
Reinforcement Learning of Full-body Humanoid Motor Skills

Freek Stulp, Jonas Buchli, Evangelos Theodorou, Stefan Schaal

Abstract— Applying reinforcement learning to humanoid
robots is challenging because humanoids have a large number of
degrees of freedom and state and action spaces are continuous.
Thus, most reinforcement learning algorithms would become
computationally infeasible and require a prohibitive amount of
trials to explore such high-dimensional spaces. In this paper, we
present a probabilistic reinforcement learning approach, which
is derived from the framework of stochastic optimal control and
path integrals. The algorithm, called Policy Improvement with
Path Integrals (PI2), has a surprisingly simple form, has no
open tuning parameters besides the exploration noise, is model-
free, and performs numerically robustly in high dimensional
learning problems. We demonstrate how PI2 is able to learn full-
body motor skills on a 34-DOF humanoid robot. To demonstrate
the generality of our approach, we also apply PI2 in the context
of variable impedance control, where both planned trajectories
and gain schedules for each joint are optimized simultaneously.

This paper is accompanied by a movie:
http://www-clmc.usc.edu/movies/humanoids2010/

I. INTRODUCTION

Reinforcement learning is a general approach that, in prin-
ciple, enables humanoid robots to autonomously learn motor
skills from interaction with the environment and given only
a relatively unspecific feedback on the quality of completing
the task. As such, it is an attractive alternative to hand-
coding behaviors, which is tedious and error-prone. In prac-
tice however, applying reinforcement learning to humanoid
robots poses several challenges: 1) state and action spaces
are continuous; 2) humanoid robots have a large number
of degrees of freedom, and thus lead to high-dimensional
learning problems; 3) exploration in high-dimensional spaces
is costly and time consuming, so learning should be efficient
and converge quickly; 4) it is difficult to acquire an accurate
model of the robot and its interaction with the environment
to enable more efficient model-based reinforcement learning.

In this paper, we present a probabilistic reinforcement
learning approach, which is derived from the framework of
stochastic optimal control and path integrals, based on the
original work of [14]. As will be detailed in the sections be-
low, this approach makes an appealing theoretical connection
between value function approximation using the stochastic

Computational Learning and Motor Control Lab, University of Southern
California, Los Angeles, CA 90089
stulp@clmc.usc.edu,jonas@buchli.org,

etheodor@usc.edu, sschaal@usc.edu
This research was supported in part by National Science Founda-

tion grants ECS-0326095, IIS-0535282,CNS-0619937, IIS-0917318, CBET-
0922784, EECS-0926052, the DARPA program on Learning Locomotion,
the Army Research Office, the Okawa Foundation, and the ATR Compu-
tational Neuroscience Laboratories. F.S. was supported by a Research Fel-
lowship from the German Research Foundation (DFG). J.B. was supported
by a prospective researcher fellowship from the Swiss National Science
Foundation. E.T. was supported by a Myronis Fellowship.

HJB equations and direct policy learning by approximating
a path integral, i.e., by solving a statistical inference problem
from sample roll-outs. The resulting algorithm, called Policy
Improvement with Path Integrals (PI2), takes on a surpris-
ingly simple form, has no open tuning parameters besides
the exploration noise, and performs numerically robustly in
high dimensional learning problems.

The main contribution of this paper is to show how PI2 is
able to learn full-body motor skills on a 34-DOF humanoid
robot. To demonstrate the generality of our approach, we
also apply PI2 in the context of variable impedance control,
where both planned trajectories and gain schedules for each
joint are optimized simultaneously.

The rest of this paper is structured as follows. In the
next section, we discuss related work. The PI2 algorithm
is presented in Section III, along with an evaluation of
applying it to the acquisition of a full-body motor skill.
In Section IV, we describe how PI2 is applied to learning
variable impedance control, and demonstrate its use in the
context of a humanoid manipulation task. We conclude with
Section V.

II. RELATED WORK

Classical value-function based methods with function ap-
proximation offer one possible approach to reinforcement
learning [11], but function approximation under the non-
stationary iterative learning process of the value-function
remains difficult when the learning problem exceeds about
5-10 dimensions.

