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Abstract
A striking aspect of human coordination is that we achieve it with little or no communication. We achieve
this implicit coordination by taking the perspective of others and inferring their intentions. In contrast,
robots usually coordinate explicitly through the extensive communication of utilities or intentions. In this
paper we present a method that combines both approaches: implicit coordination with shared belief. In
this approach, robots first communicate their beliefs about the world state to each other, using a CORBA-
based communication module. They then use learned utility prediction models to predict the utility of each
robot locally. Based on these utilities, an action is chosen. Within a heterogeneous soccer team, with robots
from both the Munich and Ulm research groups, we apply implicit coordination with shared belief to a
typical task from robotic soccer: regaining ball possession. An empirical evaluation demonstrates that the
redundancy of implicit coordination with shared belief leads to robustness against communication failure
and state estimation inaccuracy.
© Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2010
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1. Introduction

A striking aspect of human coordination is that we achieve it with little or no
communication. Consider two people assembling a bookcase. With apparent ease,
actions are anticipated and coordinated: if I see you grab a screwdriver, I will take
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one of the shelves and hold it in place, and so forth. Instead of communicating, hu-
mans achieve this by inferring the intentions of others. Once the beliefs and desires
of the cooperating party are known, we imagine what we would do in that situation.
This is called the ‘Intentional Stance’ [1].

Many complex application tasks in robotics also require the cooperation of two
or more robots. A key aspect of these systems is that multiple robots share the same
workspace and can therefore not abstract away from the actions of other robots.
Therefore, coordination of actions is also essential to solve multi-robot tasks ef-
fectively. The standard solution in robotic teams is not to anticipate the actions of
others as humans do, but rather to extensively communicate utilities or intentions
in a negotiation scheme. Previous work on robot coordination seems to have fo-
cussed almost exclusively on explicit coordination, as an overview paper on key
architectures shows [2].

Let us illustrate the difference between these coordination methods with a typi-
cal task from the robotic soccer domain: regaining ball possession. Acquiring ball
possession is a goal for the team as a whole, but only one of the field players is
needed to achieve it. Of course, the robots must agree upon which robot will ap-
proach the ball. The intuitive underlying rule is that only the robot who is quickest
to the ball should approach it. A robot should, therefore, only approach the ball if
it thinks it has the lowest approach time to the ball. In implicit coordination, each
robot would estimate its own approach time, as well as those of other robots, based
upon their perceived states. In explicit coordination, on the other hand, each robot
only computes its own approach time and communicates this to the other robots or
a central arbitrator.

In this paper, we present a third form of coordination that combines these two
approaches: implicit coordination with shared belief. It is essentially implicit coor-
dination, in which states of others needed to infer their utilities are not only acquired
through state estimation, but also through communication. In this approach, the ben-
efits of implicit and explicit coordination are combined, making it robust against
both failure and inaccuracies in both communication and state estimation.

The benefits of implicit coordination were an important motivation for this re-
search. Our goal to form a mixed soccer team with robots from different research
groups that demonstrates coordinated behavior was another incentive. The mid-size
league soccer teams of our two research groups are described in Refs [3, 4]. One
robot from each group is depicted in Fig. 1. In previous work [5], a CORBA-based
communication system, also described in this paper, was developed to share beliefs
between robots of the two groups. Therefore, implicit coordination with shared be-
lief was the most appropriate coordination method, as this approach alleviates the
need to implement utility communication or arbitration mechanisms, and enables
each team to implement the ‘only the fastest should go for the ball’ rule in a way
most appropriate for the action selection scheme they use.

In this paper, we apply implicit coordination with shared belief to the ball in-
terception task in a team of robots, formed by robots from both our groups. This
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(a) Agilo RoboCupper. (b) Ulm Sparrow.

Figure 1. Robots from the two research groups.

work extends the work presented in Ref. [6] by formalizing the concept of implicit
coordination with shared belief, providing results for both a homogeneous and a
heterogeneous team, and analyzing the effects of communication and state estima-
tion errors. The main original contributions of this paper are:

• Presenting a computational model for implicit coordination with shared belief.

• The design and implementation of a communication framework for sharing be-
lief within a team of extremely heterogeneous autonomous robots.

• Learning utility prediction models that take technical differences between the
robot platforms into account.

• Using shared belief and learned prediction models to enable implicit coordina-
tion within a heterogeneous team of robots.

