
Compact Models of Motor Primitive Variations
for Predictable Reaching and Obstacle Avoidance

Freek Stulp§,‡,¶, Erhan Oztop†,‡, Peter Pastor§, Michael Beetz¶, Stefan Schaal§,‡

Abstract— In most activities of daily living, related tasks are
encountered over and over again. This regularity allows humans
and robots to reuse existing solutions for known recurring tasks.
We expect that reusing a set of standard solutions to solve
similar tasks will facilitate the design and on-line adaptation of
the control systems of robots operating in human environments.

In this paper, we derive a set of standard solutions for
reaching behavior from human motion data. We also derive
stereotypical reaching trajectories for variations of the task,
in which obstacles are present. These stereotypical trajectories
are then compactly represented with Dynamic Movement Prim-
itives. On the humanoid robot Sarcos CB, this approach leads
to reproducible, predictable, and human-like reaching motions.

I. INTRODUCTION

In almost all activities of daily living, related tasks are
encountered over and over again. Therefore, humans “tend
to solve similar or even identical instances over and over,
so we can keep recycling old solutions with minor mod-
ifications” [1]. Motor primitives are an effective way of
representing solutions to specific tasks, and have proven to be
a successful approach for motor control in animals [2], [3],
as well as in robots [4]. Reusing a set of standard solutions
to solve similar tasks 1) drastically reduces the search space
for control; 2) makes learning control in high dimensional
movement systems feasible; 3) facilitates the design and on-
line adaptation of the control systems of robots operating in
human environments.

In this paper, we focus on the second part of the ini-
tial quote: “recycling old solutions with minor modifica-
tions” [1], and investigate methods for generalizing motor
primitives, so that they not only provide solutions to a
specific task, but also to variations of this task. We apply
these ideas to a task in which the robot reaches for a target
object, where some standard variations arise due to the
presence of obstacles.

The humanoid robot used in this work learns the appropri-
ate response to task variations from human demonstration,
acquired with a motion tracking system. Instead of training
the robot with just any reaching trajectory, we first gather
human motion under different task conditions, and model it

§Computational Learning and Motor Control Lab, University of Southern
California, Los Angeles, CA, USA

†National Institute of Information and Communications Technology
(NICT), Kyoto, Japan
‡Computational Neuroscience Laboratories, Advanced Telecommunica-

tions Research Institute International, Kyoto, Japan.
¶Intelligent Autonomous Systems Group, Technische Universität

München, Munich, Germany
Contact E-mail: stulp@clmc.usc.edu

with Point Distribution Models and clustering techniques to
acquire a set of stereotypical reaching trajectories for both
the default and avoidance behaviors. We then train Dynamic
Movement Primitives [4] for these stereotypical trajectories,
which enables there execution on the humanoid robot ‘Sarcos
CB’ [5]. This process is summarized in Fig. 1. The result is a
small set of reaching motor primitives that deals with many
different obstacle positions. We also compute a mapping
from task parameters to appropriate reaching motion, to deal
with the multi-modality inherent in the task.

Fig. 1. Extracting avoidance strategies from human reaching motion data,
and using them to control a humanoid robot.

Encoding motor primitive variations in this way leads to:
Compact representations. Directly mapping a task con-

text to a motor primitive (variation) does not require an on-
line search for the solution, and therefore places much less
computational load on the system during task execution.

Predictable motion. The response to a static obstacle
is not determined on-line during task execution, but is
rather pre-planned, by encoding the obstacle in the desired
trajectory. As the trajectory is pre-planned, it is reproduced in
a similar way in similar situations. This reproduction causes
the reaching behavior to be more predictable, which makes it
easier to learn internal models for them. As the same motor
primitive solution is reproduced over and over again for the
same task, it can also be optimized, as humans do [6].

Legible motion. Predictable human-like behavior facili-
tates the interpretation of intentions for outside observers, i.e.
the behavior becomes more legible. This will enable humans
to more easily perform perspective taking and intention
recognition [7], which is necessary to enable implicit coor-
dination in joint human-robot tasks. Explicitly representing
task variations as Dynamic Movement Primitives enables
the robot to also recognize these variations in the behavior
of others, and determine that it is a variation of a default
trajectory, rather than a trajectory in its own right.