Similar humanoid tasks and and cost functions are con-
sidered in [13], [6], [9]. However, [9] is a pure control
approach, and does not perform planning as PI2 does. As
we shall see, the tasks considered in this paper require a
complex plan, which cannot be achieved through control
alone. In contrast, [13], [6] are planning approaches, which
take certain dynamical constraints into account. However,
the planning is performed with simplified models (e.g. an
inverted pendulum for the ZMP), and require post-processing
steps (trajectory smoothing and interpolation with minimum-
jerk trajectories) to be executed on a robot. There are no
guarantees that the post-processed plan will still achieve
the task. Also, dynamic aspects of the task are also mostly
eliminated by slowing down the movement, which leads to
quasi-static motion. But the main difference of all these
methods, to PI2 is that they all require accurate models,
which are hard to acquire in high-dimensional systems which
interact with the environment.

As we show in this paper, our approach covers and
therefore unifies both the control (as in [9]) and planning (as
in [6], [13]) aspects of full-body humanoid motor skills. This

unification becomes especially clear in Section IV, where
joint trajectories (planning) and gain schedules (control)
are learned simultaneously. Since our approach is model-
free, it also enables us to learn skills that involve complex
interactions between the robot and the environment which are
difficult to model, e.g. physical contact during manipulation.

Direct model-free policy learning from trajectory roll-
outs has recently made significant progress [5], but can still
become numerically brittle and full of open tuning param-
eters in complex learning problems. In new developments,
RL researchers have started to combine the well-developed
methods from statistical learning and empirical inference
with classical RL approaches in order to minimize tuning
parameters and numerical problems, such that ultimately
more efficient algorithms can be developed that scale to sig-
nificantly more complex learning systems [5]. An advantage
of PI2 is that it has only one open parameter, the exploration
noise, which has a clear physical interpretation. The need
for further open parameters is eliminated from the resulting
algorithm, as PI2 is derived from first principles of stochastic
optimal control and reinforcement learning, with minimal
auxiliary assumptions. Also, PI2 does not compute a gradi-
ent, which is usually sensitive to noise and large derivatives
in the value function. To the best of our knowledge, these
model-free methods have not yet been applied to full-body
34-DOF humanoid motor skills, or simultaneous learning of
planned trajectories and control gain schedules.

III. REINFORCEMENT LEARNING IN HIGH DIMENSIONS –
THE PI2 ALGORITHM

Reinforcement learning algorithms can be derived from
different frameworks, e.g., dynamic programming, optimal
control, policy gradients, or probabilistic approaches. Re-
cently, an interesting connection between stochastic optimal
control and Monte Carlo evaluations of path integrals was
made [14]. In [12] this approach is generalized, and used
in the context of model-free reinforcement learning with pa-
rameterized policies, which resulted in the PI2 algorithm. In
the following, we provide a short outline of the prerequisites
and the development of the PI2 algorithm as needed in this
paper. For more details refer to [12].

The foundation of PI2 comes from (model-based) stochas-
tic optimal control for continuous time and continuous state-
action systems. We assume that the dynamics of the control
system is of the form

ẋt = f(xt) + G(xt) (ut + εt) = ft + Gt (ut + εt) (1)

with xt ∈ <n×1 denoting the state of the system, Gt =
G(xt) ∈ <n×p the control matrix, ft = f(xt) ∈ <n×1
the passive dynamics, ut ∈ <p×1 the control vector and
εt ∈ <p×1 Gaussian noise with covariance Σε. Many robotic
systems fall into this class of control systems. For the finite
horizon problem ti : tN , we want to find control inputs uti:tN
which minimize the value function

V (xti) = Vti = min
uti:tN

Eτ i [R(τ i)] (2)

where R is the finite horizon cost over a trajectory starting
at time ti in state xti and ending at time tN

R(τ i) = φtN +

∫ tN

ti

rt dt (3)

and where φtN = φ(xtN) is a terminal reward at time tN .
rt denotes the immediate reward at time t. τ i are trajectory
pieces starting at xti and ending at time tN .

