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Abstract—Temporal abstraction and task decomposition dras-
tically reduce the search space for planning and control, and
are fundamental to making complex tasks amenable to learning.
In the context of reinforcement learning, temporal abstractions
are studied within the paradigm of hierarchical reinforcement
learning.

We propose a hierarchical reinforcement learning approach by
applying our algorithm PI2 to sequences of Dynamic Movement
Primitives. For robots, this representation has some important
advantages over discrete representations in terms of scalability
and convergence speed. The parameters of the Dynamic Move-
ment Primitives are learned simultaneously at different levels
of temporal abstraction. The shape of a movement primitive is
optimized w.r.t. the costs up to the next primitive in the sequence,
and the subgoals between two movement primitives w.r.t. the costs
up to the end of the entire movement primitive sequence.

We implement our approach on an 11-DOF arm and hand, and
evaluate it in a pick-and-place task in which the robot transports
an object between different shelves in a cupboard.

This paper is accompanied by a video:
http://www-clmc.usc.edu/˜stulp/humanoids2011.mp4

I. INTRODUCTION

Reinforcement learning has the potential to substantially
increase the autonomy, flexibility and adaptivity of robots
when acquiring skills for everyday tasks. An essential com-
ponent of such learning robots will be to exploit temporal
abstractions, i.e. to treat complex tasks of extended duration
(e.g. doing the dishes) not as a single skill, but rather as
a sequential combination of skills (e.g. grasping the plate,
washing the plate, rinsing the plate, putting it the rack, etc.)
Such task decompositions drastically reduce the search space
for planning and control, and are fundamental to making
complex tasks amenable to learning.

Within the reinforcement learning paradigm, task decompo-
sitions are studied in the field of hierarchical reinforcement
learning (HRL). Barto and Mahadevan provide an overview of
HRL [1], and define some of the open research challenges –
compact representations, large applications, dynamic abstrac-
tions, and learning task hierarchies. Now almost a decade later,
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these challenges are still far from solved, especially when HRL
is to be implemented on physical robot systems.

In HRL, the learning problem is most commonly formalized
as a discrete semi-Markov decision process [1]. In this paper,
we consider an alternative representation based on dynamical
systems theory. In particular, we represent options as Dynamic
Movement Primitives [6]. This compact representation has
some very desirable properties for robotics, in terms of scal-
ability to high-dimensional tasks, applicability to continuous
state and action spaces, compactness, and control. As a single
motion primitive only has limited duration and applicabil-
ity, temporally extended tasks require sequences of motion
primitives. An example is shown in Fig. 1, where the task
of reaching for an object, grasping it, and transporting it to
another shelve is represented as a sequence of two Dynamic
Movement Primitives.

Fig. 1. The pick-and-place task that is used to evaluate hierarchical
reinforcement learning. This task was inspired by a similar experimental set-
up to analyze human pick-and-place behavior [14]. (Inset image taken from
[14]).

The Policy Improvement through Path Integrals algo-
rithm [17] (PI2), which is derived from first principles of
stochastic optimal control, exploits the advantages of Dynamic
Movement Primitives. As PI2 searches directly in the policy
parameter space θ – the parameters that determine the shape
of the motion – it does not require a model of the robot or
the environment. Combining movement primitives and model-
free policy improvement has enabled us to apply reinforcement
learning to very high-dimensional robotic tasks in large appli-
cations [16], [17]. In this paper, we extend PI2 so that it can
be applied to sequences of motion primitive.

In particular, the main contributions of this paper in apply-



ing hierarchical reinforcement learning to optimize sequences
of movement primitives are: • Deriving an update rule that
allows PI2 to also learn the optimal end-point of the mo-
tion represented by the goal parameters g. • Simultaneously
learning shape and goal parameters in sequences of motion
primitives at different levels of temporal abstraction, as de-
picted in Fig. 2. • Demonstrating how hierarchical learning
leads to lower overall costs than optimizing motion primitives
with respect only to local costs. • Applying these methods to
simulated and real robots on a via-point and pick-and-place
manipulation task.

Fig. 2. Hierarchical Reinforcement Learning with Dynamic Movement
Primitives. Learning happens at two levels of temporal abstraction. On the
lower level, shape parameters θ are optimized with respect to the cost-to-go
within a motion primitive (green arrows). On the higher level, goal parameters
g are optimized with respect to the total cost of the current and subsequent
motion primitives in the sequence (red arrows). For each motion primitive,
costs consist of instantaneous costs rt, and terminal cost φ.

