2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 1

Learning and Performing Place-based Mobile Manipulation

Freek Stulp, Andreas Fedrizzi, Michael Beetz
Intelligent Autonomous Systems Group, Technische Universitit Miinchen, Germany
{stulp|fedrizzalbeetz}@cs.tum.edu

Abstract—What it means for an object to be ‘within reach’
depends very much on the morphology and skills of a robot. In
this paper, we enable a mobile manipulation robot to learn
a concept of PLACE from which successful manipulation is
possible through trial-and-error interaction with the environ-
ment. Due to this developmental approach, PLACE is very
much grounded in observed experience, and takes the hardware
and skills of the robot into account. During task-execution,
this model is used to determine optimal grasp places in a
least-commitment approach. This PLACE takes into account
uncertainties in both robot and target object positions, and
leads to more robust behavior.

I. INTRODUCTION

Consider the task of approaching a table in order to grasp
a cup, as depicted in Fig. 1. A trivial approach to solving
this task is simply going to a position such that the target
of manipulation is well in reach. However, a more careful
look at the question raises some serious issues: What is a
good place in the context of an intended manipulation action?
Does well-in-reach always imply that the target object can
really be reached, given the hardware and control software
of the robot? Can we have a least-commitment realization
of ‘places’ such that the robot can refine a ‘place’ as it
learns more about the context (e.g. the clutteredness) of the
surroundings? How can such a concept of ’place’ take into
account uncertainties about the robot’s self-localization and
estimated target object position?

1. robot base navigates to table 2. robot arm reaches for cup

Fig. 1. A reach and grasp trajectory performed during a public demon-
stration. (Note that the operator is holding a camera, not a remote control!)

Manually designing an explicit model that takes all these
factors into account is tedious and error-prone. An alternative
to explicit modeling is advocated in a recent roadmap paper
for manipulation [9]: “it seems almost inevitable that learning
will play an important role in robot manipulation”. For our
mobile manipulation task, we apply learning to the problem

of selecting appropriate places to navigate to in order to per-
form a subsequent manipulation task. The main motivation
behind this work is that carefully considering and selecting
the place from where the manipulation action starts will
lead to a simplified manipulation task. This simplification
allows the use of a set of standard solutions, such as ‘motor
primitives’, to perform the manipulation. Even if motion
planners are able, by conducting a costly search in the state
space, to perform manipulation in very complex scenes, we
believe it is preferable to avoid and forestall complex tasks
if possible. This leads to more robust and natural behavior.

Although much research is done on navigation and manip-
ulation planning as individual topics, the interaction between
these areas is not covered as well. The difficulty is, as
the many questions in the first paragraph imply, that the
coupling between navigation and manipulation depends on
many factors, which is why there is no general analytic
solution. We believe that the robot should rather develop
a concept of place 1) with respect to its own capabilities,
which are limited by the hardware and control programs
2) autonomously through learning, from interactions with the
environment.

o S 1l Learn Generalized Success Model (GSM) :
L5 | -
- L; E A. Acquire B. Apply € Generaliza ! Gzze‘:';ael::d
E g1 Experience Classifiers with PDM p
G :
=
2§
58 'Lfé”é‘?a‘i: V.Subgoal (Probasitty Probabilstic
© - Refinement Belief State
S g Position ! Distribution) :

Fig. 2. Computational model (Numerals refer to sections).

As depicted in the computational model of our approach
in Fig. 2, the robot learns its concept of place by first
gathering experience in simulation, by recording successful
and failed attempts at manipulation from different positions.
By applying Support Vector Machines, we then acquire
classification boundaries between successes and fails for
different scenarios, i.e. positions of the target object on the
table.

The main novelty of our approach is computing general-
ized success models by generalizing over classifications for
specific situations, with a Point Distribution Model (PDM).
We relate the internal parameters of the PDM to external
parameters that are related to the task, such as the position
of the target object on the table. By grounding these general-
ized success models (GSM) in observed experience, explicit

978-1-4244-4118-1/09/$25.00 2009 IEEE

2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 2

modeling is no longer required.

Then on-line during task execution, the real robot queries
these general success models with the specific current situa-
tion, to determine appropriate positions for starting a manip-
ulation task. This is done using a Monte-Carlo simulation,
which yields the PLACE, which is modeled by a probability
distribution that models manipulation success, as in Fig. 3.