In the long run, we expect robots in human environments



to not have just a fixed set of motor primitives, but rather a
growing library of ‘compiled’ solutions and variations upon
them, which the robot autonomously tailors to the specific
environment it is in, through chunking and optimization, as
humans do [6].

The main contributions of this paper are: 1) Present-
ing a novel application of trajectory comparison methods
from robotics and computer vision to human reaching data;
2) Demonstrating the advantages of explicitly representing
standard solutions to standard tasks and task variations;
3) Showing how such variations are compactly represented
as Dynamic Movement Primitives [4]; 4) Evaluating this
approach in the context of a state-of-the-art humanoid robot.

The rest of this paper is structured as follows. In the next
section, we discuss related work. In Section III, we describe
how principal trajectories are extracted from human motion
data, and in Section IV how these trajectories are executed on
the robot using Dynamic Movement Primitives. We present
the results of the empirical evaluation in Section V, and
conclude with Section VI

II. RELATED WORK

In recent years, impressive capabilities in performing ma-
nipulation in complex, cluttered and dynamic environments
have been demonstrated by very general approaches based
on, for instance, search [8] or potential fields [9]. However,
by treating each problem as a novel one that needs to
solved on-line (either through search or on-line adaptation),
these approaches do not exploit task regularities that arise in
everyday operation. The world is much simpler than the most
general imaginable case, and these regularities, which Ian
Horswill calls ‘loopholes of life’ [1] are there to be exploited.
By using standard solutions, we achieve the advantageous
properties listed in the previous section. However, such
standard solutions will not work for completely novel tasks
(e.g. very cluttered scenes), or very dynamic scenarios (e.g.
quickly moving obstacles). From an engineering perspective,
we see our approach not as a replacement, but as a com-
plement to methods that deal with such circumstances [8],
[9]. In Section VI, we give an example of how they can be
combined.

Considerable work on determining the influence of ob-
stacles on reaching motion has been done in experimental
psychology [10], [11]. These studies use features of trajec-
tories to determine if a trajectory is affected by an obstacle,
such as lateral deviation from the default behavior in the xy-
plane [10], or movement time, maximum grip aperture and
maximum speed [11]. However, to derive compact models
for robot control, we need to consider the trajectories as
a whole, and cannot reduce it to only several features.
Applying trajectory comparison methods from robotics and
computer vision is one of the contributions of this paper.

Imitating trajectories was first used in the context of
industrial robots 30 years ago, in very constrained task
contexts and with fixed goals. By using Dynamic Movement
Primitives to model the trajectories, adapting to novel goals
is possible. Furthermore, we relate external task relevant

parameters (the position of the target object) to internal motor
parameters, i.e. which DMP to use to avoid the obstacle.

Jenkins and Matarić also propose a method for deriving
modular skills from kinematic motion data of humans [12].
Their focus is on segmenting and clustering motion prim-
itives from extended human dance routines. In contrast
to relating obstacle positions to trajectory variations, the
behavioral meaning of such statistical segments is often not
clear. Also, they do not have inherent stability properties.

A related approach uses Gaussian mixture models to
encode a set of trajectories [13]. One main difference to
our approach is that Calinon et al. use kinesthetics (i.e. the
human teacher moves the robot’s actuators), whereas we use
human motion data. As we strive for natural human-like
motion, human motion data is essential to our approach. As
to the methodology, Calinon et al. model the variance in the
trajectory sets with Gaussian mixture models. One downside
of this approach is that unwanted averaging effects may arise
when multi-modal solutions exist. For instance, for several
obstacle positions, the subject usually chooses avoid the
obstacle by going around it on the left side, but sometimes
also on the right side. The average, going in between, would
lead to a certain collision. We deal with multi-modality by
clustering the trajectories before processing them further.