• Conducting a thorough empirical analysis in both dynamic and static scenarios,
in simulation and on the real robots.

• Demonstrating that coordination based on shared belief is more robust than
explicit coordination.

• Quantatively measuring the effect of state estimation and communication qual-
ity on different types of coordination.

The rest of this paper is structured as follows. After discussing related work in the
next section, we introduce the computational models of the three types of coordi-
nation in Section 3. In Section 4, we describe the design and implementation of the
CORBA-based belief communication model. Then, in Section 5, we describe how
utility models can be learned and used to predict utilities. An extensive empirical
evaluation is provided in Section 6 and we conclude with Section 7.

2. Related Work

Previous research on cooperation has focussed almost exclusively on explicit coor-
dination [2]. On the other hand, work on implicit coordination usually assumes that
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all agents have access to a central and global representation of the world, which is
enabled by simulation, as in Ref. [7], or global perception, as in the RoboCup small-
size league [8, 9]. In all these papers, teammates are not reasoned about explicitly,
but are considered to be mere environment entities, which influence behavior in
similar ways to obstacles or opponents.

Fuji et al. [10] use utility communication to coordinate their robots in the mid-
size league, using a mixture of system and agent objectives, and priority roles. As
there is no quantative analysis of the coordination module or comparison to other
coordination methods, it is not clear in which ways this form of coordination con-
tributes to the impressive playing skills of this team. Noma et al. [11] propose a
similar approach, where the utility being communicated is defined as the value of a
Reinforcement Learning (RL) policy. Interestingly, not only the policies are learned
with RL, but also the cooperative module that switches between them. States of
others are deduced by reconstructing the three-dimensional (3-D) view of other ro-
bots by using omni-directional vision. Near-perfect vision is assumed to acquire the
global state, which this approach requires.

Most similar to our work is Ref. [12], in which robots in the legged league also
coordinate through implicit coordination, which is based on representations that
are completed through the communication of belief states. Communication is es-
sential and assumed to be flawless. It is not investigated how communication loss
influences coordination. The utility measure is a sum of heuristic functions, which
are represented as potential fields. Whereas our utility models are grounded in ob-
served experience and have a well-defined meaning (e.g., execution duration in
seconds), these heuristic functions have no clear semantics. Therefore, customizing
these functions to individual robots is difficult, as the semantics of and interactions
between them are not fully understood. However, this customization is essential for
achieving efficient coordination in a heterogeneous team with robots with different
dynamics and capabilities.

In the RoboCup simulation league, agents have been coordinated with coordina-
tion graphs [13]. These graphs specify in which situations agents need to coordinate
their behavior. On-line, agents must have knowledge of each others’ states to apply
these coordination graphs, so agents can only coordinate if they are in each others’
field of view. In Ref. [14], simulated soccer players use local information to estimate
the global state of the team, i.e., attacking, recovering, etc. This global state is used
to set global playmode parameters. The arbitration uses these playmode parameters
to initialize coordinated behaviors. These approaches have not been evaluated on
real robots.

In Ref. [15], human communication is divided into explicit (spoken word) and
implicit (gestures, facial expression or any non-vocal expression of intention). Here,
robots use explicit communication (consisting of direct commands to other robots)
to coordinate high-level tasks and implicit communication (being position informa-
tion) to avoid collision (called modest coordination). In our terminology, modest
coordination with implicit communication is not implicit coordination, as the po-



F. Stulp et al. / Advanced Robotics 24 (2010) 1017–1036 1021

sition information about other robots is acquired through communication, not state
estimation.

The most similar mixed team cooperation effort was the Azzurra Robot Team,
a mid-size team from various Italian universities. They also used a (proprietary)
publisher/subscriber communication protocol, utilizing UDP. This team used ex-
plicit coordination (i.e., with utility communication) to assign roles among the
field players [16]. Unfortunately, the Italian national team was dissolved after the
RoboCup tournaments in 2000.

3. Computational Model

In this section, we introduce the computational models of three types of coordina-
tion. The ball interception task will be used as an illustrative example.

3.1. Explicit Coordination

The computational model of explicit coordination is depicted in Fig. 2. Previous
work on cooperation seems to have focussed almost exclusively on this form of
coordination as an overview paper on the key architectures shows [2]. It has also
been used in the RoboCup mid-size league to allocate roles and coordinate behavior
[16–18].