This concept of
PLACE 1) takes into
account the uncertainty
in the pose of the robot
and of the target object;
2) models °‘place’ as
an area of locations
with different utilities,
instead of committing
to a specific position;
3) Takes into account
all relevant aspects
of the robot platform
and the interactions between its skills, as it is grounded
in observed experience, rather than explicit hand-coded
models.

The developmental methods for acquiring and representing
PLACE with generalized success models as the main contribu-
tions of this paper'. Furthermore, we implement and evaluate
our approach on a mobile manipulation robot.

The rest of this paper is structured as follows. In the next
section, we discuss related work. We present our approach for
learning the generalized success model (GSM) in Section III.
We then describe how the (GSM) is used to compute
and optimize PLACEs in Section IV and V respectively. In
Section VI we present an empirical evaluation of the system,
and we conclude with Section VII.

Fig. 3.

Probability of successful ma-
nipulation, given the robot’s position at
the table. This is the PLACE for this
particular task and robot.

II. RELATED WORK

Using a heuristics-driven search in task space has proven
to be a very effective approach to plan motion, even in
complex cluttered scenes [2]. However, if everyday situations
are encountered very frequently, and having a set of standard
solutions like skills or motor primitives for these ‘standard’
situations is more effective than treating each repeated task as
a novel task requiring search. As humans use standard motion
primitives so frequently, they can be optimized over time,
which leads to stereotypical human motion, and improves the
predictability of motions. We believe that these are desirable
properties of robot behavior as well. If more complex, novel
situations do happen to arise, a standard solution will not
suffice, and motion planning algorithms can be used to
perform a search to find a solution for this novel situation.
The two approaches complement each other well.

Kuipers et al. [11] present a bootstrapping approach that
enables robots to develop high level ontologies from low

The goal of this paper is to apply developmental learning to acquiring
a concept of place, as such a concept is very difficult to implement
with engineering approaches alone. It is not explicitely our goal to model
neurophysiological concepts such as ‘place cells’ [5].

level sensor data including distinctive states, places, objects,
and actions. These high level states are used to choose
trajectory-following control laws to move from one distinc-
tive state to another. Our approach is exactly the other way
around: given the manipulation and navigation skills of the
robot (which are far too high-dimensional to learn with
trajectory-following control laws), learn places from which
these skills (e.g. grasping) can be executed successfully.
Our focus is on action and affordance, not recognition and
localization. For us, place means ’a cluster of locations
from which I can execute my (grasping) skill succesfully’,
whereas for Kuipers et al. it rather refers to a location that is
perceptually distinct from others, and can therefore be well-
recognized. Furthermore, their work has not yet considered
the physical manipulation of objects, and how this relates to
place.

Capability maps are an alternative approach to modelling
robot configurations that lead to successful grasping [16].
These maps are generated by separating the workspace into
discrete regions and trying to solve multiple inverse kinemat-
ics queries for every region. As only kinematic aspects are
considered, capability maps do not take the actual skills of a
robot into account, and a accurate kinematic model specific to
each robot must be designed by hand. Our approach explicitly
takes the motion system and robot skills into account and
optimizes the initial position so that subsequent manipulation
is facilitated.

Learning success models can be considered as a type
of pre-condition learning. Most research on learning pre-
conditions focusses on learning symbolic predicates from
symbolic examples [4]. These approaches have not been
applied to robots, as the representations used do not suffice
to encapsulate the complex conditions that arise from robot
dynamics and action parameterizations. In robotics, the focus
in pre-condition learning is therefore rather on grounding
pre-conditions in robot experience. For instance, ‘Dexter’
learns sequences of manipulation skills such as searching
and then grasping an object [7]. Declarative knowledge
such as the length of its arm is learned from experience.
Learning success models has also been done in the context
of robotic soccer, for instance learning the success rate of
passing [3], or approaching the ball [14]. Our methods extend
these approaches by explicitly representing the region in
which successful instances were observed, and computing
generalized success models from these regions.

III. LEARNING A GENERALIZED SUCCESS MODEL

In this section, we describe the implementation of the off-
line phase of the computational model, depicted in Fig. 2.

A. Acquiring Training Data

The robot first gathers training data by repeatedly execut-
ing a navigate-reach-grasp action sequence. To acquire suffi-
cient data in little time, we perform the training experiments
in the simulator described in the Appendix. The robot is
modeled accurately, and the simulator thus provides training
data that is also valid for the real robot.