The rest of this paper is structured as follows. After dis-
cussing related work, we describe the movement representa-
tion and reinforcement learning algorithm that form the basis
of our work in Section III. The main contributions, goal
learning and hierarchical reinforcement learning with PI2, are
presented in Section IV. An evaluation of our methods on the
main application task, a realistic everyday pick-and-place task,
is presented in Section V. We conclude with Section VI.

II. RELATED WORK

The term “hierarchical” in hierarchical reinforcement learn-
ing may refer to a number of hierarchical concepts, such as
• Applying RL to the highest level of a control hierarchy,
as in [5], [15], [11]. Technically, these approaches are not
HRL (nor do they claim to be), because although RL is
indeed applied to a hierarchical control system, learning itself
only takes place one level of abstraction – the top level.
• Using RL to generate skill hierarchies over time in a
developmental approach [3]. • In this paper, as in [1], we
specifically interpret HRL as the simultaneous learning of
policy parameters in sequences of policies at multiple levels
of temporal abstraction.

The most common formalization in HRL approaches in
this last category is the semi-Markov decision process [1],
where there is not one monolithic ‘master’ policy (as in
Markov decision processes), but rather a collection of policies
(also called options, macros, machines, skills, behaviors, etc.)
which sequentially call lower-level policies depending on

applicability and termination conditions. The lowest level of
the hierarchy consists of a finite set of primitive actions,
which last one discrete time step each. Exploiting temporal
abstraction makes HRL much more efficient than ‘monolithic’
RL. Nevertheless, discrete action and state spaces still suffer
from the curse of dimensionality [1], [9], and are in general
not that well suited for the requirements of robot planning
and control. Robotic tasks typically involve high-dimensional,
continuous action spaces (humanoid robots with >30 degrees-
of-freedom [16]), high-dimensional state spaces which are
impossible to completely explore, on-the-fly adaptation of
policies (for instance due to moving goals or to avoid ob-
stacles [4]), and high costs for exploration trials on physical
systems, in terms of time and maintenance.

HRL approaches that have been applied to real robots
include [9], where RL is simultaneously applied to a high-
level discretized state space and a low-level continuous state
space to solve a pole balancing task. As in the work we present
here, the overall task is optimized w.r.t. the cost of the entire
sequence, whereas the low-level controllers are optimized w.r.t.
cost for achieving their particular subgoal. An advantage of our
work is that it does not rely on learning a state-value function,
but searches directly in the space of the policy parameters. This
reduces the number of roll-outs required to learn the task by
an order of magnitude, and scales better to high-dimensional
systems [16].

In [10], [7], the (moving) goal of the movement is deter-
mined such that a pre-specified velocity vector is achieved
when coming into contact with a table tennis ball. In the
pick-and-place task we consider, physical manipulation leads
to discrete contact events that naturally define subgoals and
transitions between controllers [2]. Given these discrete tran-
sitions and the fact that we want to grasp objects rather
than dynamically hit them, having zero-velocity boundary
conditions between the motion primitives is an advantage.

There are several other methods that could be used for
learning optimal motion primitive goals, such as cross-entropy
methods [12] or reward regression [8]. However, learning
the goal of the movement is tightly coupled to learning its
shape, and these methods do not readily apply to learning
shape parameters, which have a temporally extended effect.
Therefore, we propose a method that simultaneously learns
shape and goal using the same cost function and update rule.

III. MODEL-FREE REINFORCEMENT LEARNING
WITH PARAMETERIZED POLICIES

In this section, we briefly introduce Dynamic Movement
Primitives and the PI2 reinforcement learning algorithm, which
are presented in more detail in [6] and [17] respectively.

Dynamic Movement Primitives (DMPs) are a flexible rep-
resentation for motion primitives [6], which consist of a set
of dynamic system equations, listed and explained in Fig. 3.
For the purposes of this paper, the most important aspect of
DMPs are that they generate a motion (determined by the
shape parameters θ) towards a goal end-point (determined
by the goal parameters g).