As immediate reward we consider

rt = r(xt,ut, t) = qt +
1

2
uTt Rut (4)

where qt = q(xt, t) is an arbitrary state-dependent reward
function, and R is the positive semi-definite weight matrix
of the quadratic control cost. From stochastic optimal control
[10], it is known that the associated Hamilton Jacobi Bellman
(HJB) equation is

∂tVt = qt + (∇xVt)
T ft −

1

2
(∇xVt)

TGtR
−1GT

t (∇xVt) (5)

+
1

2
trace

(
(∇xxVt)GtΣεG

T
t

)
The corresponding optimal control is a function of the state
and it is given by the equation:

u(xti) = uti = −R−1GT
ti(∇xtiVti) (6)

We are leaving the standard development of this optimal
control problem by transforming the HJB equations with
the substitution Vt = −λ log Ψt and by introducing a
simplification λR−1 = Σε. In this way, the transformed
HJB equation becomes a linear 2nd order partial differential
equation. Due to the Feynman-Kac theorem, the solution for
the exponentially transformed value function becomes

Ψti = lim
dt→0

∫
p (τ i|xi) exp

− 1

λ

φtN +

N−1∑
j=0

qtjdt

dτ i
(7)

Thus, we have transformed our stochastic optimal control
problem into an approximation problem of a path integral.
As detailed in [12], it is not necessary to compute the value
function explicitly, but rather it is possible to derive the
optimal controls directly:

uti =

∫
P (τ i) u (τ i) dτ i (8)

u(τ i) = R−1Gti
T
(
GtiR

−1Gti
T
)−1

(Gtiεti − bti)

where P (τ i) is the probability of a trajectory τ i, and bti is
a more complex expression, beyond the space constraints of
this paper. The important conclusion is that it is possible to
evaluate Eq. (8) from Monte Carlo roll-outs of the control
system, i.e., our optimal control problem can be solved as
an estimation problem.

A. The PI2 Algorithm
The PI2 algorithm is just a special case of the optimal

control solution in Eq. (8), applied to control systems with
parameterized control policy:

at = gTt (θ + εt) (9)

i.e., the control command is generated from the inner product
of a parameter vector θ with a vector of basis function gt
– the noise εt is interpreted as user controlled exploration
noise.

A particular case of a system with a parameterized control
policy is the Dynamic Movement Primitives (DMP) approach
introduced by [4]:

1

τ
v̇t = ft + gTt (θ + εt) (10)

1

τ
q̇d,t = vt

ft = α(β(g − qd,t)− vt)
1

τ
ṡt = −αst (11)

[gt]j =
wjst∑p
k=1 wk

(g − q0) (12)

wj = exp
(
−0.5hj(st − cj)2

)
(13)

The intuition of this approach is to create desired trajectories
qd,t, q̇d,t, q̈d,t=τ v̇t for a motor task out of the time evolution
of a nonlinear attractor system, where the goal g is a point
attractor and q0 the start state. The parameters θ determine
the shape of the attractor landscape within a nonlinear
function approximator, which allows to represent almost
arbitrary smooth trajectories, e.g., a tennis swing, a reaching
movement, or a complex dance movement. While leaving
the details of the DMP approach to [4], for this paper the
important ingredients of DMPs are that i) the attractor system
Eq. (10) has the same form as Eq. (1), and that ii) the p-
dimensional parameter vector can be interpreted as motor
commands as used in the path integral approach to optimal
control. Learning the optimal values for θ will thus create
an optimal reference trajectory for a given motor task. The
PI2 learning algorithm applied to this scenario is summarized
in Table I. As illustrated in [12], PI2 outperforms previous
RL algorithms for parameterized policy learning by at least
one order of magnitude in learning speed and also lower
final cost performance. As an additional benefit, PI2 has no
open algorithmic parameters, except for the magnitude of the
exploration noise εt (the parameter λ is set automatically,
cf. [12]). We would like to emphasize one more time that
PI2 does not require knowledge of the model of the control
system or the environment.

Key Innovations in PI2: In summary we list the key
innovations in PI2 that we believe lead to its superior
performance. These innovations make applications like the
the learning of gain schedules for high dimensional tasks
possible.
• The basis of the derivation of the PI2 algorithm is the

transformation of the optimal control problem to a path
integral. This transformation is very critical since there
is no need to calculate a gradient that is usually sensitive
to noise and large derivatives in the value function.

• With PI2 the optimal control problem is solved with the
forward propagation of dynamics. Thus no backward
propagation of approximations of the value function is
required. This is a very important characteristic of PI2

TABLE I
PI2 ALGORITHM PSEUDO-CODE FOR A 1D PARAMETERIZED POLICY.