2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 3

The action sequence is executed for a variety of task-
relevant parameters. In our scenario we tried to grasp a cup
and the task-relevant parameters were the z,y position of
the cup on a table. The 12 cup positions on the table with
which the robot is trained are depicted in Fig. 5. For each
cup position, the action sequence was executed 350 times.
The initial position for reaching and grasping was randomly
sampled, and the result whether the robot was able to grasp
the cup or not was stored in a log-file.

Navigate

Grasp Lift

Initial

Fig. 4. Two experiment runs with different samples for the robot position.
The navigate-reach-grasp sequence in the upper row succeeds. It fails in the
lower sequence because the robot is too far away from the cup.

B. Computing Classification Boundaries

To acquire success models, we compute a classification
boundary around the successful samples using Support Vec-
tor Machines (SVM), using the implementation by [13]. We
used a Gaussian kernel with 0=0.03, and cost parameter
(C=20.0. Fig. 5 depicts the resulting classification boundaries
for different configurations of task-relevant parameters®. The
models on average classify 5% of examples wrongly when
using a training/test set that contain 66%/33% of the data
respectively, and 3% when using the training data as the test
data.

C. Computing the Point Distribution Model

In the next step, we compile all classification boundaries
into a generalized compact representation using a Point Dis-
tribution Model (PDM), which is a well established method
in the field of face recognition [15]. As input a PDM requires
n points as input that are distributed over the contour. We
distribute 20 points equidistantly over each boundary, and
determine the correspondence between points on different

2From the robot’s point of view the data and the clusters are shifted a
bit more to the right than we would have expected when grasping the cup
with the right arm. This is due to the hard-ware and kinematics of the
robot manipulator, which are not very human-like. This effect supports our
experience-based learning over hand-coding, as our intuitions about a good
"place’ for robot manipulation apparently do not always correspond to the
"place’ that is really the best for a particular robot.

Lty

e L
4 1 09 08 07 08

L
S 4 09 08 07 08

Love o™
44 4 09 08 07 08 41 4 09 08 07 08 05 04 03 02 -01 00

Fig. 5. Successful grasp positions and their classification boundaries. Every
sub-image shows the boundary that corresponds to the cup position that is
visualized with the black cup. To save space, the table on which the cup is
placed is only depicted in the right-most sub-images, and not all failed data
points are shown. Data points correspond to the center of the robot base.

boundaries by minimizing the sum of the distances between
corresponding points, while maintaining order between the
points on the boundary. The result is depicted in Fig. 6,
where only 4 of the 12 classification boundaries are depicted
for clarity.

Given the aligned points on
the boundaries, we compute a
PDM. Although PDMs are most
well-known for their use in
computer vision, we use the no-
tation by Roduit et al. [12],
who focus on robotic applica-
tions. First, the 2D boundaries
are merged into one 40x12 ma-
trix H, where the columns are
the concatenation of the = and
y coordinates of the 20 points
along the classification bound-
ary. Each row represents one boundary. The next step is
to compute P, which is the matrix of eigenvectors of the
covariance matrix of H. Given P, we can decompose each
boundary hy, in the set into the mean boundary and a linear
combination of the columns of P as follows h;, = H+P-by.
Here, by, is the so-called deformation mode of the k** bound-
ary. This is the Point Distribution Model. To get an intuition
of what the PDM represents, the first two deformation modes
are depicted in Fig. 7(a), where the values of the first and
second column of B are varied between their max. and min.
value.

By inspecting the eigenvalues of the covariance matrix of
H, we determined that the first 2 components already contain
96% of the deformation energy. Therefore, we use only the
first 2 deformation modes, without losing much accuracy.

Fig. 6. Point-alignment

2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 4

04 04 04
Hull recopstracted-s
03f ,withPDM,” YT 03

03

0.2 0.2

-0.1
-0.2 -0.2

-03 -03

04 . NSO 0.4
\ \ \

/24
05 05} Hull fromwhich 5 05
PDM is computed
-0.6 -06 -06
-1 -09 -08 -07

(a) First and second deformation mode in B. (b) Reconstructing the

boundaries from Fig. 5.

Fig. 7. A generalized success model based on a Point Distribution Model.

Fig. 7(b) demonstrates that the original 12 boundaries can
be reconstructed well when using combinations of only the
first two deformation modes.