In explicit coordination, robots compute only their own utility locally. Each robot
then sends its utility to the other robots, and receives the utilities of the other robots,
over a communication channel. In auction-based approaches, the utilities are sent
to a single arbitrator, which communicates roles or actions back to the robots. The
utilities in the ball interception task are the ball approach times of the robots. The
faster a robot can approach the ball, the higher the utility.

Acquiring ball possession is a goal for the team as a whole, but only one of
the field players is needed to achieve it. The benefit of having only one player
approach the ball is obvious: there will be less interference between the robots and
it also allows the other robots to execute other important tasks, such as strategic
repositioning or man marking. The joint utility model formalizes the intuitive rule
that only one robot should approach the ball. It computes the best action a robot
can execute, given its own utility for this action, as well as the utilities of other
robots. So, to avoid interference of robots in the ball interception task, the joint
utility model returns the action approachBall if a robot predicted to be the fastest to
approach the ball, and another action otherwise.

Of course, all soccer teams will have implemented this strategy in some way,
to avoid all robots continuously pursuing the ball. The contribution of the approach

Figure 2. Explicit coordination, in which the utilities of other robots are communicated. This is the
standard approach in robotics.
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Figure 3. Implicit coordination without communication, in which utilities are computed from states
using utility prediction models. States are determined through state estimation. Humans usually use
this approach to coordinate.

presented here is not to implement the concept of having only one robot going there.
It rather demonstrates how exploiting utility models to reason about the outcome of
the actions of others enables robots to become more independent of communication
for coordination.

3.2. Implicit Coordination

Implicit coordination, depicted in Fig. 3, is a variation of explicit coordination, in
which the utilities of others are not communicated, but computed by the robot itself.
There are many domains in which implicit coordination is used by humans: team
sports, construction (e.g., of bookcases) and also in traffic.

The robot does achieve implicit coordination by first acquiring the states of others
through state estimation. In the belief state of the soccer robots, robot states are
represented by a pose: the position and orientation of the robot. The perspective
taker enables the robot to make utility predictions for other robots. To do this, the
robot swaps its own state with that of another robot in the belief state and computes
the utility. This ‘perspective taking’ [19] is performed for all other robots, until the
utilities for all robots are known.

There are several important benefits that implicit coordination without commu-
nication has over explicit coordination:

• Protocols and arbitration mechanisms must be adopted between communicating
entities to enable utility communication and arbitration, which adds complex-
ities and can degrade the system. It is generally argued that communication
can add unacceptable delays in information gathering and should be kept to a
minimum [8].

• Rescue robotics and autonomous vehicles operating in traffic are examples of
domains in which robust communication is not guaranteed, but where correct
coordination and action anticipation is a matter of life and death. When it comes
to saving humans or avoiding accidents, it is better to trust what you perceive
than what others tell you — seeing is believing.

• A current research focus in cooperation is human–robot interaction, e.g., in
space exploration [20] or rescue robotics [21]. When a robot and a human
perform a joint action in their shared workspace, e.g., setting the table in the
kitchen or seam welding in outer space, it cannot be expected of humans to
continuously communicate their intentions or utilities. Instead, the robot must
be able to anticipate a human’s intentions, based on predictive models of human
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Figure 4. Implicit coordination with belief communication.

behavior. We consider implicit coordination to be essential for natural inter-
action between robots and humans, so adhering to explicit coordination will
prevent robots from making a breakthrough into these application domains.

3.3. Implicit Coordination with Shared Belief

The most difficult aspect of implicit coordination is estimating the states of others.
Especially due to the limited sensory capabilities of most of todays robot platforms,
this is problematic. Therefore, we use communication of beliefs as an alternative
to estimating the states of others based on perception. The computational model of
this implicit coordination with shared belief (IC-SB) is depicted in Fig. 4.

3.3.1. Belief versus Utility Communication
This computational model might seem contrary to our communication-free par-
adigm, but there is an important difference between communicating utilities and
communicating beliefs, which we shall explain in this section. Of course, implicit
coordination without communication is the ideal situation, which we cannot achieve
due to limitations in sensors and state estimation. Still, implicit coordination with
state communication is preferable over explicit coordination for the following rea-
sons:

• Since explicit coordination is only possible if you know the utilities of others,
delays or failures in utility communications will often cause complete coor-
dination failure. With implicit coordination, the robot can still rely on its own
sensors and state estimation to deduce the utilities of others. Coordination might
then not be perfect, due to sensor limitations, but at least it does not collapse
completely. One of the experiments in the experimental evaluation will verify
this (Q6 in Section 6.2). In a sense, combining the two methods exploits the
best of both worlds.

