards towards the gripper, after which the
upper finger closes in afterwards to complete the grasp. This
strategy had not occurred to us before seeing the results of
learning, and demonstrates that even very subtle movements
in preshaping and grasping may contribute to successful
manipulation. We believe that experience-based learning is
the key to discovering such strategies.

C. Generalization to different positions
DMPs represent an attractor landscape towards a goal state

g. By changing g, the attractor landscape changes, and the
DMP is able to generalize to different goal states than the one
with which it was trained [9]. In this experiment, we change
the position of the cylinder on the table, and give this as
the goal state g to the DMP. Note that only two values in
g are changed; those relating to the x, y coordinates of the
novel goal state. The main question we seek to answer here
is: do the trajectories of the other dimensions in the DMP
(i.e. those representing the orientation of the end-effector
and the joint angles of the hand) also generalize to these
different positions? To this end, we ran 20 evaluation trials

with random object positions for α = 0.0 at these different
positions, and measured the success rate at each position.
The results are depicted in Fig. 6. For good measure, the
trajectory before learning is also evaluated for all positions.

Fig. 6. Left: Generalization of the learned trajectory to new object positions
for α = 0.0. Right: Similar, for the initial trajectory before learning. The
pie charts and the numbers represent the number of failed grasps out of 20.
The positions in the upper left corner have not been tested, as they lead
to an immediate collision with the end-effector. The lower positions are
outside of the workspace of the robot. Positions for which the success rate
>= 0.95 have been marked by a gray background.

The ability to grasp successfully in the face of state
estimation uncertainty generalizes to quite a large area of
approximately 0.4m×0.3m, i.e. the number of failed grasps
in the gray area in Fig. 6 is only 3 out of 260. The
generalization is not good when the x or y coordinate of
the position of the object is close to x or y coordinate of
the initial position of the end-effector respectively. For these
positions, a strategy that actively goes around the object is
required.

The trajectory before learning only achieves a success
rate of higher than 0.9 at one position. At this position, the
movement of the end-effector towards the goal is exactly
aligned with α. At positions where the learned trajectory
does not perform well, the initial trajectory achieves similar
or slightly better performance.

D. Generalization to different distributions

In a following experiment, the standard deviation is the
same for both axes, but varied in magnitude, i.e. a circular
distribution with standard deviations of 0.5, 1.0 and 5.0cm.
The bold diagonal in Table I summarizes the results of
learning after 30 updates.

Note that a standard deviation of 5cm in both direc-
tions is quite substantial, and it is not possible to learn
a motion primitive that is sufficiently robust towards this
level of uncertainty. The success rate does not go above
0.8, even when running 100 updates. This however, is not
a shortcoming of our learning algorithm. It is simply not
possible to successfully grasp all objects at the positions
in the evaluation set with this manipulator in one motion.
Essentially, the success rate of 0.8 gives us an indication of
the best the robot can do, given the large amount of variance
in the object’s position.

We then used the three learned motion primitives, and
cross-evaluated them on the other distributions. The off-
diagonal values in Table I represent the success rates of
these experiments. These values show that learning with
high variance in object position generalizes well to low



σtest
0.5cm 1.0cm 5.0cm

0.5cm 1.00 0.95 0.40
σtrain 1.0cm 1.00 ← 1.00 0.60

5.0cm 1.00 ← 1.00 ← 0.80

TABLE I
SUCCESS RATES WHEN TRAINING WITH A CERTAIN VARIATION, BUT

TESTING WITH ANOTHER. ARROWS INDICATE GENERALIZATION.

variance, but not vice versa. The robot is thus not somehow
‘overfitting’ to high levels of variance. This is useful to know,
because it means the robot can be trained with high variance,
without compromising performance when variance is lower.

E. Grasping more complex objects

We now consider a set of more complex, non-convex
objects, consisting of several boxes, similar to the ones used
in [2]. For each object, we determine several possible grasps
with GRASPIT! These grasps must: 1) have form-closure;
2) not collide with the table on which the object is standing;
3) lie within the workspace of the robot (i.e. some grasps
from the top are not possible). Fig. 7 summarizes the results.
The top row shows the three objects, and the grasps used
on these objects, ordered according to (descending) grasp
quality. From all the grasps proposed by GRASPIT! H3 and
T2 represent two grasps with the highest volume quality
measure (see [12] for details), and T1 the lowest. The graph
depicts the learning curves for all these grasps.

Fig. 7. Top: Several grasps for two non-convex objects, generated by
GRASPIT! Bottom: Learning curves for these grasps when α = π

4
. The

volume grasp quality measure as determined by GRASPIT! is plotted on
the axis to the far left.