Dynamic Movement Primitives

1

τ
ẍt = α(β(g − xt)− ẋt) + gT

t θ Transform. system (1)

[gt]j =
wj(st) · st∑p
k=1 wk(st)

(g − x0) Basis functions (2)

wj = exp
(
−0.5hj(st − cj)2

)
Gaussian kernel (3)

1

τ
ṡt = −αst Canonical. system (4)

Fig. 3. The core idea behind DMPs is to perturb a simple linear dynamical
system (the first part of Eq. 1) with a non-linear component (gT

t θ) to acquire
smooth movements of arbitrary shape. The non-linear component consists of
basis functions gt, multiplied with a parameter vector θ.
We leave the details of DMPs to [6], [17]. For this paper, the important features
of DMPs are: • When integrated over time, DMPs generate trajectories
[xd,t ẋd,t ẍd,t], which are used as for instance desired joint angles or desired
end-effector positions. • DMPs converge from the initial value x0 towards
the goal parameter g. So at the end of the movement, xt = g. • The general
shape of the movement (i.e. the values of xt between x0 and g) is determined
by the shape parameters θ.
Eq. 1 describes a 1-dimensional system. Multi-dimensional DMP are repre-
sented by coupling several dynamical systems equations as in Eq. 1 with one
shared phase variable s. For an n-DOF arm for instance, an n-dimensional
DMP can be used to generate desired joint angle trajectories. In multi-
dimensional DMPs, each dimension has its own goal (g) and shape (θ)
parameters.

The shape parameters θ are commonly acquired through
imitation learning, i.e. a DMP is trained with an observed
trajectory through supervised learning [6]. The aim of policy
improvement methods is to tune the policy parameters θ such
that they minimize a cost function. The imitated trajectory is
thus not the end result, but rather an initialization for further
improvement through learning. In this paper, we consider the
generic cost function

J(τ i) = φtN +

∫ tN

ti

(rt +
1

2
θT
t Rθt) dt Traj. cost (5)

where J is the finite horizon cost over a trajectory τ i starting at
time ti and ending at time tN . This cost consists of a terminal
cost φtN , an immediate cost rt, and an immediate control
cost 1

2θ
T
t Rθt. The cost function J is task-dependent, and is

provided by the user.
Policy improvement methods minimize cost functions

through an iterative process of exploration and parameter
updating, which we explain using Fig. 4. Exploration is done
by executing a DMP K times, each time with slightly different
parameters θ + εθt,k, where εθt,k is noise which is added to
explore the parameter space. This noise is sampled from a
Gaussian distribution with variance Σθ .

1

τ
ẍt = α(β(g − xt)− ẋt) + gT

t ( θ + εθt,k︸ ︷︷ ︸
Shape exploration

) DMP (6)

These ‘noisy’ DMP parameters generate slightly different
movements [ẍt,k, ẋt,k, xt,k], which each lead to different costs.
Given the costs and noisy parameters of the K DMP ex-
ecutions, called roll-outs, policy improvement methods then

update the parameter vector θ such that it is expected to
generate movements that lead to lower costs in the future.
The process then continues with the new θ as the basis for
exploration.

Fig. 4. Generic loop of policy improvement algorithms.

The most crucial part of the policy improvement loop in
Fig. 4 is the parameter update; it is here that the key differ-
ences between PI2 and other policy improvement methods lie.
Rather than focussing on its derivation from first principles
of stochastic optimal control, which is presented extensively
in [17], we provide a post-hoc interpretation of the resulting
update rule in Fig. 5. As demonstrated in [17], PI2 often
outperforms previous RL algorithms for parameterized policy
learning by at least one order of magnitude in learning speed
and also lower final cost performance.

IV. HIERARCHICAL REINFORCEMENT LEARNING

Our approach to hierarchical reinforcement learning hinges
on two contributions: Section IV-A) learning goals of move-
ment primitives; Section IV-B) simultaneous learning of shape
and goal at different levels of temporal abstraction in a
sequence of movement primitives.