• Improvements in sensor technology and state estimation methods will allow ro-
bots to autonomously acquire a increasingly complete and accurate estimation
of the states of others. In RoboCup, for instance, almost all mid-size teams have
resorted to omni-directional vision to achieve exactly that. Thus, beliefs needed
to infer the utilities of others are becoming more complete and accurate, inde-
pendent of communication. More accurate state estimation essentially reduces
communication needs. Teams that have omni-directional vision could probably
abandon communication altogether when using implicit coordination. This is
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certainly not the case for explicit coordination, which will always fully rely on
communication.

• To enable human–robot cooperation, robots will at some point have to rely on
state estimation only, as humans cannot be expected to communicate their state.
Implicit coordination with shared belief is an intermediate step to this ideal
situation.

A disadvantage is that belief communication requires more information to be
communicated. The pose, velocity and covariance matrix of each observed object
is significantly more data than than a single utility value. For the application domain
this is not a big handicap though. Assuming a 2-D pose/velocity estimate is suffi-
cient for a soccer robot, the dynamic pose can be formulated in 24 single precision
floating point numbers. The belief state information of a five against five players
match amounts to about 1 kB of belief state data that needs to be communicated by
each player. This amount of data fits well into a single UDP packet and, published at
a moderate frequency (i.e., 1 Hz), does not excessively stress the available network
bandwidth. Furthermore, the robots do not only exchange significantly more data.
They exchange significantly more information, which in turn is used to improve the
individual robots utility estimate.

Summarizing, the robots use communication as a backup system for incomplete
state estimation, rather than as the backbone of their coordination. With utility com-
munication, robots are completely dependent on continuous and robust communica-
tion. In contrast, when sharing belief, improvements in sensor and state estimation
will allow implicit coordination to depend less and less on belief communication.
This is necessary to simplify communication schemes, increase coordination ro-
bustness and enable human–robot cooperation. This work proposes a step in this
direction.

For objects that are observed by multiple robots, various information fusion ap-
proaches can be applied. The model of the Ulm Sparrows robots for fusion of the
ball position was, for instance, to always trust their own observations above shared
observations, but use averaging and threshold-based outlier rejection, to fuse mul-
tiple observations of the same object from teammates.

So far, we have not specified how robots communicate belief states or compute
utilities. Sections 4 and 5 will elaborate on their implementations.

4. Sharing Belief

To share beliefs, the teams must agree upon structures that encapsulate the infor-
mation they want to exchange and the communication framework over which this
information will be sent. The next two sections are dedicated to these topics.

4.1. Design of Belief Exchange

The three main elements of the exchanged belief state are a time-stamp, the prob-
abilistic dynamic pose of the robot itself and a list of observed objects. The main
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design principle is that we want an expressive belief exchange structure, but not
simply a superset of all the information that the teams have used so far.

(i) Time-stamped message-based communication. The beliefs of the robots are
exchanged within the team by a message-based protocol. Messages that are cor-
rupted by packet loss in the wireless network do not influence each other and
can safely be ignored. As a basic requirement for sharing information in a highly
dynamic environment each message is accurately time-stamped. This allows for
interpolation of the beliefs to minimize the estimation error between messages.

(ii) The own dynamic pose. Many sensor data processing algorithms assume that
the probability of measuring a certain quantity is distributed according to a Gaussian
normal distribution. We also use this concept, and represent the robot’s pose by a
3-D vector (x, y,α) and covariance matrix. The vector represents the mean of the
Gaussian distribution, with (0,0,0) being the center of the field, facing the oppo-
nent goal. The covariance matrix holds the associated uncertainty as a 3-D Gaussian
distribution around this mean. How these values can be computed is discussed more
elaborately in Ref. [22]. This probabilistic representation allows robots to commu-
nicate not only where they belief they are, but also how certain they are about it.

Apart from its pose, the robot also communicates its velocity as a tuple
(vx, vy,ω), without uncertainty measures. The combination of pose, covariance
matrix and speed is called ‘probabilistic dynamic pose’.