• Given:
– An immediate cost function rt = qt + θTt Rθt (cf. Eq. (3))
– A terminal cost term φtN (cf. 3)
– A stochastic parameterized policy at = gTt (θ + εt) (cf. Eqs.

(9) and (10))
– The basis function gti from the system dynamics (cf. 12)
– The variance Σε of the mean-zero noise εt
– The initial parameter vector θ

• Repeat until convergence of the trajectory cost R:
– Create K roll-outs of the system from the same start state x0

using stochastic parameters θ + εt at every time step
– For all K roll-outs, compute:

∗ P
(
τ i,k

)
= e

− 1
λ
S(τ i,k)∑K

k=1
[e

− 1
λ
S(τ i,k)

]

∗ S(τ i,k) = φtN ,k +
∑N−1
j=i qtj ,k + 1

2

∑N−1
j=i+1(θ +

Mtj ,kεtj ,k)TR(θ + Mtj ,kεtj ,k)

∗ Mtj ,k =
R−1gtj ,k

gTtj,k

gT
tj,k

R−1gtj ,k

– For all i time steps, compute:
∗ δθti =

∑K
k=1

[
P
(
τ i,k

)
Mti,k εti,k

]
– Compute [δθ]j =

∑N−1
i=0 (N−i) wj,ti [δθti]j∑N−1

i=0 wj,ti (N−i)
– Update θ ← θ + δθ
– Create one noiseless roll-out to check the trajectory cost R =
φtN +

∑N−1
i=0 rti . In case the noise cannot be turned off, i.e.,

a stochastic system, multiple roll-outs need to be averaged.

that allows for sampling (i.e. roll-out) based estimation
of the path-integral.

• For high dimensional problems, it is not possible to
sample the whole state space and that is the reason for
applying path integral control in an iterative fashion in
PI2 to update the parameters of the DMPs.

• The derivation of an RL algorithm from first principles
largely eliminates the need for open parameters in the
final algorithm.

B. Task 1: Passing through a way-point whilst balancing

In this section, we evaluate PI2 in the context of learning
the joint trajectories for a way-point task executed on a 34-
DOF humanoid robot. The task is for a standing humanoid
robot to pass through a way-point with its right hand, and
return to the initial standing position without falling, all
within 3s. The experiment was conducted with the 34-
DOF robot ‘CBi’ [2], simulated with the Simulation Lab
software [7]. The simulated robot and the position of the
way-point are depicted in Fig. 1. This task is difficult because
the way-point lies just within the workspace of the robot,
and simply reaching for the way-point with the right arm
will cause the robot to fall, even if it done very slowly.
Therefore, passing through the way-point requires a full-body
motion that exploits the momentum of certain links to remain
standing.

The joint trajectories are represented by a 34-dimensional
DMP. The duration of the movement is 3.0s. The initial
‘movement’ of the robot before learning is that it stands still
at its default position, with constant joint angles.

The cost function for PI2 consists of three parts. At

Fig. 1. Left: Learning curve for the way-point task. Right: Trajectories of the end-effector and the center of pressure after 50, 100, 150 updates.

1.5s, there is an intermediate cost which is equal to the
distance from the position of the right hand xt=1.5s to
the waypoint: rwaypointt=1.5s = |xt=1.5s − xwaypoint|. There is
also an immediate cost for the distance of the center of
pressure c to its default position when standing still. If the
center of pressure is within the support polygon, the cost
is rCoPt = 1

N |ct − cdefault|. This cost is divided by the
number of time steps of the trajectory N , to be independent
of trajectory duration. If the center of pressure is outside of
the support polygon, the robot is falling, which is severely
punished with a value of rfallingt = 1 for each simulation
tick, at 500Hz. Although the actual movement takes 3s, the
simulation is continued and costs are recorded for 5s more,
as the robot might fall after the movement is finished.