The advantage of the PDM is not only that it substantially
reduces the high dimensionality of the initial 40D boundaries.
It also allows us to interpolate between them in a principled
way using only two deformation parameters. The PDM is
therefore a compact, general, yet accurate model for the
classification boundaries that were determined by the SVM.

D. Relation to Task-relevant Parameters

The final step of model learning is to relate the specific
deformation of each boundary (contained in B) to the values
of the task-relevant parameters like cup positions that are var-
ied during data collection. Since the correlation coefficients
between the first and second deformation modes and the task
relevant parameters T (the x and y coordinates of the cup)
are 0.99 and 0.97 respectively, we simply compute the linear
relation between them with W = [1 T]/B7.

Given a novel position tpew = (Tnew, Ynew) Of the
cup on the table, the generalized success model allows
us to quickly compute the area from which a successful
grasp can be expected for this specific situation. First, we
compute the appropriate deformation values from the cup
position with by, = ([1 tpew) - W)T. Then the boundary
is computed with h,., = H + P - b,,.,,. This boundary
estimates the area in which the robot should stand to be
able to make a successful grasp. This approach adheres to
the proposed strategy of “learning task-relevant features that
map to actions, instead of attempting to reconstruct a detailed
model of the world with which to plan actions” [9].

IV. COMPUTING MANIPULATION PLACES ON-LINE

In this section, we describe how appropriate PLACEs for
manipulation are determined on-line. We denote this module
as PLA4AMAN, i.e. ‘PLACE for manipulation’. As can be
seen in the computational model in Fig. 2, this module takes
the GSM and the probabilistic belief state as an input, and
returns a PLACE such as depicted in Fig. 3.

A. Uncertainty in Object Position

At the end of the previous section, we demonstrated
how a h,.,, classification boundary is reconstructed, given
specific task relevant parameters tpew = (Tnew; Ynew)-
Due to sensor noise and other factors that influence the
state estimation, the task relevant parameters can never be
known exactly, and uncertainty must be modeled. The belief
state therefore a]so associates a covariance matrix with each
position: (Z;‘m Zgl), computed by our vision-based object
localization module [10].

Because of this uncertainty, it does not suffice to compute
only one classification boundary given the most probable
position of the cup as the PLACE from which to grasp. This
might lead to a failure if the cup is not at the position where
it was expected. To solve this problem, we use a Monte-
Carlo simulation to generate a probabilistic advice on where
to navigate to grasp the cup. This is done by taking 100
samples from the Gaussian distribution of the cup position,
given its mean and covariance matrix. This yields a matrix
of task relevant parameters t; = [Xs ys]. The corresponding
classification boundaries h, are computed for the samples
by using the method described above. In Fig. 8(a), 30 out of
the 100 boundaries are depicted. These were generated from
the task relevant parameters x=-0.3, y=0.1, 0,,=0,,=0.05,
0 5y=0y=0.

Hull for

Sampled
x=-0.3,y=0.1 omp.ed cup

positions

(@)
=
(9}
&)
e
o),
(@)
@)
o)
)

12 -1 08 06
x x

(a) Sampled classification boundaries (b) Discretized relative sum
(hg). of the boundaries.

Fig. 8. Monte-Carlo simulation of class. boundaries to compute PLACE.

We then generate a discrete grid in which each cell mea-
sures 2.5 x 2.5¢m, and compute the number of classifications
boundaries that classify this cell as a success. Dividing
the result by the overall number of boundaries yields the
probability that grasping the cup will succeed from this
position. The corresponding distribution, which takes the
uncertainty of the cup position into account, is depicted in
Fig. 8(b) (2D), as well as in Fig. 3 (3D).

It is interesting to note the steep decline on the right side
of the distribution (in the direction of the table). This is
intuitive, as the table is located on the right side, and the
robot bumps into the table when moving to the sampled
initial position, leading to an unsuccessful navigate-reach-
grasp sequence. Therefore, none of the 12 boundaries contain
this area, and the variation in P on the right side of the PDM
is low. Therefore, variation in B does not have a large effect

2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 5

on this boundary, as can be seen in Fig. 8(b). When summing
over the sampled boundaries, this leads to a steep decline in
success probability in the direction of the table.