(iii) Observed objects. Apart from their own pose, the shared belief state also
contains a representation of all the observations of objects, such as the ball. Each
object is represented by the same dynamic pose and covariance matrix, which have
been discussed in the previous section. Although this representation is somewhat
redundant (goal posts will never have a velocity), it is very general. The observed
objects are projected in an egocentric frame of reference, in which the observer
always has pose (0,0,0).

Design issue: allocentric versus egocentric. The most obvious way to fuse obser-
vations of different robots is by the use of a shared frame of reference. Therefore,
the robots use the allocentric frame of reference defined in the previous section to
communicate their poses. However, this approach requires knowing where you are
with sufficient accuracy, something that cannot always be guaranteed. For many
tasks (shooting a goal, passing to a teammate) it is sufficient to know the relative
location of certain objects to the robot. For these reasons we have decided to use an
egocentric frame of reference for the observations.

4.2. Implementation of the Communication Framework

The team communication uses a message-based, type safe high-level communi-
cations protocol that is transfered by IP-multicast, as such a protocol keeps the
communicated data easily accessible and prevents subtle programming errors that
are hard to trace through different teams. As the communication in a team of au-
tonomous mobile robots has to use some kind of wireless LAN, which is notoriously
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unstable especially in RoboCup tournaments, a connection-less message-based pro-
tocol is mandatory. This way, network breakdowns and latencies do not block the
sending robot. To save bandwidth, IP-multicast is used, since in this way each mes-
sage has only to be broadcasted once, instead of n times for n clients.

The implementation uses the notify multicast module (NMC) of the Middle-
ware for Robots (Miro) [23]. Miro provides a generalized CORBA-based sensor
and actuator interfaces for various robot platforms as well as higher-level frame-
works for robotic applications. Additionally to the method-call-oriented interfaces,
Miro also uses the event driven, message-based communications paradigm utiliz-
ing the CORBA Notification Service. This standardized specification of a pub-
lisher/subscriber protocol is part of various CORBA implementations [24]. Publish-
ers (suppliers in their terminology) offer events. The so-called consumers subscribe
to those events. They then receive the events supplied by the publisher through
an event channel (EC). The data exchanged is specified in the CORBA interface
definition language (IDL). Standardized mappings from IDL to most modern pro-
gramming languages (C, C++, Java) exist.

CORBA uses a connection-oriented (TCP/IP-based) communication layer by
default, the NMC module therefore plugs into the Notification Service architec-
ture and exchanges events between the robots of a team transparently, using IP-
multicast. For this purpose a service federation quite similar to the one described
in Ref. [25] is used. A local instance of the EC runs on each robot. A ‘NMC event
consumer’ subscribes for all events that are offered only locally but subscribed by
other teammates and sends them to the multicast group. A ‘NMC event supplier’
in turn listens to all events published via IP-multicast and pushes those into the lo-
cal event channel, which are subscribed but not offered locally. To keep track of
the offered and subscribed message types, NMC utilizes two fields of the standard
event message format: the domain name and the type name. By convention, the
domain name contains the name of the robot producing the event. The type name
describes its payload. As these fields are also part of the native offer/subscription
management and filtering protocol of the notification service, robots can easily de-
termine whether events they offer are currently subscribed in the team and skip their
production entirely if there are no subscribers.

Figure 5 illustrates a sample configuration of the notification channel setup. Two
robots (A, B) produce two types of events (1,2); the resulting events are {A1, A2,
B1, B2}. The events in the supplier and consumer boxes denote the offered and
subscribed events. The events labeling the arrows denote the actual flow of events.
Note that suppliers and consumers can offer/subscribe for multiple events.

Communicating the IDL-specified belief state discussed in Section 4.1 at 10 Hz
with all teammates uses, on average, less than 10% of the available bandwidth of
a standard 802.11b WLAN (11 MBit/s). This should be available, even on heavily
loaded networks, such as those in RoboCup tournaments.
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Figure 5. A federated notification channel setup.

5. Learning Utility Models

In the ball approach scenario, the utility describing how well a robot can execute
this task is time: the faster you can approach the ball, the higher the utility. There-
fore, each robot will need to be able to predict how long it will take each robot
to approach the ball. These temporal prediction models are learned from observed
experience using model trees.