III. DETERMINING PRINCIPAL TRAJECTORIES FROM
HUMAN MOTION DATA

This section explains how we 1) gather human data with a
motion tracking system 2) discern between reaching motions
that were influenced by an obstacle, and those that were
not; 3) perform a clustering to acquire stereotypical reaching
movements for the default and avoidance behaviors1. The
goal of this analysis is to have the robot not imitate just any
reaching motion, but have it imitate a few that enable it to
deal with the task variations that occur. We call these few
stereotypical trajectories the principal trajectories. How they
are represented by the robot is described in Section IV.

A. Data Acquisition

The reaching motions were captured with a Polhemus
Liberty magnetic position/orientation tracker. One sensor was
attached to the hand, as depicted to the left in Fig. 1, and
another sensor was attached to the glass to measure the exact
time when the lifting movement started.

In the experiment, the subject sits at a table, and is asked
to repeatedly reach for, grasp, and lift a target glass. The
hand always starts in the black square in Figure 2. Before
each reaching motion, an obstacle glass is placed on different
positions on a 40x80cm grid on the table. In Figure 2 for
example, the obstacle glass is at position D6. The target glass
is always at position B4. The obstacle glass was placed 10
times on each of the 29 positions. Furthermore, 30 reaching
motions were performed without any obstacle glass. These
are the ‘default-trajectories’ The total number of reaching

1Section III is a brief overview of the work presented in more detail
in [14].



Fig. 2. Left: Positions of the obstacles on the table. The green glass is
the target glass, which is always at position B4. The flat black region is the
initial location of the fingers. Right: 320 recorded reaching trajectories.

motions is therefore 29*10+30 = 320. The order of obstacle
placement was random, to avoid learning effects.

After data acquisition, the trajectories are cropped so that
they start when the hand starts moving, and end when the
target cup starts moving. All trajectories are resampled using
cubic spline interpolation so that they contain 100 samples.
This is necessary to apply the Point Distribution Model,
described in the next section.

B. Discerning between default/avoid trajectory sets

If obstacles are far away from the target glass (e.g. at
positions A1 or C8), we expect them not to have an influence
on the reaching motion. One of the goals of this experiment
is to determine the region in which obstacles influence the
reaching motion. In this section, we describe a distance
measure between sets of trajectories. For instance, we expect
the distance between A1- and C8-trajectories to the default-
trajectories to be small. We use this distance measure to
discern between default and avoid trajectory sets.

We used the trajectory comparison approach described
Roduit et al. [15]. Here, the difference measure between
two sets of trajectories is computed by 1) computing a Point
Distribution Model (PDM) of the two sets of trajectories by
performing a Principal Component Analysis on the merged
sets of trajectories 2) taking only the first n components
of the deformation matrix in the PDM, by inspecting the
eigenvalues of the covariance matrix of the merged trajecto-
ries 3) computing the Mahalanobis distance d between the
coefficients of the two sets of trajectories. A more detailed
explanation of this method can be found in [15].

This distance measure d is computed between all sets
of trajectories A..D1..8, and the default-trajectories. The
height of the glasses in Figure 3 represents d for the set of
reaching motions when the obstacle was at that position. We
automatically determine an appropriate threshold on d (called
dthres) by determining the valley point of the histogram of
the d values. The distance d between the C5, D5, D6, C4,
C6, D4, C3-trajectories and the default-trajectories is higher
than this threshold. These seven positions are depicted as red
glasses labeled ‘A’ in Figure 3.

Fig. 4(a) depicts the mean of the 10 trajectories for each
obstacle position. The central blue bundle are the means
for those obstacle positions for which d < dthres, i.e.

Fig. 3. The height of the glass represents d for that obstacle position.
dthres is 7.51 for this graph. The red glasses (at C5, D5, D6, C4, C6,
D4, C3, marked ’A’) lie above this threshold.

the obstacle did not influence the reaching motion. The
red trajectories alongside are those when the obstacle did
influence the reaching trajectory, and d > dthres.

(a) Mean per obstacle po-
sition

(b) AVOID trajectories

Fig. 4. Discerning between default and avoidance trajectory sets.

In Fig. 4(b), the thick blue trajectory in the center is the
mean of all default trajectories. The thin red trajectories are
the 70 trajectories corresponding to the 7 obstacle positions
where d < dthres, i.e. when the obstacle influenced the
reaching motion. These will be used for clustering in the
next section.