B. Uncertainty in Robot Position

The Adaptive Monte Carlo Localization from the Player
project [6] also returns a covariance matrix for the robot’s
position. This uncertainty must be taken into account in
PLACE. For instance, although any position near to the left
of the steep incline in Fig. 8(b) is predicted to be successful,
they might still fail if the robot is actually more to the right
than expected. Therefore, we convolve the PLACE as depicted
in Fig. 8(b) with the discretized (2.5 x 2.5¢m) probability
distribution of the robot’s position. The result can be seen
in Fig. 9(a). Note that this convolution also works for multi-
modal distributions as returned by particle filters.

The distribution in Fig. 9 is the robot’s concept of PLACE
which takes into account the uncertainty in both the pose
of the robot and of the target object. These distributions
are generated from a model that is very much grounded
in observed experience, as it was learned from observation.
Note that this concept is also specific for the task context and
the skills of the robot, i.e. using a different robot or controller
would lead to different observations, and hence to a different
concept of successful PLACEs. It is the developmental process
of learning PLACE that allows us to apply it to a wide range of
robots and controllers. Fig. 9(b) depicts how the probability
distribution is affected by varying task relevant parameters.
Please notice how in the first row, it becomes ‘more difficult’
to grasp the cup (i.e. less likely to succeed) as the cup moves
away from the table’s edge.

V. SUBGOAL REFINEMENT WITH PLACE

Instead of committing to a specific position in advance,
a PLACE enables least-commitment planning, as a whole
range of positions is predicted to be successful, or at least
probable. For instance, the robot could choose any of the
positions for which P(succlt) > 0.95 %« maz(P(succ|t)),
and optimize secondary criteria such as execution duration
or energy consumption to determine the actual position the
robot will navigate to. Selecting subgoal parameters such
that they optimize secondary criteria is known as subgoal
refinement [14]. In this paper, we do not take secondary
criteria into account, but rather optimize the probability of
success, as depicted in Fig. 9(a). As depicted in Fig. 2, this
is the position returned by Subgoal Refinement.

Finally, action-related PLACEs for multiple actions can be
composed by intersecting them. Assuming that their success
probability is independent of each other, the poses in the
intersection are determined as the product of the probabilities
of each single action. Fig. 10 illustrates this for the task
of concurrently grasping two cups. This composition would
be impossible if the robot commits to specific positions in
advance.

-1 05 0 El 05 0 -1 05 0

Fig. 10. PLACE as a composition of the probability distributions of
successful individual task executions. Left distribution: grasp cup with left
gripper. Center distribution: grasp cup with right gripper. Right distribution:
Grab both cups with left/right gripper respectively. It is the product of the
other two individual distributions.

VI. EMPIRICAL EVALUATION

At a open house day at our university, the mobile ma-
nipulation platform described in the Appendix continually
performed an application scenario, where it locates, grasps
and lifts a cup from the table, and then transports it to a
work-surface next to the kitchen oven. Fig. 1 depicts two
pictures taken during the demonstration. The robot performed
this scenario 50 times in approximately 6 hours, which has
convinced us that the robot hardware and software are robust
enough to be deployed amongst the general public.

After the open day, we ran the same experiment, but this
time with the PLA4AMAN module included. The focus of
this experiment was on our error-recovery system described
in [1], and the improved performance of the robot cannot
quantatively be attributed to the addition of the error-recovery
system, or the addition of the PLA4AMAN module. However,
a major qualitative improvement was that the cup could
now be grasped from a much larger area on the table.
Without PLA4AMAN, the cup always had to be placed on
approximately the same position on the table to enable
successful grasping.

Analytically, we compared the PLAAMAN module with
three other strategies: 1) Fixed: the B21 always goes to
a fixed position at the table 2) Relative: the B21 always
goes to a position relative to the cup position 3) Mixed:
which is basically Relative, until a certain minimum distance
to the table is reached. Then it becomes Fixed to avoid
bumping into the table. In one experimental episode, we
first determine the real position of the cup, and sample an
observed position given the real position and the covariance
matrix of the cup. The same is done for the robot position.
Given the ‘estimated’ cup and robot position, the robot then
uses the PLA4AMAN module to compute a PLACE to perform
manipulation. Afterwards it is determined if the grasp from
this position is successful, given the ‘real’ position of the
robot and the cup. Determining a successful grasp is done
by determining if the ‘real’ position of the robot is classified
as a success, given the classification boundary corresponding
to the ‘real’ position of the cup.