In the first step, training examples are gathered by randomly choosing goal
destination on the field, approaching them and measuring the time taken for the
approach. To acquire sufficient data, we not only record the time from the initial to
the goal point, but also from each intermediate point, at a rate of 10 Hz. The first
30 examples (3 s) of each episode are used as training data. We store the relevant
variables from the belief state in a log file. These four variables are: (i) translational
velocity, (ii) distance to the goal, (iii) angle to the goal, and (iv) difference between
robot and goal orientation.

Then, model trees are trained with this data to acquire a model that generalizes
over unseen cases. Model trees are functions that map continuous or nominal fea-
tures to a continuous value. The function is learned from examples, by a piecewise
partitioning of the feature space. A linear function is fitted to the data in each parti-
tion. Model trees are a generalization of decision trees, in which the nominal values
at the leaf nodes are replaced by line segments. A benefit of model trees is that
they can be transformed into sets of rules that are suited for human inspection and
interpretation. For more information about model trees and how they can be used
to learn utility prediction models of navigation tasks, we refer to Ref. [26].

Table 1 lists the number of episodes n needed to acquire an accurate prediction
model. The mean absolute error (MAE) is computed over a separate test set, which
contains n/3 episodes. Training data was gathered until the error stabilized.

The advantage of this learning approach over analytical methods is that it is based
on real experience, and therefore takes all factors relevant to execution duration into
account. If one robot is slower than the other or has a slight bias to the right due to
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Table 1.
Accuracy of the learned models

Robot n Duration MAE

Agilo (real) 290 0:31 0.31 s
Ulm Sparrow (real) 517 0:40 0.32 s
Agilo (simulated) 750 1:18 0.21 s

slight damage to the left motor, this will all be reflected in the observed data and,
thus, in the model learned from the data. The model is therefore tailored specifically
to each robot, using the same general experience-based learning approach. For in-
stance, when new motor control boards were installed on the Agilo RoboCuppers,
they were twice as fast as the old ones and had very different dynamics. We then
simply gathered new data, trained the learning algorithm and acquired a model tai-
lored to the new boards. We have also learned temporal prediction models for very
different robots altogether, e.g., a B21 service robot, or Powercube arms [26].

Another advantage is that many hand-coded actions are difficult to formalize
analytically, as is well summarized by the following quote on navigation actions:
“Navigation behavior is the result of the subtle interplay of many complex factors.
These factors include the robot’s dynamics, sensing capabilities, surroundings, pa-
rameterizations of the control program, etc. It is impossible to provide the robot
with a deep model for diagnosing navigation behavior” [27]. Our approach does
not rely on accurate analytical models of the robot; the model is learned from ob-
served data. In addition, analysis can be impossible because the inner workings of
the action are simply unknown, e.g., when observing the behavior of other robots
(or humans). In principle, learning models can also be done on-line, so that action
models can adapt to changing environments.

6. Empirical Evaluation

We will now present the experimental design and the results of conducting these
experiments.

6.1. Experimental Design

To evaluate if the learned prediction models and shared representations are suffi-
ciently accurate for implicit coordination, we have conducted three experiments —
one in a dynamic environment, one in a static environment and one in simulation.

6.1.1. Dynamic Experiment
In this experiment, the robots continuously navigated to random targets on the field,
for about 30 min, as depicted in Fig. 6. The paths were generated such that inter-
ference between the robots was excluded. At 10 Hz, each robot records its own
position and orientation, as well as that of its teammate and the ball. Each robot
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Figure 6. Dynamic experiment.

Figure 7. Static experiment.

also logs the locally predicted approach time for both robots and, based on these
times, which robot it thinks should approach the ball. Note that the robots never
actually approach the ball.

This experiment, as well as the next, was conducted with three Agilo robots, and
also with one Agilo robot and an Ulm Sparrow.

6.1.2. Static Experiment
In the previous experiment, it is impossible to measure if the temporal predictions
were actually correct and if potential inaccuracies caused the robots’ estimate of
who is quickest to be incorrect. Therefore, a second experiment was conducted.

First, the robots navigate to random positions and wait there. They are then syn-
chronously requested to record the same data as in the first experiment, but only for
the current static state. Then, one after the other, the robots are requested to drive
to the goal position and the actual approach duration recorded, as in Fig. 7. This
static environment is less realistic, but allows us to compare the predicted time with
the actually measured time for each robot. The log files are almost identical to the
ones in the dynamic experiment. The only difference is that they also contain the
actually measured time for the robot and contain only 200 examples, as we record
one example for each episode, not every 100 ms.

