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Abstract—Autonomous personal robots are currently being
equipped with hands and arms that have kinematic redundancy
similar to those of humans. Humans exploit the redundancy
in their motor system by optimizing secondary criteria. Tasks
which are executed repeatedly lead to movements that are highly
optimized over time, which leads to stereotypical [25] and pre-
planned [15] motion patterns. This stereotypical motion can
be modeled well with compact models, as has been shown for
locomotion [1]. In this paper, we determine compact models for
human reaching and obstacle avoidance in everyday manipula-
tion tasks, and port these models to an articulated robot.

We acquire compact models by analyzing human reaching
data acquired with a magnetic motion tracker with dimensional-
ity reduction and clustering methods. The stereotypical reaching
trajectories so acquired are used to train a Dynamic Movement
Primitive [12], which is executed on the robot. This enables the
robot not only to follow these trajectories accurately, but also
uses the compact model to predict and execute further human
trajectories.

I. INTRODUCTION

Autonomous personal robots are currently being equipped
with hands and arms that are increasingly similar to those of
humans, with respect to workspace, motion characteristics,
and degrees of freedom [24], [16]. As the internal (joint)
space of these robots is much higher than the external
(task) space, the resulting kinematic redundancy is a valuable
resource for optimizing robot motion. In recent years we
have seen a number of powerful, high-performance motion
planning approaches that are capable of searching the high-
dimensional space of motion plans and can produce effective
and often efficient plans, even in cluttered scenes [2].

Unlike these motion planning approaches that tend to
generate specific motion plans for every manipulation task,
humans usually perform these manipulation tasks with highly
stereotyped movement patterns [25].

There are good reasons that the motions of robots for
everyday manipulation tasks in the presence of, and in co-
operation with, humans should be similar to human reaching
behavior. First, robots with human-like motion will enable
humans to more easily perform perspective taking and inten-
tion recognition [17]. This is necessary to enable implicit
coordination (which humans use when coordinating their
actions) in joint human-robot tasks. Second, we believe that
robots acting in human environments have to learn advanced
manipulation skills through imitation learning [21], [3]. The
task of transferring observed reaching and grasping behav-
ior into the robot’s motion control system becomes much

easier if both motion control systems apply similar control
strategies. Third, humans can sequence motion primitives
seamlessly [7]. We expect that robots that have the same
motion primitives as humans are able to achieve similar
smooth execution of motion primitives [23].

(a) Movement data acquisition.
⇒

(b) Robot execution.

Fig. 1. Translating observed human movements to robot trajectories using
compact models.

In this paper we investigate the human reaching behavior
for object grasping in simple situations with one obstacle.
The purpose of this investigation is the rational reconstruction
of a computational model that can predict human reaching
behavior by first predicting the motion strategy that the
human will apply and then predicting the particular motion
pattern that results from the application of the strategy to the
particular reaching task. We implement the computational
model and apply it to an autonomous robot with a 6-dof arm
to produce very similar reaching behavior.

We consider the possibility of specifying compact control
programs for robot reaching, that are capable of producing
behavior that shows many of the advantages of human
reaching behavior, a powerful computational mechanisms
for the realization of robots that are to perform everyday
manipulation tasks, as they are required in the course of
housework, for example.

The key contributions of this paper are the following:
1) We derive from experimental data a computational model
for human reaching behavior for objects standing on a plane
with a single obstacle with varying location. This model con-
sists of a strategy selection component that decides whether
the obstacle can be ignored, or which strategy should be
applied to reach around the obstacle. The second component
predicts the motion trajectory for each strategy with high
probability and accuracy. 2) As a proof of concept, we realize
this compact model on an autonomous manipulation platform
to produce similar reaching behavior.
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The rest of this article is structured as follows. In the
next section, we discuss related work. In Section III we
describe the experimental design for recording data of human
reaching trajectories, and in Section IV we explain how
stereotypical trajectories are derived from this data. How
these stereotypical trajectories are ported to the robot is
described in Section V. We conclude with a summary and
outlook in Section VI.