Finally, the parameters for PI2 are as follows. The ex-
ploration noise for each joint is ε = 2λn, with the decay
parameter λ = 0.98 and n the number of learning updates of
PI2 . Since the arms can be moved more vigorously without
causing the robot to fall, the exploration noise of the joints
belonging to the arms are set higher, to ε = 10λn. Before
each update, 10 roll-outs are executed on the robot, and the
5 roll-outs with lowest cost from the previous parameter
update are kept, so each update is computed over K = 15
trajectories. This elitarianist reuse of roll-outs make sure
the robot always has some ‘good examples’ amongst the
trajectories, without having to actually execute extra roll-
outs.

a) Results: The learning curve of this task is depicted
in Fig. 1. The trajectories of the end-effector and center
of pressure after 50, 100 and 150 updates are depicted in
Fig. 1. As learning progresses, the end-effector comes closer
to the way-point, and the trajectory of the center of pressure
becomes smoother. After 1500 roll-outs and 150 updates, the
distance of the end-effector to the waypoint is 0.45cm, and
the mean distance of the center of pressure to the default
position is 0.35cm. This leads to a final cost of 0.80. A
movie of the resulting movement can be downloaded from:
http://www-clmc.usc.edu/movies/humanoids2010/

To investigate the role of each joint in the learned overall
movement, we compare two measures. The first is the range
of movement of a joint, i.e. subtracting the minimum from
the maximum joint angle along the trajectory. The second

is the cost of trajectory when performing the final learned
movement, but keeping one of the joints fixed at the default
position. The new trajectory cost of a trial with the nth joint
‘knocked out’ is an indication of the importance of joint n
to the overall movement. These two measures are plotted
against each other in Fig. 2. Note the logarithmic scale on
the x-axis.

Fig. 2. The effect of ‘knocking out’ each joint (by fixing it to the default
angle) on the trajectory cost. The shaded (red) area at the top indicates that
the robot fell when knocking out a joint.

The joints with the largest range are the right shoulder
abductor (R-SAA, 70◦, to make the reaching movement),
the left shoulder abductor (L-SAA, 28◦, for counter-balance),
as well as the right wrist extensor (R-WFE, 20◦) and torso
abductor (B-TAA, 9◦). Although most joints have a range of
less than 3◦ (the median is 2.8◦), they also play an important
role in achieving the task. For instance, the flexor-extensor
joint of the right knee (R-KFE) and ankle (R-AFE) have a
maximum rotation of only 2.3◦ and 1.7◦ respectively, but
not moving them causes the robot to fall (indicated by the
red shaded area at the top). These joints are responsible
for leaning forward. Most joint trajectories do not make the
robot fall when knocked out, but still lead to a much higher
cost (> 0.8) than when performing the movement with all
learned joints. This figure demonstrates that achieving the
task requires a full-body movement.

We perform two further experiments to analyze the role of
dynamics during the movement. First, the robot slowly (100s)

reaches for the waypoint using differential inverse kinematics
based on the pseudo-inverse of the Jacobian. In the second
experiment we execute the learned movement 2, 10 and 100
times slower (i.e. the duration is 6s, 30s, 300s respectively),
so that dynamics are negligible. In all these experiments, the
robot falls. This demonstrates that a quasi-static movement
(as in [6], [13]) does not suffice to achieve this task, but that
the robot must exploit the momentum of different body links
to remain balanced.

To summarize, the robot learns to achieve this dynamic
task using model-free reinforcement learning in a 34-
dimensional continuous space, using only 1500 roll-outs.
More generally, it shows that PI2 is able to exploit the
dynamics of the system being controlled.

IV. PI2 FOR VARIABLE IMPEDANCE CONTROL

In this section, we demonstrate how PI2 is used to learn
task-relevant gain schedule for a manipulation task. PI2 thus
not only learns to optimize a planned trajectory, but also
time-dependent control parameters. The resulting variable
impedance control [3] has advantages over high proportional-
derivative (PD) error feedback control because 1) it is
known from optimal control theory that a finite time optimal
controller involves time varying gains, 2) fixed task space
(e.g. end-effector) impedance requires varying joint space
gains, furthermore it 3) requires less energy, 4) reduces wear-
and-tear on the robot, 5) leads to more compliant robots,
and therefore safer interactions with the environment and
humans.

In the following we will consider robots with torque
controlled joints. The motor commands u are calculated via
a PD control law with feed-forward control term uff :

u = −KP (q− qd)−KD(q̇− q̇d) + uff (14)

where KP , KD are the positive definite position and velocity
gain matrices, q, q̇ are the joint positions and velocities, and
qd, q̇d are the desired joint positions and velocities. The
feed-forward control term may come, for instance, from an
inverse dynamics control component, or a computed torque
control component [8]. Thus, the impedance of a joint is
parameterized by the choice of the gains KP (“stiffness”)
and KD (“damping”).