6.1.3. Simulated Experiment
Here, the experimental setup is identical to the dynamic experiment. It is conducted
with two simulated Agilo robots. The simulator allows us to vary two variables that
most strongly influence the success of implicit coordination, as depicted in Fig. 8.
The first is communication quality. At random times, and for random durations,
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Figure 8. Simulated experiment.

Table 2.
Agreement and correctness in implicit coordination

Learned model (%) Distance (%)

Three Agilo Mixed Three Agilo Mixed

Chose the same robot? 99 96 99 95
Chose the quickest robot? 96 92 81 68

communication is switched off in both directions. By controlling the length of the
intervals, we can vary between perfect (100%) and no (0%) communication. The
second is the field of view of the robot. We can set the view angle of the robot’s
forward facing camera between 0 (blind) and 360◦ (omni-directional vision). The
other robot and the ball are only perceived when in the field of view. Gaussian noise
with a standard deviation of 9, 25 and 22 cm is added to the robot’s estimates of the
position of itself, the teammate and the ball, respectively. These correspond to the
errors we have observed on the real robots.

6.2. Results

The experiments presented in the previous section allow us to answer several ques-
tions relevant to the robustness and accuracy of implicit coordination with shared
belief.

(Q1) Do the robots agree upon who should approach the ball? To answer this
question, we determined how often all robots agreed on which robot should ap-
proach the ball. The results are listed in Table 2, in the row labeled ‘Chose the
same robot?’. The result for both the homogeneous (three Agilo robots) and het-
erogeneous (one Agilo and one Ulm Sparrow) teams are listed. Given the accurate
estimates the robots have of each other’s states and the accurate predicted times
that arise from this, it should not be surprising that the robots have almost perfect
agreement (>99 and >96%) on who should approach the ball.

(Q2) Do the robots choose the quickest one? Agreeing about who should go to
the ball is of little use if the chosen robot is not actually the quickest. Therefore, we
would also like to know if the chosen robot is actually the quickest one to approach
the ball. Of course, this could only be determined in the static experiment, in which
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the actual times it took each robot to approach the ball were recorded. A robot’s
decision to coordinate is deemed correct if the robot that was the quickest was
indeed predicted to be the quickest. The robots’ choice was correct 92% of the
time, as can be seen in Table 2.

(Q3) Are temporal prediction models necessary or would a more simple value
such as distance not suffice? Using only distance as a rough estimate of the ap-
proach time, as done in Ref. [28], would save us the trouble of learning models.
Although time is certainly strongly correlated with distance, using distance alone
leads to significantly more incorrect coordinations. The last column in Table 2
shows this. Agreement is still very good (99 and 95%), but the robot that is re-
ally the quickest is chosen only 81 and 68% of the time. So, when using distance,
the robots are still very sure about who should approach it, but they are also wrong
about it much more often.

(Q4) How robust is implicit coordination against errors in state estimation? As
we saw, almost perfect coordination was achieved in the dynamic experiment. To
analyze how noise in the estimates of the other robot’s states influences coordina-
tion, we took the original log files of the homogeneous team and added Gaussian
noise of varying degrees to the estimates that robots have of each other’s pose ([xt ,
yt , φt ]). The predicted times were then computed off-line, based on these simulated
log files.

The results are shown in Fig. 9. The x-axis shows the standard deviation of the
Gaussian noise added to the data. So the first column, in which there is no added
noise, represents the results of the dynamic experiment, which had been listed in Ta-
ble 2. The y-axis shows the percentage of examples in which zero, one, two or three
Agilo robots intended to approach the ball. Of course, ‘1’ means that coordination
succeeded.

Figure 9. Influence of simulated state estimation errors on implicit coordination.
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Figure 10. Visualization of the decision tree that predicts coordination failure.

Figure 11. Example of implicit coordination. Bright lines represent that only one robot would ap-
proach the ball at this position. Black lines show when coordination is predicted to likely fail. The
robots must all approach the ball from the right.

We can clearly see that coordination deteriorates when robots do not know each
other’s states so well. If you have a robotic (soccer) team and know the standard
deviation between the robot estimations of each other’s positions, the graph tells
you how well implicit coordination would work in this team.