A. Reinforcement Learning of Goals

To apply PI2 to goal learning, the overall policy improve-
ment loop for learning shape in Fig. 4 remains the same.
Before executing a roll-out, goal exploration noise εgand
shape exploration noise εθare generated by sampling from a
Gaussian with variance Σg and Σθ respectively, and the DMP
is executed with these noisy parameters:

1

τ
ẍt = α(β(( g + εgk︸ ︷︷ ︸

Goal exploration

)− xt)− ẋt) + gT
t ( θ + εθt,k︸ ︷︷ ︸

Shape exploration

)

(13)

The goal is then updated through probability weighted aver-
aging in Eq. 14–16, analogously to the updating of the shape
parameters. The main difference is that only the cost-to-go at
t = 0 is used to compute the probability. This means that we
are using the total cost of the trajectory. The motivation behind
this is that as the effect of g remains constant during execution,
there is no temporal dependency of g on the cost. Note that
P (τ 0,k) in Eq. 14 is equivalent to Eq. 9, with t = 0. Thus if
shape parameters θ are updated first, P (τ 0,k) is shared with
the shape parameter update, and this probability need not be
computed again.



PI2 Shape Parameter Update Rule

S(τ i,k) =φtN ,k +

N−1∑
j=i

rtj ,k+

1

2

N−1∑
j=i+1

(θ +Mtj ,kε
θ
tj ,k)

TR(θ +Mtj ,kε
θ
tj ,k) (7)

Mtj ,k =
R−1gtj gT

tj

gT
tj
R−1gtj

(8)

P
(
τ i,k

)
=

e−
1
λ
S(τ i,k)∑K

l=1[e
− 1
λ
S(τ i,l)]

(9)

δθti =

K∑
k=1

[
P
(
τ i,k

)
Mti,k εθti,k

]
(10)

[δθ]j =

∑N−1
i=0 (N − i) wj,ti [δθti ]j∑N−1

i=0 wj,ti (N − i)
(11)

θ ←θ + δθ (12)

Fig. 5. The PI2 parameter update consists of the following steps:
Eq. 7 – Determine cost-to-go of each roll-out. Compute the cost-to-go
S(τ i,k) at each time step i and for each roll-out k. This is an evaluation of
the cost function J(τ i) in Equation 5 , which is task-dependent and provided
by the user. The matrix Mtj ,k (Eq. 8) is needed to project the exploration
noise onto the parameter space.
Eq. 9 – Compute probability of each roll-out. Compute the probability
P
(
τ i,k

)
of each roll-out k at each time step i by exponentiating the cost-

to-go. The intuition behind this step is that trajectories of lower cost should
have higher probabilities.
Eq. 10 – Average over roll-outs. Compute the parameter update δθ for each
time step i through probability weighted averaging over the exploration εθ

of all K roll-outs. Trajectories with higher probability, and thus lower cost,
therefore contribute more to the parameter update. Again, Mtj ,k is needed
to project the exploration noise onto the parameter space.
Eq. 11 – Average over time-steps. In the final step, we average the parameter
update δθti per time step i over all time steps. Each parameter update is
weighted according to the number of steps left in the trajectory. This is to give
earlier points in the trajectory higher weights, as they influence a larger part of
the trajectory. They are also weighted with the activation of the corresponding
basis function wj at time ti, as the influence of parameter θj is highest when
wj is highest. Finally, the actual parameter update is performed with Eq. 12.
Eq. 12 – Update parameters. Add the parameter update to the current
parameters to acquire the new parameters.

PI2 Goal Parameter Update Rule

P (τ 0,k) =
e−

1
λ
S(τ 0,k)∑K

l=1[e
− 1
λ
S(τ 0,l)]

Probability (14)

δg =

K∑
k=1

[P (τ 0,k) ε
g
k] Weighted averaging (15)

g ←g + δg Update (16)

By updating g in a similar fashion to updating θ, several
important advantages are inherited from the PI2 shape update
rule: • Discontinuous and noisy cost functions are not a
problem, as probability weighted averaging does not rely on
computing a gradient. • Due to the averaging, g + δg always

lies within the convex hull of g = g + εk. Thus, if the
exploration is safe (joint limits are respected, the robot does
not collide with itself or the environment), the new g after
updating will also be safe. • Since g and θ are updated
simultaneously using the exact same costs and thus the same
probability weights, there is no negative interference between
learning g and θ.