II. RELATED WORK

One inspiration for this work has been the work by
Arechavaleta et al. [1] on modeling human locomotion
trajectories with clothoids. With these compact models with
only a few parameters, it is possible to describe well the
large variation in walking to different positions, but also in
between different subjects. In this paper, we apply a similar
approach to the domain of reaching and manipulation, and
port these compact models to a robot.

Considerable work on determining the influence of ob-
stacles on reaching motion has been done in experimen-
tal psychology. In [5] for instance, two obstacles of with
different heights are placed on 4 pairs of positions on a
table (16 combinations in total). Subjects then reach for
a target object at a fixed position, and the trajectories are
recorded with two OPTOTRAK cameras. The results also
show that certain obstacle positions have no influence on
the trajectories, whereas others do have predictable effects.
Similar studies use features of trajectories to determine if a
trajectory is affected by an obstacle, such as lateral deviation
from the default behavior in the xy-plane [5], or movement
time, maximum grip aperture and maximum speed [15].
However, to derive compact models for robot control, we
need to consider the trajectories as a whole, and cannot
reduce it to only several features.

In contrast to our approach, which uses pre-planned
stored trajectories, classical motion-planners such as Rapidly-
exploring Random Trees (RRTs) rather perform a novel
search for each situation by incrementally exploring the state
space until a goal state is found. Although these planners
can find solutions even in very cluttered environments, they
often disregard previous search results and cannot guaran-
tee smoothness or (even local) optimality. We believe that
the two approaches complement each other well. Using
search is appropriate when novel complex environments
are encountered, but using a set of standard prototypical
trajectories to solve standard situations which are frequently
encountered is beneficial as 1) these trajectories can be
smoothed and optimized incrementally with every execution,
so as to achieve a level of performance and reliability in
everyday activities which is hard to achieve with single-
query approaches [25]; 2) a potentially expensive search is no
longer required. Existing experiments on obstacle avoidance
in humans support the hypothesis that obstacle avoidance
is not performed on-line, but that reaching movements are
rater pre-planned to take potential collisions with obstacles
into account. For an overview, we refer to [15].

Imitating trajectories was first used in the context of
industrial robots 30 years ago, in very constrained task
contexts and with fixed goals. By using Dynamic Movement
Primitives to model the trajectories, scaling to novel goals
is possible. Furthermore, we relate external task relevant
parameters (the position of the target object) to internal motor
parameters, i.e. which trajectory to use to avoid the obstacle.

A related approach uses Gaussian mixture models to
encode a set of trajectories [4]. One main difference to
our approach is that Calinon et al. use kinesthetics (i.e. the
human teacher moves the robot’s actuators), whereas we use
human motion data. As we strive for natural human-like
motion, human motion data is essential to our approach.
As to the methodology, Calinon et al. model the variance
in the trajectory sets with Gaussian mixture models. One
downside of this approach is that unwanted averaging effects
may arise when multi-modal solutions exist. For instance, for
several obstacle positions, the subject usually chooses avoid
the obstacle by going around it on the left side, but sometimes
also on the right side. The average, going in between, would
lead to a certain collision. We deal with multi-modality by
clustering the trajectories before processing them further.

III. EXPERIMENTAL DESIGN AND DATA ACQUISITION

The goal of this experiment is to answer quantitavely
1) at which positions do obstacles lead to human reaching
behavior which is different from the default behavior when
no obstacles are present? 2) which reaching strategies do
humans use to avoid the obstacle?

The reaching motions were captured with a Polhemus
Liberty magnetic position/orientation tracker. One sensor was
attached to the hand, as depicted in Figure 2, and another
sensor was attached to the glass to measure the exact time
when the lifting movement started. Before performing the
experiment we used one sensor to measure the positions of
the obstacle grid in the tracker’s coordinate frame. All sensors
are tracked with very high precision (<0.01mm) at 240Hz.

Fig. 2. Experimental set-up (left), and the location of the marker (right).