The PI2 algorithm as introduced above seems to be solely
suited for optimizing a trajectory plan, and not directly the
controller. However, the term g(θ + ε) must not necessarily
be used as the non-linear component of a DMP, but, as
demonstrated in [1], can also be used to encode the pro-
portional gain of a joint over time as follows:

KP,i = gi,Tt,K(θiK + εiK,t) (15)

[gt]j =
wj∑p
k=1 wk

(16)

wj = exp
(
−0.5hj(st − cj)2

)
(17)

These gains are coupled to the DMP through the canonical
system in Eqn. 11, and st is used as a phase variable in g for
both the joint accelerations (Eqn. 10) and gains (Eqn. 15).

Thus, KP,i is represented by a basis function representation
linear with respect to the learning parameter θiK , and these
parameter can be learned with the PI2 algorithm.

To compute the damping gain Ki
D, we use the common

practice that it can be written as the square root of the
proportional gain Ki

P with a user determined multiplier ξi.
This multiplier is computed from the initial default gains of
the robot, which were manually tuned.

Summarizing, for an N degree-of-freedom robot, we have
N differential equations as in Eqn. 10 that represent the joint
accelerations q̈ over time, and N functions as in Eqn. 15 that
represent the gain schedules KP,D for each joint. All these
systems are coupled with the canonical system in Eqn. 11.
This leads to 2N parameter vectors θ, which PI2 optimizes
w.r.t. a cost function.

A. Task 2: Pushing open a door

We apply simultaneous learning of trajectories and gain
schedules with PI2 to the simulated CBi humanoid robot,
where the task is to open a door. Learning such variable
impedance control enables the robot to keep its gains as low
as possible (with resulting energy efficiency, reduced wear-
and-tear, and compliance), switching to high-gain control
only when the task requires it (i.e. when force is required to
open the door).

In this task, we fix the base of the robot, and consider
only the 7 degrees of freedom in the left arm. The initial
trajectory before learning is a minimum jerk trajectory in
joint space. In the initial state, the upper arm is kept parallel
to the body, and the lower arm is pointing forward. The
target state is depicted in Fig. 3. The intention of this task
is not to learn the movement required to open the door from
scratch, but rather to learn the gain schedules and fine-tuning
of the trajectories. The gains of the 7 joints are initialized
to 1/10th of their default values. This leads to extremely
compliant behavior, whereby the robot is not able to exert
enough force to overcome the static friction of the door, and
thus cannot move it. Optimizing both joint trajectories and
gains leads to a 14-dimensional learning problem.

The terminal cost is the degree to which the door was
opened, i.e. φtN = 104 · (ψmax−ψN), where the maximum
door opening angle ψmax is 0.3rad (it is out of reach other-
wise). The immediate cost for the gains is rt = 1

N

∑3
i=1K

i
P .

The sum of the gains of all joints is divided by the number of
time steps of the trajectory N , to be independent of trajectory
duration. The cost for the gains expresses our preference for
low gain control.

Finally, the parameters for PI2 are as follows. The explo-
ration noise for each joint is ε = 10λn as before, and for the
gains is ε = 10−4λn, both with decay parameter λ = 0.99
and n the number of updates1. The number of executed and
reused ‘elite’ roll-outs is both 5, so the number of roll-outs
on which the update is performed is K = 10.

1The relatively low exploration noise for the gains does not express less
exploration per se, but is rather due to numerical differences in using the
function approximator to model the gains directly (Equation 15) rather than
as the non-linear component of a DMP (Equation 10).

b) Results: Fig. 3 (right) depicts the total cost of the
noise-less test trial after each update. The costs for the gains
are plotted separately. Coincidence of two graphs implies
that all costs are attributed to the gains, and thus the task of
opening the door to ψmax is achieved.

Fig. 3. Left: Task scenario. Right: Learning curve for the door task. The
costs specific to the gains are plotted separately.

The joint trajectories and gain schedules after 0, 6 and 100
updates are depicted in Fig. 4.

Fig. 4. Learned joint angle trajectories (center) and gain schedules (right)
of the CBi arm after 0/6/100 updates. The gain schedules of only three
joints have been depicted for sake of clarity.