Initially, the success rates of the grasps determined by
GRASPIT! lie between 0.40 and 0.75, and after learning,
three grasps have a success rate around 0.95, and two around
0.6. The latter two do not improve, even after 100 updates.
Note that the volume grasp quality determined by GRASPIT!
is a good predictor of the initial and final success rates. And
it also verifies that T1 and H1 are “cases where a grasp
satisfies our quality metrics, but would require a degree of
precision that cannot be obtained in real-life execution” [7].

Overall, the failure rates after learning are higher than in
the case of the cylinder, due to higher chances of collision
with protruding parts of the object. Nevertheless, it demon-
strates that PI2 is also able to learn motion primitives that

are more robust towards state estimation uncertainty for more
complex objects.

VI. CONCLUSION

In this paper, we present an approach that optimizes grasp
success probability in the face of state estimation uncertainty.
The optimization is done with a probabilistic reinforcement
learning algorithm that takes only a simple boolean cost
function that penalizes failed grasps, but does not require
a model. Since reaching, preshaping and grasping are opti-
mized simultaneously, they are not distinct phases, but rather
an integrated motion, in which even subtle differences lead to
large differences in performance, such as the order in which
the fingers are closed. These trajectories are more robust
towards state estimation uncertainty than a baseline trajectory
based on preshape and grasp hand postures determined with
the open-source grasp planner GRASPIT!

We are currently evaluating this approach on physical
manipulation platforms. In these experiments, it will be in-
teresting to see the adaptations to state estimation uncertainty
that is not induced, but rather stems from the platform itself.
Since our methods are model-free, they should be indifferent
to the source of the uncertainty.

REFERENCES

[1] J. Bae, S. Arimoto, Y. Yamamoto, H. Hashiguchi, and M. Sekimoto.
Reaching to grasp and preshaping of multi-DOFs robotic hand-arm
systems using approximate configuration of objects. In Proc. of the
IEEE Int’l Conf. on Intelligent Robots and Systems (IROS), 2006.

[2] D. Berenson, R. Diankov, K. Nishiwaki, S. Kagami, and J. Kuffner.
Grasp planning in complex scenes. In IEEE-RAS International
Conference on Humanoid Robots, 2007.

[3] D. Berenson, S. Srinivasa, and J. Kuffner. Addressing pose uncertainty
in manipulation planning using task space regions. In Proc. of the
IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems (IROS), 2009.

[4] J. Canny. On computability of fine motion plans. In Proceedings of
the IEEE Conference on Robotics and Automation (ICRA), 1989.

[5] V. Christopoulos and P. Schrater. Grasping objects with environ-
mentally induced position uncertainty. PLOS Computational Biology,
5(10), 2009.

[6] K. Goldberg. Orienting polygonal parts without sensors. Algorithmica,
Special Issue on Computational Robotics, 10(3):201–225, 1993.

[7] C. Goldfeder, M. Ciocarlie, H. Dang, and P. Allen. The columbia grasp
database. International Conference on Robotics and Automation, 2009.

[8] K. Hsiao, L. Kaelbling, and T. Lozano-Perez. Task-driven tactile
exploration. In Proceedings of Robotics: Science and Systems, 2010.

[9] A. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with
nonlinear dynamical systems in humanoid robots. In Proc. of the
IEEE International Conf. on Robotics and Automation (ICRA), 2002.

[10] M. Jeannerod. The timing of natural prehension movements. Journal
of Motor Behavior, 16:235–254, 1984.

[11] T. Lozano-Perez, M. T. Mason, and R. H. Taylor. Automatic synthesis
of fine-motion strategies for robots. International Journal of Robotics
Research, 3(1):3–24, 1984.

[12] A. Miller and P. Allen. Graspit! a versatile simulator for robotic
grasping. IEEE Robotics and Automation Magazine, 11(4), 2004.

[13] A. Morales, E. Chinellato, A. H. Fagg, and A. P. del Pobil. Using
experience for assessing grasp reliability. 2004, 1(4):671–691, Inter-
national Journal of Humanoid Robotics.

[14] J. Peters. Machine learning of motor skills for robotics. PhD thesis,
Department of Computer Science, 2007.

[15] S. Schaal. The SL simulation and real-time control software package.
Technical report, University of Southern California, 2009.

[16] R. Smith. Open dynamics engine, 2004. http://www.ode.org.
[17] E. Theodorou, J. Buchli, and S. Schaal. A generalized path integral

approach to reinforcement learning. Journal of Machine Learning
Research, 11(Nov):3137–3181, 2010.

[18] Y. Zheng and W. Qian. Coping with the grasping uncertainties in force-
closure analysis. International Journal Robotics Research, 24(4):311–
327, 2005.