In the experiment, the subject sits at a table, and is
asked to repeatedly reach for, grasp, and lift a target glass.
The hand always starts in the black square in Figure 3.
Before each reaching motion, an obstacle glass is placed
on different positions on a grid on the table. The grid is
40x80cm. In Figure 3 for example, the obstacle glass is at
position D6. For convenience, we sometimes informally refer
to ‘the trajectories that arose from the reaching movement
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that was performed when the obstacle was placed at position
D6’ as ‘the D6-trajectories’. The target glass is always at
position B4. The obstacle glass was placed 10 times on
each of the 29 positions. Furthermore, 30 reaching motions
were performed without any obstacle glass. These are the
‘default-trajectories’ The total number of reaching motions is
therefore 29*10+30 = 320. The order of obstacle placement
was random, to avoid learning effects. Please also see the
accompanying video showing the experimental setup.

Fig. 3. Positions of the obstacles on the table. The green glass is the target
glass, which is always at position B4. The blue glass is an example obstacle
at position D6. The flat black region is the initial location of the fingers.

Several post-processing steps were needed to prepare the
data for analysis. First of all, the trajectories are automatically
cropped so that they only contain the relevant reaching
trajectory, i.e. from the initial movement of the hand until
the movement of the glass (which was also tracked). To
compensate for slightly different target glass positions, the
trajectories are then translated so that the center of the base
of the initial glass position is at (0,0,0). The position of
the hand is then rotated and scaled such that it always
starts at (0,-42,0). This common frame of reference facilitates
comparison. The scaling changes the velocity profile of the
trajectory, but since we do not compare velocities, this is
acceptable. Finally, all trajectories are resampled using spline
interpolation so that they contain 100 samples.

(a) 320 trajectories (b) DEFAULT (c) AVOID

Fig. 4. All trajectories (left) segmented to according whether they are
influenced by the obstacle (AVOID) or not (DEFAULT).

IV. DETERMINING COMPACT MODELS

Compact models are determined in two steps. First, we
determine when the presence of the obstacle influences the
reaching trajectory, by comparing sets of trajectories in a

lower-dimensional PCA space. Then we perform a clustering
on the trajectories that are influenced by the obstacle, to
determine different strategies for avoiding the obstacle.

A. Discerning between affected and unaffected trajectory
sets

If obstacles are far away from the target glass (e.g. at
positions A1 or C8), we expect them not to have an influence
on the reaching motion. Therefore, we expect the A1- and
C8-trajectories to be very similar to the default-trajectories.
In this section, we describe a distance measure between sets
of trajectories, and use it to discern between affected and
unaffected sets.

We used the trajectory comparison approach described
Roduit et al. [19]. Here, the difference measure between
two sets of trajectories is computed by 1) computing a point
distribution model of the two sets of trajectories 2) taking
only the first n components, by inspecting the eigenvalues of
the covariance matrix of the merged trajectories 3) computing
the Mahalanobis distance between the coefficients of the
two sets of trajectories. A more detailed explanation of this
method can be found in [19].

Suppose we have 2 sets, each containing 10 trajectories in
3D space. First, these trajectories are merged into one matrix
τ of size 300x20, where the columns are the concatenation
of the x, y and z coordinates of 100 samples along the
trajectory, and each row represents one such trajectory. The
next step is to compute P, which is the matrix of eigenvectors
of the covariance matrix of τ . Given P, we can decompose
each trajectory τk in the set into the mean trajectory and a
linear combination of the columns of P (called deformation
modes) as follows τk = τ +P ·Bk. This procedure is called
point distribution model analysis.
B is then split into the coefficients for the original 2

sets of trajectories: B1..10 and B11..20. By inspecting the
eigenvalues of the covariance matrix of τ , we determined
that the first 5 components suffice to reconstruct and describe
the trajectories well, so only the first 5 deformation modes
are used. This reduces the high dimensionality of the initial
300D trajectory sets substantially, and facilitates comparison.