Via-point task. We now introduce a simple via-point task.
The goal of this tasks is not an extensive statistical evaluation
(which is given in Section V), but rather to illustrate the
differences between shape and goal learning, and show how
the distribution of costs over motion primitives affects the
resulting trajectories. In the via-point task, the real robot
(system details given in the appendix) executes two subse-
quent DMPs, which have been initialized to generate straight
motions with a bell-shaped velocity profile. The motions are
represented in 3-D end-effector position space. The robot’s
task is to pass through two via-points (one for each motion)
whilst minimizing the velocity at the end-effector. This task
is expressed by the following cost function:

J(τ i) =

∫ tN

ti

(103C(t) + (ẋt)
2 +

1

2
θT
t Rθt) dt (17)

CDMP1(t) =δ(t− 0.7)| x− [0.65 0.75]T | (18)

CDMP2(t) =δ(t− 0.3)| x− [0.55 0.85]T | (19)

Here, CDMP1(t) is the distance to the via-point [0.65 0.75]
at t = 0.7 (similar for the second DMP); the z-coordinate
is not relevant to the via-point. Furthermore, the end-effector
velocity is penalized at each time step with (ẋt)

2 to avoid high
velocity movements. The control cost matrix is R = 10−6I.
The number off roll-outs per update is K = 8. When learning
shape, the exploration noise for θ is Σθ = 1.0γu. When
learning the goal, the exploration noise for g is Σg = 0.02γu.
In both cases, exploration decays as learning progresses, with
u being the number of updates so far, and decay factor γ =
0.95. After 40 updates, the costs for all via-point learning
sessions had converged, and learning was stopped.

Fig. 6. End-effector path before (solid, light) and after learning of shape
(solid, dark) or goal (dashed). Numbers in brackets are the costs of the entire
trajectory.

Fig. 6 depicts the trajectories of the end-effector (projected
onto the x, y-plane for clarity) before and after learning.
Similar results for learning shape have been presented in [16].
The overall costs, which are discussed in more detail in
Section IV-B, decreases from 191 to 49. For goal learning,
the cost does not decrease as much (from 191 to 66), as
g1 cannot be placed such that both straight trajectories pass
through the respective via-points. In this case, g1 is learned
such that the first trajectory passes through the via-point, but



the second trajectory doesn’t. This leads to a higher cost then
when learning shape (66>49), as discussed in more detail in
Section IV-B.

B. Simultaneous Learning of Shape and Goal at Different
Levels of Temporal Abstraction

The shape parameter update δθti is computed per time step,
by considering the cost-to-go starting at ti, see Eq. 7-10. This
is because a change in θ at time ti potentially influences the
cost throughout the rest of the movement S(τt) for t > ti.
Similarly, in a sequence of D motion primitives, the goal of
the dth motion primitive gd potentially influences not only the
cost of the current trajectory S(τd), but also of the trajectories
generated by subsequent motion primitives S(τ[d+1]...D). For
example, as we saw in the via-point task, a goal placed such
that the cost of the first DMP is low might lead to high costs
in the second DMP.

Therefore, we propose a hierarchical reinforcement learning
approach in which 1) the shape parameters θ are updated
according to the cost-to-go within a motion primitive S(τ ti),
as in Section III. 2) the goal parameters gd of the dth

movement primitive are updated according to the total cost
of the current and all subsequent motion primitives in the
sequence. This approach is summarized in Eq. 20-23. In these
equation, S(τ 0,d,k) denotes to the cost-to-go at t = 0 (i.e. the
cost of the entire trajectory) of the dth motion primitive in
the sequence, for the kth roll-out in the set of K exploration
roll-outs.

PI2 Subgoal Parameter Update Rule

Sd,k =

D∑
m=d

S(τ 0,m,k) Subsequent sequence cost (20)

Pd,k =
e−

1
λ
Sd,k∑K

l=1[e
− 1
λ
Sd,l ]

Probability (21)

δgd =

K∑
k=1

[Pd,k ε
gd

k] Weighted averaging (22)

gd ←gd + δgd Update (23)

Via-point task. We apply Hierarchical Reinforcement
Learning to the via-point task. The resulting path is depicted
in Fig. 7. The resulting cost is substantially lower than when
learn the shape or goal individually (40<49 and 40<66, see
Fig. 6).

We have also implemented a greedy variant of hierarchical
reinforcement learning, in which shape and goal are both
optimized w.r.t. the cost within the motion primitive, but not
subsequent primitives. These different costs for learning are
depicted at the bottom of Fig. 7. The greedy approach leads
to a slightly higher cost (43>40).