The learning goes through two phases. In the first 6
updates, the gains are increased in order to open the door.
This leads to a strong decrease in the penalty of not fully
opening the door, at the cost of a higher penalty for higher
gains, as depicted in Fig. 3 (right). Essentially, the robot
is learning that it is able to solve the task with high-gain
control. This is also apparent when inspecting the (dashed)
gain schedules after 6 updates in Fig. 4.

In the second phase which starts after 6 updates, the
exact timing and magnitudes of the joint trajectories and
gains required to open the door are determined. During this
process, the robot sometimes lowers the gains too much, and
is not able to open the door, as indicated by the spikes in
the learning curve. That the robot is always able to open the
door one update after a spike is because of the elitarianism,
which always leads to at least some roll-outs with successful
door opening to be among the pool of 10 roll-outs on which
the parameter update is performed.

Finally, after 100 updates, the gains are actually 25%
lower than at initialization, but by timing and tuning them
appropriately as depicted in Fig. 4, the robot is now able to
open the door.

V. CONCLUSION

In this paper we demonstrate that PI2 is able to efficiently
learn humanoid motor skills which require full-body motion
and variable impedance control, and involve direct contact
with the environment. The main reasons for this is that
PI2 learns in continuous state and action spaces, and it
is thus straight-forward to apply directly to planned joint
trajectories. Furthermore, PI2 scales to high-dimensional
spaces, which are typical for humanoid robot tasks. It is also
general enough to be applied not only to planned trajectories,
but also to learning variable gain schedules. Because PI2 is
model-free, it is possible to use it for manipulation tasks
which involve physical contact with the environment, for
which it is difficult to acquire a model. Finally, the one open
parameter in PI2 is the exploration noise, which has a clear
physical meaning, and does not require precise tuning for
successful and fast learning.

Future work includes the evaluation of PI2 on the physical
CBi robot, and the use of imitation to determine initial
values for the policy parameter vector θ. Determining θ
from observed (human) motion is straight-forward within the
Dynamic Movement Primitive framework, and we expect that
seeding the learning process with example trajectories will
lead to even faster learning of humanoid motor skills.

REFERENCES

[1] J. Buchli, E. Theodorou, F. Stulp, and S. Schaal. Variable impedance
control - a reinforcement learning approach. In Robotics: Science and
Systems Conference (RSS), 2010.

[2] G. Cheng, S. Hyon, J. Morimoto, A. Ude, J.G. Hale, G. Colvin,
W. Scroggin, and S. C. Jacobsen. Cb: A humanoid research plat-
form for exploring neuroscience. Journal of Advanced Robotics,
21(10):1097–1114, 2007.

[3] N. Hogan. Impedance control - an approach to manipulation. ASME,
Transactions, Journal of Dynamic Systems, Measurement, and Control,
107:1–24, 1985.

[4] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with
nonlinear dynamical systems in humanoid robots. In ICRA, 2002.

[5] J. Kober and J. Peters. Learning motor primitives in robotics. In
Advances in Neural Information Processing Systems 21 (NIPS), 2009.

[6] J.J. Kuffner, S.Kagami, K. Nishiwaki, M. Inaba, and H. Inoue.
Dynamically-stable motion planning for humanoid robots. Au-
tonomous Robots, 12(1):105–118, 2002.

[7] S. Schaal. The SL simulation and real-time control software package.
Technical report, University of Southern California, 2009.

[8] L. Sciavicco and B. Siciliano. Modelling and Control of Robot
Manipulators. Springer, London, New York, 2000.

[9] L. Sentis. Synthesis and control of whole-body behaviors in humanoid
systems. PhD thesis, Stanford University, 2007.

[10] R.F. Stengel. Optimal Control and Estimation. Dover Publications,
New York, 1994.

[11] R. S. Sutton and A. G. Barto. Reinforcement learning : An introduc-
tion. MIT Press, 1998.

[12] E. Theodorou, J. Buchli, and S. Schaal. Reinforcement learning in
high dimensional state spaces: A path integral approach. Journal of
Machine Learning Research, 2010. To appear.

[13] M. Toussaint. Robot trajectory optimization using approximate infer-
ence. In Proc. 25th Int’l Conf. on Machine Learning, 2009.

[14] B. van den Broek, W. Wiegerinck, and B. Kappen. Graphical model
inference in optimal control of stochastic multi-agent systems. Journal
of Artificial Intelligence Research, 32:95–122, 2008.