Finally, the distance measure d is the Mahalanobis distance
between B1..10 and B11..20. Details on this method can be
found in [19].

This distance measure d is computed between all sets
of trajectories A..D1..8, and the default-trajectories. The
height of the glasses in Figure 5 represents d for the set of
reaching motions when the obstacle was at that position. We
automatically determine an appropriate threshold on d (called
dthres) by determining the valley point of the histogram of
the d values1. The distance d between the C5-, D6-, D5-, and
C4-trajectories and the default-trajectories is higher than this
threshold. These four positions are depicted as red glasses in
Figure 5.

1The distance measure d can be linked to the Hotelling’s T 2 statistic.
Because the variances of different trajectory sets were quite different in our
data, we could not use the two-sample Hotelling’s T 2 statistic, as assumes
equal variances. That is why we are required to determine a threshold.
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Fig. 5. The height of the glass represents d for that obstacle position.
dthres is 16.4 for this graph. The red glasses (at C5, D6, D5, C4) lie
above this threshold.

We now create two large sets of trajectories. The
DEFAULT-trajectories contain the default-trajectories, and
also all trajectories for which d < dthres. The AVOID-
trajectories contains the remaining 40 trajectories (C5, D6,
D5, C4). Both sets are depicted in Figure 4.

B. Determining prototypical trajectories with clustering

The next step is determining prototypical trajectories that
represent qualitatively different strategies for avoiding the
obstacle. The first strategy is the DEFAULT strategy, which
is the mean of the all the trajectories in the DEFAULT set,
i.e. those that were very similar to the trajectories that arose
when no obstacle was present. For the AVOID-trajectories,
we perform a k-means clustering on the 40 trajectories in
the set2. As Jenkins et al. [13], we perform the clustering
using several different spaces, and compare the results. We
use

• a 300D space, in which the 100 x, y and z coordinates
are simply concatenated for each trajectory.

• a 3D PCA space, being the first three deformation
modes as defined in the previous section.

• a 3D space computed with Local Linear Embedding
(LLE) [20] from the 300D space (using 10 neighbors).

In each space, the distance between two trajectories is
determined by the angle between the two n-dimensional
vectors representing the trajectories. The number of clusters
is set to 3 manually. The clustering algorithm in the 300D
space yields the three clusters depicted in Figure 6.

Clustering in the three spaces yield almost exactly the
same clusters (the three spaces only disagree on the catego-
rization of 3 trajectories). This implies that 1) these clusters
are good stereotypes, and do not just depend on the clustering
space or method; 2) only a very compact representation in 3
dimensions are needed to determine these stereotypes.

2The reason why we do not include all 320 trajectories in the clustering,
is because it might be biased towards default behavior. For instance, suppose
the table would have been 10m by 10m, and we had placed obstacles at
10.000 positions on this table. We would expect that obstacles at only a few
(e.g. 4) positions would affect reaching behavior. Including the unaffected
trajectories for the other 9.996 positions in the clustering would lead to an
over-representation of unaffected trajectories, and hence a bias. Therefore,
we first split the sets of trajectories DEFAULT and AVOID, and perform
clustering only on AVOID.

(a) ‘Over’ (b) ‘Right’ (c) ‘Left’

Fig. 6. The three clusters within the AVOID-trajectories.

The average trajectories for these sets are plotted in
Figure 7. Clustering the AV OID-trajectories yields stereo-
typical reaching movements, which we label ‘over’, ‘left’,
and ‘right’, denoting the direction in which the obstacle is
avoided. We call these the ‘principal trajectories’. What is
very interesting about these trajectories is that they are not
qualitatively different from each other, but are rather varia-
tions of the default behavior. From the top view for instance,
it is apparent that the ‘over’ strategy almost perfectly follows
the default behavior in the xy-plane, and is therefore simply
a version of the default behavior, scaled in the z-plane.
Similarly, ‘left’ and ’right’ strategies hardly vary from the
default behavior in the z-plane.
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Fig. 7. The averages of the DEFAULT-trajectories (dark blue) and the three
clusters in the AVOID-trajectories (bright red) from different views.