C. Determining principal trajectories with clustering

The next step is determining principal trajectories that
represent qualitatively different strategies for avoiding the
obstacle. We do so by performing a k-means clustering on
the 70 trajectories in the AVOID-trajectories set2.

The clustering is performed in the 3D PCA space, being
the first three deformation modes as defined in the previous
section. The distance between two trajectories is determined
by the angle between the two 3-dimensional vectors rep-
resenting the deformation modes of the PDM. 7 clusters

2The reason why we do include all 320 trajectories in the clustering, is
because it might be biased towards default behavior. For instance, suppose
the table would have been 10m by 10m, and we had placed obstacles at
10.000 positions on this table. We would expect that obstacles at only a few
(e.g. the 4 we determined in the previous section) positions would affect
reaching behavior. Including the unaffected trajectories for the other 9.996
positions in the clustering would lead to an over-representation of unaffected
trajectories, and hence a bias. Therefore, we first split the sets of trajectories
DEFAULT and AVOID, and perform clustering only on AVOID.



are chosen, because increasing the number of clusters leads
the differences between the clusters to be lower than the
threshold d, used to discern between DEFAULT and AVOID
trajectories.

1

2

3

4

5

6
7D

12

3

4
5

6
7D

1

2
3

4
5 6 7

D

Fig. 5. The principal trajectories, seen from different angles. The default
trajectory is in the center (D), and seven avoid trajectories are around it
(1..7).

In Fig. 5, the averages of trajectories in the seven clus-
ters are depicted. We call these the ‘principal trajectories’.
Furthermore, Fig. 6 depicts which trajectories are used to
avoid which obstacle. For example, if the obstacle was at
position ‘D6’ (lower right), the subject used a reaching
motion belonging to cluster 7 almost on out of four times,
as indicated by the arrow.

6
5

4

2

1

5
4

2

1
5

3

2

1

6

5
4

6

4 3

1 5

4
3

2

1 7

6

5

4

C

D

B

3 4 5 6

4

13

7

6
5

2

Fig. 6. The mapping from obsta-
cle positions to principal trajectories.
The default trajectory is used for all
obstacle positions.

Fig. 7. Original principal trajecto-
ries (x, dark lines), and their repro-
duction with a DMP (xDMP , bright
markers).

IV. TRAJECTORY IMITATION WITH DYNAMIC
MOVEMENT PRIMITIVES

This section briefly describes the dynamic movement
primitive framework, discusses movement generalization to
new goals, presents our modified DMP formulation, and its
extension to obstacle avoidance.

A. Dynamic Movement Primitives

Dynamic Movement Primitives (DMPs) can be used to
generate discrete and rhythmic movements. Here, we focus

on discrete movements. A one dimensional movement is
generated by integrating the following set of differential
equations3, which can be interpreted as a linear spring system
perturbed by an external forcing term:

τ v̇ = K(g − x)−Dv −K(g − x0)s+Kf(s) (1)
τ ẋ = v , (2)

where x and v are position and velocity of the system; x0
and g are the start and goal position; τ is a temporal scaling
factor; K acts like a spring constant; the damping term D
is chosen such that the system is critically damped, and f
is a non-linear function which can be learned to allow the
generation of arbitrarily complex movements. This first set
of equations is referred to as a transformation system. The
non-linear function is defined as

f(s) =
∑

i wiψi(s)s∑
i ψi(s)

, (3)

where ψi(s) = exp(−hi(s− ci)2) are Gaussian basis func-
tions, with center ci and width hi, and wi are adjustable
weights. The function f does not directly depend on time;
instead, it depends on a phase variable s, which monotoni-
cally changes from 1 towards 0 during a movement and is
obtained by the equation