(Q5) When does implicit coordination fail? In the dynamic experiment with the
heterogeneous team, coordination succeeds 96% of the time. In the log file, we
labeled all examples in which exactly one robot decided to approach the ball with
‘Success’ and others with ‘Fail’. A decision tree was then trained to predict this
value. The learned tree is represented graphically in Fig. 10. The main rule is that if
the difference in predicted times between two robots is small, coordination is likely
to fail; if it is large, it is likely to succeed. This is intuitive, because if the difference
between the times is large, it is less likely that estimation errors will invert which
time is the smallest. Note that in between these two limits, there is a ‘gray’ area, in
which some other rules were learned. They only accounted for a small number of
examples, so for clarity, we will not discuss them here.

Humans also recognize when coordination might fail. For example, in sports
like soccer or volleyball, it is sometimes not completely clear who should go for
the ball. Humans solve this problem by making a brief exclamation such as ‘Mine!’
or ‘Leave it!’. Thus, in these cases, humans resort to explicit coordination and com-
municate their intentions. Not only do humans have utility models of each other to
coordinate implicitly, they are also aware when confusion might arise. The learned
decision tree essentially provides the robots with similar awareness, as they predict
when implicit coordination failure is likely. So, they could be used to determine
when robots should resort to other methods of coordination. For instance, our robots
have a simple locker-room agreement that when coordination failure is predicted,
the robot with the higher number will approach the ball (excluding the goalie).

In Fig. 11 we present an illustration of how the robots could use this model
in practice. It is easiest to understand this image if one imagines that the robots
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Figure 12. Results of the simulation experiment, which show how the performance of coordination
strategies depends on the quality of communication and the field of view.

are standing still at the drawn positions and the ball is rolling slowly from left to
right. At every 5 cm of the ball’s trajectory, the robots determine who is quickest
to the ball at that time. This robot is connected to the current ball’s position by a
brighter line. When the decision tree predicts that coordination might fail, the robots
between which confusion might arise are both connected to the ball’s position by
a black line. Note that this image was generated in simulation, not with the real
robots.

(Q6) How do communication quality and state estimation accuracy influence
coordination? The results of the simulation experiment, which show how the perfor-
mance of different coordination strategies depends on the quality of communication
and the field of view, are depicted in Fig. 12. Communication quality is the per-
centage of packets that arrive and field of view is in degrees. The z-axis depicts
coordination success, which is the percentage that only one robot intended to ap-
proach the ball.

Since explicit coordination is based completely on communication, it is not sur-
prising that it perfectly correlates with the quality of the communication, but is
independent of the size of the field of view. No communication means no co-
ordination and perfect communication means perfect coordination. For implicit
coordination without communication, the relation is converse. If a robot is able
to estimate the states of others better, it is able to coordinate better. The third graph
shows implicit coordination with belief state exchange, as used on the robots. If
the robot has a teammate in its field of view, it determines the other’s state through
state estimation, otherwise it uses communication (if possible) to exchange beliefs.
These states are then used to predict the utilities of others, independent if they were
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perceived or communicated. The graph clearly shows that this approach combines
the benefits of both.

The third graph in Fig. 12 clearly shows that implicit coordination with belief
exchange achieves better performance with communication loss than explicit coor-
dination alone, as discussed in Section 3.3. Instead of complete coordination failure
in the case of communication loss, there is a graceful decay, because a second sys-
tem based on state estimation can still be used to estimate the intentions of others.

7. Conclusions

In this paper we discussed belief sharing — a communication principle that com-
bines implicit and explicit communication models for teams of robots in cooperative
application domains. Instead of voting protocols, the exchange of observations al-
lows robots to fuse their beliefs in a non-centralized manner and individually select
actions that result in implicit team cooperation. The implementation of the commu-
nication infrastructure was discussed as well as learning utility models for actions
in a heterogeneous robot soccer robot team. Our approach is general and versa-
tile, as both the experience-based learning of utility models and the CORBA-based
communication do not depend on the specific robot hardware and software. This
has enabled us to apply our approach to two very different mid-size league robots
and create a heterogeneous team.

Performance and reliability were evaluated empirically. The conducted experi-
ments demonstrated that this coordination scheme is more robust in the presence of
communications errors than explicit communication.
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