The results of this simulation are depicted in Fig. 11, for
varying values of Z4rges (i.€. the cup), oiarget, and oropots
where the covariance matrices of the robot and the cup are
computed with o2-I. The y coordinate of the cup is fixed, as
it hardly influences the success rate. We draw the following

2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING

P(success|x.y)

©

-1.2

(a) Distribution for parameters: x=-
0.3, y=0.1, 0ze=0yy=0.05.

e aiac] a1 s - a

(b) These images show how varying certain task-relevant parameters affects the shape of the distribution. The
table and the cup are drawn to scale in the zy-plane.

Fig. 9. Final distributions, after convoluting the uncertainty in the robot pose with a distribution as depicted in Fig. 8(b). These distributions represent the
robot’s probabilistic least-commitment PLACE, which is task-related, skill-specific, and grounded in experience.

o 08 + : .
© ! Otarget = 0.05 N
206 ! Gropot =005 ' —
g —— Probabilistic Advice
D04 ' Fixed !
' — Relative
02 ' Mixed '
; ; 02 Xoger O : 0
1= - 1 ;
{ . Xtarget=-0.05
0.8 . 0.8 \ Otarget = 0.05
0.6 . \\ 0.6
N Te}
o ' S
« ; °
< 04 ! Xtarget = -0.25 0.4 I
%’ 0z Otarget = 0.05 02 ' %
£ %0 T o1 02 0 . o 02 =
.. ' Orobot . Orobot g
o (=]
(=} ' el
o 1 : 1 ! o
@ I : [
2 ~ ! Xaget=-005 | 3
) N :]
8§ ogf \ 08 O\ Oowt=005) ¢
I ‘ : S
e ' ' =
g 0.6 ' N 0.6 . &
3 : 1 s
: ' o
04 | Xtarget = -0.25 04 '
! Grobot = 0.05 ;
0'20 ' 0.1 0.2 0'20 ' 0.1 0.2

Otarget ' Otarget

Fig. 11. Results of the empirical evaluation.

conclusions from these graphs: 1) overall, the PLAAMAN
module achieves on average a 7% improvement over the
second best strategy, which is ‘Mixed’ 2) It is more difficult
to grasp the cup when it is further away from the edge of
the table. The robot essentially has less freedom in choosing
where to go, and incorrect estimation of the position of the
cup or the robot is more likely to lead to a failed grasp 3) with
very low or high certainty, the methods often perform equally
well. It is in the middle range (i.e. the values most frequently
observed during actual robot deployment), that PLAAMAN
has the greatest advantage of taking uncertainty into account.

Finally, in simulation the robot conducted 750 approaches
with PLA4MAN and the Fixed strategy with 0¢4rget Tanging
between 0.0 and 0.2. The success rates were 0.76 and 0.56
respectively, a significant increase (p < 0.01 with a x2-test).

VII. CONCLUSION

In this article, we have presented a system that enables
robots to learn a concept of PLACE that is compact, grounded
in observed experience, and tailored to the robot’s hardware
and controller. The main advantage is that our system in-
tegrates the often disconnected research areas of navigation
and manipulation planning. By studying the coupling and
interactions between both skills, it is often possible to find
PLACEs where the objects can be grasped by using standard
behavior like motion primitives. PLACE is modelled as a
probability distribution, which enables the robot to perform
least-commitment planning, instead of prematurely commit-
ting itself to specific positions that could be suboptimal.
Optimizing the probability of successful grasping leads to
more robust behavior on our mobile manipulation platform.

We are currently extending our approach in several di-
rections. We are applying our approach to more complex
scenarios, and different domains. For instance, we are learn-
ing higher-dimensional PLACE concepts, which take more
aspects of the scenario into account, i.e. different object
sizes. We are also investigating extensions and other ma-
chine learning algorithms that will enable our methods to
generalize over this larger space. Objects which require very
different grasps, such as using two hands to manipulate them,
will require more sophisticated methods for acquiring and
reasoning about place. Generalization of our place concept
with respect to situations and task contexts is a research
challenge which we have on our mid-term research agenda.