τ ṡ = −α s , (4)

where α is a pre-defined constant. This last differential equa-
tion is referred to as canonical system. These sets of equa-
tions have some favorable characteristics: 1) Convergence to
the goal g is guaranteed (for bounded weights) since f(s)
vanishes at the end of a movement. 2) The weights wi can
be learned to generate any desired smooth trajectory. 3) The
equations are spatial and temporal invariant, i.e., movements
are self-similar for a change in goal, start point, and temporal
scaling without a need to change the weights wi. 4) The
formulation generates movements which are robust against
perturbation due to the inherent attractor dynamics of the
equations.
To learn a movement from demonstration, first, a move-
ment x(t) is recorded and its derivatives v(t) and v̇(t) are
computed for each time step t = 0, . . . , T . Second, the
canonical system is integrated, i.e., s(t) is computed for
an appropriately adjusted temporal scaling τ . Using these
arrays, ftarget(s) is computed based on (1) according to

ftarget(s) =
τ v̇ +Dv

K
− (g − x) + (g − x0) s . (5)

where x0 and g are set to x(0) and x(T ), respectively. Thus,
finding the weights wi in (3) that minimize the error criterion
J =

∑
s

(
ftarget(s) − f(s)

)2
is a linear regression problem,

which can be solved efficiently. We solve it using Locally
Weighted Projection Regression (LWPR) [16], which is a
locally weighted learning approach, in which the number of
local linear models required to approximate the function is

3We use the formalization of DMPs as proposed in [9, Section III].



determined automatically. The centers ci and bandwidths hi

of the basis functions representing the receptive fields of the
local linear models are also determined automatically.

A movement plan is generated by reusing the weights wi,
specifying a desired start x0 and goal g, setting s = 1, and
integrating the canonical system, i.e. evaluating s(t). The
obtained phase variable then drives the non-linear function
f which in turn perturbs the linear spring-damper system to
compute the desired attractor landscape.

The trajectory of the end-effector in 3D Euclidean space
is acquired by training one such DMP per dimension, and
coupling their phase s during movement execution.

B. Application to Reaching Trajectories

For each of the reaching motions in Fig. 5, a DMP is
trained on the 3D trajectory of the end-effector in Euclidean
space. Each dimension starts of with 4 basis functions,
which is too few to describe the trajectory accurately. During
training LWPR then adds basis functions and adapts their
centers and weights until the trajectory is approximated
well enough, i.e. the error criterion J summed over all
dimensions drops below 0.005. In our experience, this value
yields a good trade-off between the accuracy of the trajectory
following and the number of basis functions used.

The trajectories these DMPs generate are depicted in
Fig. 7, alongside the original trajectories. We introduce the
following notation for these concepts:
• x: An end-effector trajectory in 3D Euclidean space
• x—: The default trajectory in 3D Euclidean space
• x∼n: The nth avoid trajectory. The — and ∼ symbols

are mnemonics, referring to a relatively ‘straight’ de-
fault or ‘curved’ avoidance trajectory.

• DMP—/DMP∼n: The DMP learned from the
default/nth avoid trajectory.

• x—
DMP or x∼n

DMP: The trajectory generated by the DMP
learned from the default or nth avoid trajectory.

From Fig. 7, it is clear that reproduced trajectories are
very similar to the original ones. The mean number of
basis functions per trajectory required to represent these
trajectories is 41.8. Note that this is 13.9 basis functions
for each of the three DMP dimensions, representing the x,y
and z component of the trajectory.

C. Compact representation of avoidance strategies

Learning one DMP for each trajectory, independently of
the other trajectories, ignores the strong relationship between
them. An alternative representation is to use the DMP— to
represent the default trajectory x—, and train other DMPs
with the difference between the default and avoid trajectories.

There are several advantages to representing solutions of
task variations as modifications to the default trajectory,
rather than as solutions in their own right. From a behavioral
point of view, there are no advantages, as the resulting
behavior is the same (compare Fig. 7 and Fig. 9). However
we believe this representation is conceptually preferable, and
generalizes better to novel situations.