The costs (split up into the different cost components)
for the via-point task for the different learning strategies are
depicted in Fig. 8. From these results we draw the following

Fig. 7. End-effector path before (solid, light) and after simultaneous learning
of shape and goal. Arrows below the trajectories depict the costs used to
update the intermediate goal g1. This difference leads to a greedy approach
(dashed) and true hierarchical reinforcement learning (solid, dark). Numbers
in brackets are the costs of the entire trajectory.

conclusions. Learning shape: the robot learns to go through
both via-points, and the costs due to the distance error to
the via-points decreases. However, the ‘detours’ that need to
be made to do so lead to higher velocity costs than in the
initial trajectory before learning (marked ‘A’). Learning goal:
Because it is not possible to put the intermediate goal such that
both via-points are traversed, there is still a substantial cost
due to the distance error to the second via-point when learning
the goal alone (marked ‘B’), and overall costs are higher than
when learning shape. Greedy approach: PI2 greedily optimizes
the shape and the goal of the first DMP at the expense of
higher costs for the second DMP. This can be seen in the
large difference between the velocity costs for DMP 1 and
2 (marked ‘C’) HRL: The overall costs of the trajectory is
minimized, which leads to an equal distribution of costs over
the two DMPs (marked ‘D’), and, more importantly, lower
overall cost.

V. APPLICATION DOMAIN: PICK-AND-PLACE

In this section, we apply hierarchical reinforcement learning
to a realistic everyday manipulation task. We consider a pick-
and-place task, where the robot has to reach for grasp an object
from a shelve, and place it on another shelve in the same
cupboard. Exactly this task was recently used in experimental
psychology [14], where humans are asked to grasp a bottle,
and then place it on a shelve, as depicted in Fig. 1. Inter-
estingly enough, humans grasp the bottle significantly lower
if they are required to place it on a higher shelve, and vice
versa [14]. Grasping the bottle in this way makes the second
motion – transporting the bottle to the next shelve and placing
it there – easier to perform, because it leads to a greater
distance between the object and the shelve for the same general
movement. This task clearly shows that motion parameters
(where do I grasp the object?) are influenced by subsequent
motions (transporting it to another shelve), and that there is a
need to optimize intermediate goals of motions with respect
to the cost of the entire motion sequence.

In our set-up, the robot is placed in front of an off-the-
shelve cupboard with four shelves, the upper three of which
are within the workspace of the robot. A cylindrical tube with
30cm height and 4cm radius is placed on the center shelve, and
the robot is required to reach for the object, grasp it, transport
it to a lower or higher shelve, and release the object. This



Fig. 8. Costs before and after learning the shape and/or goal. For each
learning strategy, the different cost components are depicted, i.e. the costs
due to deviations from the via-point (blue) and costs due to velocities of the
end-effector (green). Immediate control costs ( 1

2
θT
t Rθt) are very low, and

not depicted for clarity. Furthermore, the costs have been split into the costs
for the first and second motion. The total costs of the entire sequence are
depicted in red. Note the ‘broken’ y-axis due to the high total cost (>190)
before learning.

object was chosen as it is quite easy to grasp; grasp planning
for complex objects is not the focus of this paper.

The task is solved by a sequence of two 7-DOF motion
primitives, representing the position of the end-effector (3-
DOF) and the posture of the hand (4-DOF). The orientation of
the hand remains fixed throughout the entire motion, directly
pointing at the shelves. The first motion reaches from the
initial rest position x0 to the object position g1. The second
motion primitive transports the object from g1 to a position on
the other shelve g2. The parameters θ of both these motions
are trained through supervised learning, where the example
movement consists of a reach-close-transport-release sequence
as depicted in Fig. 9. It is acquired through kinesthetic
teaching. The initial motion is shown in the video attachment.

Fig. 9. Procedure used for grasping

To avoid collisions between the dynamic object and the
static shelves, we implement a collision avoidance controller
based on a potential field. We first determine the vector p
from the point on the shelve that is closest to a point on

the object1. If |p| < 0.15m then the there is no obstacle
avoidance. Otherwise an acceleration away from the shelve
is computed with ẍavoid = Fp/|p|, where the strength of the
field is F = 30.0(0.15−|p|). This field is visualized Fig. 10 by
a red gradient2. ẍavoid is added to the transformation system
(see Eq. 24) as a coupling term, as proposed in [4]. This
causes the end-effector, and thus the object it is transporting,
to smoothly move away from the shelve, as is shown in the
video attachment.