APPENDIX: MOBILE MANIPULATION PLATFORM

The hardware platform we use for our experiments is a
B21r mobile robot from Real World Interface. Its wheels
allow this robot to move forward and turn around its center
axis. Two 6-DOF lightweight arms from Amtec with slide
grippers are mounted on this base, allowing for the manipula-
tion of objects at table height. For localization and navigation,
we use several modules from the Player project [6], being
Adaptive Monte Carlo Localization, pmap for map building,

2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING

and the AMCL Wavefront Planner for global path planning.
These modules use the SickLMS400 laser range scanner and
odometry provided by the base. A combination of Dynamic
Movement Primitives [8] and Vector Fields is used for
reaching and grasping. The inverse kinematics computations
are performed using the Kinematics and Dynamics Library
(KDL) from Orocos. Detection and localization of the objects
to be grasped is done using the method described in [10].
Player and YARP provide the middleware that enable these
software modules to communicate effectively with the hard-
ware, and other software modules. The Gazebo simulator [6]
is used for efficient data collection and debugging purposes.

ACKNOWLEDGEMENTS

The research described in this article is funded by the
CoTeSys cluster of excellence (Cognition for Technical Sys-
tems, http://www.cotesys.org), part of the Excel-
lence Initiative of the DFG.

REFERENCES

[1] Michael Beetz, Freek Stulp, Piotr Esden-Tempski, Andreas Fedrizzi,
Ulrich Klank, Ingo Kresse, Alexis Maldonado, and Federico Ruiz.
Generality and legibility in mobile manipulation. Autonomous Robots
Journal (Special Issue on Mobile Manipulation) (submitted), 2009.

[2] Dmitry Berenson, Rosen Diankov, Koichi Nishiwaki, Satoshi Kagami,
and James Kuffner. Grasp planning in complex scenes. In IEEE-RAS
International Conference on Humanoid Robots, 2007.

[3] Sebastian Buck and Martin Riedmiller. Learning situation dependent
success rates of actions in a RoboCup scenario. In Pacific Rim
International Conference on Artificial Intelligence, page 809, 2000.

[4] B.J. Clement, E. H. Durfee, and A. C. Barrett. Abstract reasoning for
planning and coordination. Journal of Artificial Intelligence Research,
28:453-515, 2007.

[5]

[=))

[6]

[7]

[8]

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

A. Ekstrom, M. Kahana, J. Caplan, T. Fields, E. Isham, E. Newman,
and I. Fried. Cellular networks underlying human spatial navigation.
Nature, 425(184-188), 2003.

Brian Gerkey, Richard T. Vaughan, and Andrew Howard. The
Player/Stage Project: Tools for multi-robot and distributed sensor
systems. In Proceedings of the 1Ith International Conference on
Advanced Robotics (ICAR), pages 317-323, 2003.

S. Hart, S. Ou, J. Sweeney, and R. Grupen. A framework for learning
declarative structure. In RSS-06 Workshop: Manipulation for Human
Environments, 2006.

A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with
nonlinear dynamical systems in humanoid robots. In International
Conference on Robotics and Automation (ICRA2002), 2002.

C. Kemp, A. Edsinger, and E. Torres-Jara. Challenges for robot
manipulation in human environments. /IEEE Robotics and Automation
Magazine, 14(1):20-29, 2007.

Ulrich Klank, Muhammad Zeeshan Zia, and Michael Beetz. 3D
Model Selection from an Internet Database for Robotic Vision. In
International Conference on Robotics and Automation (ICRA), 2009.
Benjamin Kuipers, Patrick Beeson, Joseph Modayil, and Jefferson
Provost. Bootstrap learning of foundational representations. Connec-
tion Science, 18:145-158, 2006.

Pierre Roduit, Alcherio Martinoli, and Jacques Jacot. A quantita-
tive method for comparing trajectories of mobile robots using point
distribution models. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2441—
2448, 2007.

S. Sonnenburg, G. Raetsch, C. Schaefer, and B. Schoelkopf. Large
scale multiple kernel learning. Journal of Machine Learning Research,
7:1531-1565, 2006.

Freek Stulp and Michael Beetz. Refining the execution of abstract
actions with learned action models. Journal of Artificial Intelligence
Research (JAIR), 32, June 2008.

Matthias Wimmer, Freek Stulp, Sylvia Pietzsch, and Bernd Radig.
Learning local objective functions for robust face model fitting. IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI),
30(8):1357-1370, 2008.

F. Zacharias, Ch. Borst, and G. Hirzinger. Capturing robot workspace
structure: representing robot capabilities. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 3229-3236, 2007.