First of all, related actions are encoded together, and with
the same representation, which makes the relation between
them explicit. This leads to a more compact representation of
the trajectories, as we shall see in Table II. Asfour et al. [17],
who use a similar ‘difference strategy’ to encode trajectories,
motivate that such a representation generalizes better to new
trajectories. Furthermore, recent work has demonstrated that
it is possible to directly learn a mapping from external
task-relevant parameters to internal motor parameters, if a
compact representations for actions are available, for instance
as B-splines [18]. We are currently evaluating how compact
representation of obstacle avoidance strategies enable a direct
mapping from obstacle position to motor primitive parame-
terization. Finally, DMPs can also be used for movement
recognition [4]. We expect that explicitly representing task
variations as DMPs enables the robot to also recognize these
variations in the behavior of others, and determine that it is
a variation of a default trajectory, rather than a trajectory in
its own right.

To learn difference trajectories, we first generate a tra-
jectory with the default DMP—, but scaled to the goal of
the avoid trajectory x∼n. This yields a trajectory which we
denote x—

DMP⇒gn . Even if DMP— is scaled to the novel goal,
there are still qualitative differences between x—

DMP⇒gn and
x∼n, as can be seen in Fig. 8. We therefore compute the
difference between the generated scaled trajectory, and the
avoid trajectory, which yields x∆.

(0,0)

(0,0)

Fig. 8. The process of computing the difference trajectory x∆1 from
the avoid trajectory x∼1 and the trajectory x—

DMP⇒g1 , generated by the
default DMP, but with the goal g1. Note that x∆1 does not share the same
coordinate frame with the other trajectories, as indicated by its own small
axes. As the start- and end-point of x∼n and x—

DMP⇒gn always coincide,
each x∆n starts and ends at (0,0,0).

The final step is to train a DMP for each of the x∆

trajectories, which yields the Dynamic Movement Primitives
x∆

DMP. In Fig. 9, the original and reproduced trajectories are
depicted (the butterfly-like shape). Now, to reconstruct the
nth avoid trajectory, we compute x∼n = x—

DMP⇒gn + x∆n
DMP.

That this representation is more compact becomes clear
from Table II, where this approach is listed in the second
row. Of course, the default trajectory is still represented
with DMP—, so its number of basis functions does not
change. However, by representing the avoid trajectories with



Obst- Simulation Real robot
acle Default Avoid Default Avoid
pos. SR (20x) MD Trajs. used (20x) SR (20x) MD SR (4x) Trajs. used (1x) ¬used SR
C3 1.00 4.1 1 2 4 5 6 1.00 7.1 1.00 1 2 4 5 6 3 7 1.00

C4 0.00 N.A. 1 2 4 5 1.00 2.5 0.00 1 2 4 5 �C3 �C6 �C7 1.00

C5 0.00 N.A. 1 �C2 �C3 5 0.75 1.0 0.00 �C1 �C2 �C3 5 4 �C6 �C7 0.40

C6 1.00 5.2 4 5 6 1.00 5.7 1.00 4 5 6 �C1 �C2 �C3 7 1.00

D4 0.00 N.A. 1 3 4 6 1.00 1.2 0.00 1 3 4 �C6 2 �C5 �C7 0.70

D5 0.00 N.A. �C1 2 �C3 4 �C5 0.60 0.8 0.00 1 2 3 4 5 �C6 �C7 1.00

D6 1.00 2.5 4 5 6 7 1.00 4.5 1.00 4 5 6 7 �C1 �C2 �C3 1.00

TABLE I
SUCCESS RATES IN SIMULATION AND ON THE REAL ROBOT (SR=SUCCESS RATE, MD=MINIMUM DISTANCE).

Fig. 9. Reproducing the trajectories using DMPs, as a summation of
x—

DMP⇒gn and x∆n
DMP .

DMP∆ instead of DMP∼, the number of basis functions
required to represent the avoid trajectories halves from 42.6
to 21.1, whilst the error between the original trajectory and
the generated trajectory remains the same.

Number of basis functions
All (8x) Default (1x) Avoid (7x)

1 DMP— +
P
8

P
1

P
7

7 DMP∼ 41.8 36.0 42.6
7 DMP∆ 23.0 36.0 21.1

TABLE II
AVERAGE NUMBER OF BASIS FUNCTIONS NEEDED TO ENCODE THE

TRAJECTORIES AS A DMP.