1

τ
ẍt = α(β(g − xt)− ẋt) + gT

t θ + ẍavoid (24)

The cost function for this task is

J(τ i) =φtN +
1

N

∫ tN

ti

( 4G(t) + |ẍavoid|+ |ẍ|/250 ) dt (25)

where the immediate costs consist three components: •
G(t), which is 0 if the object is in the gripper during the
transport phase, and 1 otherwise (a high penalty for failing to
grasp the object or dropping it). • |ẍavoid| is the acceleration
due to the obstacle avoidance module (we don’t want to come
so close to the shelve such that obstacle avoidance needs to be
active). • |ẍ|/250 is the overall acceleration of the movement
(we don’t want high acceleration movements). The immediate
costs are divided by the total number of time steps N , to make
the cost independent from the duration of the movement. The
terminal cost φtN is the height of the object above the shelve
at the time when releasing the object starts (we don’t want to
drop the object from too high). It only applies to the second
DMP.

The number off roll-outs per update is K = 5. The
exploration noise for the end-effector is the same as in the
via-point task, i.e. Σθ = 1.0γu and Σg = 0.02γu, where u is
the number of updates so far. Exploration decays as learning
progresses, with γ = 0.9. The 4-DOF posture of the hand
over time is not learned, and exploration is therefore 0 for
these transformation systems.

A. Results - Comparison of Upward and Downward Reaching

In simulation, the robot performed five learning sessions
with hierarchical reinforcement learning for both placing the
object on a higher and lower shelve. On the real robot, we
performed one learning session for transporting the object up
to the higher shelve. The end-effector paths before and after
learning are depicted in Fig. 10. The learning curves, i.e. the
total cost of the noise-free evaluation roll-outs as learning
progresses, for moving the object up and down are depicted
in the lower graph in Fig. 10. After 60 roll-outs, costs have
converged towards the same costs for all learning sessions, as

1Currently, avoidance is based on known positions of the shelves. This
approach could readily be replaced with a distance field based on point clouds,
where p is the vector form the closest point in the point cloud

2Note that the top of the shelve is not avoided, else the object cannot be
placed on the shelve. Also, the field is divided by 3 in the z direction, as the
obstacle is initially quite close to the bottom of the shelve; we don’t want the
obstacle avoidance to be on right at the beginning of the movement.



the variance is very low. The residual costs after 60 roll-outs
are all due to the end-effector acceleration (|ẍ|/250); a certain
amount of acceleration will always be required to perform the
motion at all.

Fig. 10. For the simulation experiments, the end-effector paths for moving
the object up (right graph) or down (left graph) both before (light gray) and
after (dark gray) learning. Red segments of the path indicate that obstacle
avoidance is active. The thin vertical lines represent the position of the object
at 30Hz. For moving up it represents the base of the object, and for down
the top. The learning curves for both the real robot (1 learning session) and
the simulated robot (µ±σ over the five learning sessions) are depicted in the
inset at the bottom.

Three relevant features are highlighted in Fig. 11: F1 and
F2 are the z-coordinate of g1 and g2 respectively, relative to
its initial value before learning. F3 is the minimum value of
the y-coordinate generated by the second DMP. The values of
these variables as learning progresses are depicted in Fig. 11.

When moving the object up, F1 decreases, i.e. the object
is grasped lower. This leads to a larger distance between the
bottom of the object and the shelve when transporting it to the
higher shelve (see Fig. 10, left), less activation of the obstacle
avoidance module, and thus lower cost. Since grasping the
object lower leads the object to be dropped from a higher
position on release, this leads to an increased terminal cost
φN . This cost is reduced by simultaneously decreasing F23,
as seen in Fig. 11. When the object is to be moved downward,
the effect is inverted. F1 increases to achieve more headroom
for the object when transporting it, and F2 simultaneously

3Note that the cost due to not grasping an object G(t) appears not to play
a role in these results. The reason is that any roll-out in which the object is
not grasped has such a high cost – and thus has almost zero probability – that
it hardly contributes to probability weighted averaging. It plays a role during
learning, but not in the end result.