V. EMPIRICAL EVALUATION

The empirical evaluation was conducted with the hu-
manoid robot Sarcos CB [5], both in simulation and on
the real robot. To execute the DMPs, we compute the joint
angles from the end-effector trajectory by using velocity-
based inverse kinematics based on pseudo-inverse of the
Jacobian.

In simulation, the robot performed 20 reaching motions for
each obstacle position. In each episode, the trajectory chosen
to avoid the obstacle was chosen probabilistically, according
to the distributions depicted in Fig. 6. For comparison, the
default trajectory was also used for each episode.

Table I summarizes the results in both simulation and
on the real robot. The first column lists the seven obstacle
positions, and then the success rates (SR) of applying the
default and probabilistically chosen avoid trajectories. For
the avoid trajectories 1..7, the column denoted ’Trajs. used’
lists which chosen avoid trajectories were successful, and
which failed. �Zn indicates that the robot collided with the
obstacle when executing principal trajectory n. As a quality
measure, we also list the mean minimum distance (MD) to
the obstacle over the successful reaching motions. ‘N.A.’ (not
applicable) indicates that no trajectory was successful.

We draw the following conclusions from these results:
1) Using avoid trajectories substantially improves the success
rate of reaching over using the default trajectory, and also in-
creases the mean minimum distance to the obstacle. 2) There
are three obstacles positions (C3,C6,D6), where humans
choose an avoid strategy, but the robot can also successfully
use the default trajectory. However, using an avoid trajectory
does increase the minimum distance to the obstacle, so an
advantage remains. 3) Not all avoid trajectories are success-
ful for the robot. These can be excluded during operation.
We see these results as the basis for further refinement (i.e.
with Reinforcement Learning) of the avoidance strategies the
robot should use.

VI. CONCLUSION

In this paper, we have presented a novel application
of methods for comparison and clustering of robotic tra-
jectories to human reaching data. We have demonstrated
how the principal trajectories that arise from this analysis
are compactly modeled as variations on a default motor
primitive. Here, the variations share the representation with
the default, but have a lower-dimensionality. By maintaining
the specificity of motor primitives for a certain task, but also
generalizing them to common variations on this task, we
are essentially exploiting the loophole that the task and its
variations frequently occur.

The Point Distribution Model has proven to be a versatile
and effective tool for the comparison of sets of trajectories.
Instead of choosing one or two trajectory features manually,
this approach considers the trajectories as a whole, and ob-
jectively extracts relevant features from them automatically
using PCA. We see great potential for using this technique



in other reaching motion experiments from experimental
psychology.

Pre-planned trajectories can still easily be combined with
potential fields to avoid dynamic objects. Although not
implemented for this paper, Fig. 10 demonstrates how our
approach of having standard solutions to avoiding state
obstacles, can be elegantly combined with the standard DMP
approach ([4]), extended with potential fields for on-line
avoidance of dynamic obstacles ([9]).

default DMP (no obstacles)

variation poten-
tial
fiel

adaptation to dynamic obstacles

linear term non-linear

avoid DMP (adaptation to static  obstacles)

Fig. 10. The different parts of the extended DMP formula, and their role in
adaptation to static and dynamic task variations. Here, p(x,v) is a potential
field that repels the end-effector away from the obstacle, depending on the
distance and relative velocities between them [9].

Also, we are interested in generalizing over objects, by
analyzing how different properties of an object (i.e. size,
shape, etc.), rather than specific objects themselves, influence
the trajectory. By finding commonalities between features,
and generalizing over them, we believe the number of motor
primitive variation required to deal with a large set of tasks
can be kept quite low. We will also focus on integrating
grasp planning algorithms with our approach, which for now
focuses on reaching trajectories only.

VII. ACKNOWLEDGEMENTS

We would like to thank Etienne Bousquié, Ingo Kresse,
Alexis Maldonado, and Federico Ruiz for their assistance
in gathering the data. Freek Stulp was supported by a
Post-doctoral Research Fellowship from the Japanese Soci-
ety for the Promotion of Science. The research described
in this article is also partially funded by the CoTeSys
cluster of excellence (Cognition for Technical Systems,
http://www.cotesys.org), part of the Excellence Ini-
tiative of the DFG.