Fig. 11. Values of three features of the motion (F1/F2/F3) as learning
progresses. Simulation: µ±σ over five learning sessions, for transporting the
object both up and down. Real robot: one learning session for transporting
up.

increases. Independent of whether the object is moved up or
down, F3 decreases over time, i.e. the distance to the shelve
is increased to reduce the cost due to the activation of the
obstacle avoidance module. This last adaptation depends on
changing the shape parameters θ of the second DMP in the
sequence.

In summary, hierarchical reinforcement learning adapts both
the shape and goal to solve the task, and is able to reproduce
the behavior seen in humans, who similarly adapt their grasp
height to subsequent actions [14].

B. Results - Comparison of Learning Strategies

In this section, we compare the four learning strategies in
simulation for the upward transport motion. We perform five
learning session for each of the strategies used for the via-
points experiment: 1) only shape; 2) only goal 3) shape and
goal w.r.t. the costs of each DMP individually, i.e. ‘greedy’
4) shape w.r.t the cost of each DMP individually, and goal
w.r.t. the cost of the entire sequence cost, i.e. hierarchical
reinforcement learning. The learning curves and resulting end-
effector paths are depicted in Fig. 12.

Again, we see that HRL outperforms the other methods.
After convergence of the costs at 60 roll-outs, it achieves
both a lower mean and variance in cost over the five learning
sessions. As can be seen from the end-effector paths in Fig. 12,
the goal is obviously not changed when only learning shape,
and coincides with the goal of the initial movement before
learning. When learning the goal or using HRL, the grasp
is moved downward, as we saw in the previous section.
Interestingly enough, in the greedy case, the object is grasped
higher. This is because the cost of the first DMP consists



Fig. 12. Left: Learning curves (µ±σ over five learning sessions) for each of
the learning strategies. Note that the greedy strategy soon jumps to a cost of
over 1.0, and does not achieve a lower value afterwards. Hence, only its first
two values are plotted. Right: End-effector paths for the different strategies
after 60 roll-outs, averaged over the five sessions. The initial trajectory before
learning is light gray. For clarity, only the path generated by the second DMP
is depicted.

only of cost due to the acceleration (|ẍ|/250), which can be
reduced by placing the goal of the first DMP closer to its
initial positions, i.e. moving the goal up. Unfortunately, this
makes the second DMP much more difficult to execute, which
leads to a very high cost for obstacle avoidance in the second
DMP. This example clearly demonstrates the suboptimality of
the greedy approach, and the necessity to optimize the goal of
a DMP w.r.t. the cost of the overall DMP sequence, not the
current DMP alone.

VI. CONCLUSION

In this paper, we address two of the main challenges in
hierarchical reinforcement learning – compact representations
and large applications [1]. Representing options as dynamical
systems, rather than as sequences of discrete actions, has some
very desirable properties for robotics in terms of compactness,
scalability, and control. We demonstrate how simultaneous
learning shapes and goals in sequences of such motion primi-
tives leads to lower costs than taking into account local costs
only, and, in the case of the pick-and-place task, behavior that
mimics that of humans.

One remaining challenge [1], learning (or generating) task
hierarchies, is not addressed in this paper. Within the move-
ment primitive paradigm, we envision a three step approach
to doing so: 1) Discover motion primitives in raw data
streams; 2) Learn probabilistic pre-conditions/affordances of
motion primitives that define when the motion primitive can
be executed. 3) Chain motion primitives based on their pre-
conditions with means-ends or symbolic planners. These steps
are on our mid-term research agenda.

Appendix: Robot Platform

The robotic platform used in this paper is depicted in Fig. 1,
and consists of a 7-DOF Barret WAM arm with a three-
fingered 4-DOF Barret BH280 hand.

Low-level control and physical simulations of the robot
are done with the SL software package [13], and high-
level communications with the Robot Operating Sys-
tem www.ros.org. Desired task-space position/orientation
trajectories are converted into joint space using the Jacobian
pseudo-inverse. The resulting joint velocities are integrated
and differentiated, to get joint positions and accelerations
respectively. Feed-forward inverse dynamics torques for the
arm are obtained from a recursive Newton Euler algorithm.
Feed-back joint torques are obtained from low-gain joint PD
controllers. All our controllers run at a rate of 300Hz on a host
computer running the Xenomai real-time operating system.
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