REFERENCES

[1] I. D. Horswill, “Specialization of perceptual processes,” Ph.D. disser-
tation, MIT, Cambridge, MA, USA, 1993.

[2] T. Flash and B. Hochner, “Motor primitives in vertebrates and inver-
tebrates,” Current Opinion in Neurobiology, vol. 15, 2005.

[3] S. Schaal and N. Schweighofer, “Computational motor control in
humans and robots,” Current Opinion in Neurobiology, vol. 15, pp.
675–682, 2005.

[4] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots,” in International
Conference on Robotics and Automation (ICRA2002), 2002.

[5] G. Cheng, S. Hyon, J. Morimoto, A. Ude, J. Hale, G. Colvin,
W. Scroggin, and S. C. Jacobsen, “CB: A humanoid research platform
for exploring neuroscience,” Journal of Advanced Robotics, vol. 21,
no. 10, pp. 1097–1114, 2007.

[6] R. Sosnik, B. Hauptmann, A. Karni, and T. Flash, “When practice
leads to co-articulation: the evolution of geometrically defined move-
ment primitives,” Experimental Brain Research, no. 156, 2004.

[7] E. Oztop, D. Franklin, T. Chaminade, and G. Cheng, “Human-
humanoid interaction: Is a humanoid robot perceived as a human?”
International Journal of Humanoid Robotics, vol. 2, 2005.

[8] D. Berenson, R. Diankov, K. Nishiwaki, S. Kagami, and J. Kuffner,
“Grasp planning in complex scenes,” in IEEE-RAS International
Conference on Humanoid Robots, 2007.

[9] H. Hoffmann, P. Pastor, D.-H. Park, and S. Schaal, “Biologically-
inspired dynamical systems for movement generation: Automatic real-
time goal adaptation and obstacle avoidance,” in IEEE International
Conference on Robotics and Automation, 2009.

[10] C. S. Chapman and M. A. Goodale, “Missing in action: the effect of
obstacle position and size on avoidance while reaching,” Experimental
Brain Research, 2008.

[11] M. Mon-Williams, J. R. Tresilian, V. L. Coppard, and R. G. Carson,
“The effect of obstacle position on reach-to-grasp movements,” Ex-
perimental Brain Research, vol. 137, pp. 497–501, 2001.

[12] O. C. Jenkins and M. J. Matarić, “Performance-derived behavior
vocabularies: Data-driven acquisition of skills from motion,” Inter-
national Journal of Humanoid Robotics, vol. 1, no. 2, 2004.

[13] S. Calinon, F. Guenter, and A. Billard, “On learning, representing
and generalizing a task in a humanoid robot,” IEEE Transactions on
Systems, Man and Cybernetics, Special issue on robot learning by
observation, demonstration and imitation, vol. 37, no. 2, 2007.

[14] F. Stulp, I. Kresse, A. Maldonado, F. Ruiz, A. Fedrizzi, and M. Beetz,
“Compact models of human reaching motions for robotic control in
everyday manipulation tasks,” in Proceedings of the 8th International
Conference on Development and Learning (ICDL). To appear., 2009.

[15] P. Roduit, A. Martinoli, and J. Jacot, “A quantitative method for
comparing trajectories of mobile robots using point distribution
models,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2007, pp. 2441–2448.

[16] S. Vijayakumar, A. D’Souza, and S. Schaal, “Incremental online
learning in high dimensions,” Neural Computation, vol. 17, 2005.

[17] T. Asfour, K. Welke, A. Ude, P. Azad, J. Hoeft, and R. Dillmann,
“Perceiving objects and movements to generate actions on a humanoid
robot,” in ICAR Workshop: From features to actions - Unifying
perspectives in computational and robot vision, 2007.

[18] A. Ude, M. Riley, A. Kos, B. Nemec, T. Asfour, , and G. Cheng,
“Goal-directed action synthesis from a library of example movements,”
in Proc. of the IEEE-RAS Int. Conf. on Humanoid Robots, 2007.