In the next section, we investigate whether these prin-
cipal trajectories, and interpolations between them, predict
observed behavior well. We will also use them to learn
Dynamic Movement Primitives [12] on a robot. Therefore,
the principal trajectories are a compact model that is not only
used to explain human behavior, as in [1], but also as a means
of parameterizing a controller, as in [8].

V. TRAJECTORY IMITATION BY AN ARTICULATED ROBOT

We now show as a proof of concept that the compact model
can be realized on an autonomous manipulation platform to
reproduce the principal trajectories, and interpolate between
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them. The platform used is a B21 autonomous robot with
6 DOF Amtec Powercube arm shown in Figure 11. Please
also see the accompanying video showing two example
trajectories.

In the control system, each principal trajectory is rep-
resented by a Dynamic Movement Primitive (DMP) [12].
One DMP was trained for each principal trajectory with the
regression learning algorithm described in [11]. Some advan-
tages of DMPs are 1) within a certain range, they generalize
to other goal locations 2) compliance 3) convergence to the
goal location is guaranteed.

It is worth noting that the compact models contain only
kinematic information, more specifically the coordinates
from the hand in Euclidean space. This is easily observable
from human subjects, in contrast to internal dynamic states
like forces and torques. We rely on inverse kinematic algo-
rithms and low-level controllers for successfully tracking the
generated trajectories with the robot.

The trajectory generated by the DMP module is taken and
fed to a work space single point attractor, which takes the
next intermediate point in the trajectory and pulls the end-
effector to this intermediate goal until it is reached. The
output of the single point attractor is the desired velocity
vector which is given to the velocity based inverse kinematics
controller which generates the velocities in joint space. We
use the damped least squares inverse kinematics algorithm
from [14] as implemented in the Orocos-KDL library [22]
which achieves more stable behavior around singularities.

A. Results

Figure 10 depicts the robot reproducing the default reach-
ing behavior. In this section, we analyze the accuracy of
executing principal trajectories, and interpolations between
these trajectories. Furthermore, we determine the relation be-
tween the compact model and trajectories that were actually
executed by the human subject.

Accuracy of principal trajectory following. A compari-
son between the human principal trajectories and the motion
reproduced by the robot with its learned DMPs is depicted
in Figure 8(a). Visual inspection shows that they coincide
almost perfectly.

(a) Principal. (b) Interpolated.

Fig. 8. Comparison between human (black line) and robot (green markers)
reaching trajectories.

Generating novel trajectories by principal trajectory
interpolation. The robot can combine principal trajectories
to generate novel trajectories. In Figure 8(b), three trajec-
tories are depicted. These are simply linear interpolations
between the default behavior, and the three avoidance strate-
gies. Composing the trajectory in this way is consistent
with neurophysiological findings, where it was found that
leg movements of frogs are linear combinations of several
convergent force fields [10]. From Figure 8(b), we conclude
that the robot also follows these trajectories very accurately.

Observed trajectories similar to principal and interpo-
lated trajectories exist. In Figure 9, the robot’s trajectories
are bright green. From the 320 human trajectories, the one
that is most similar to the robot trajectory is included in dark
blue. The similarity measure is again the angle between the
two 300-dimensional vectors representing the 2 trajectories,
as in Section IV-B.

(a) Principal. (b) Interpolated.

Fig. 9. Robot trajectories (light green), and their most similar human
trajectories (dark blue).

Apparently, the robot trajectories have human counterparts
which are quite similar qualitatively. Some interesting con-
clusions from this observation are: 1) the principal trajec-
tories are not merely theoretical ‘platonic’ idealizations, but
are actually observed in human behavior as well. 2) Using
the principal trajectories as a compact model enables us
to predict other trajectories which are also observed in
human behavior as well. We therefore conclude that the
compactness of the model has not reduced its explanatory
power. Arechavaleta et al. have made similar conclusions for
compact models of human locomotion [1].

VI. CONCLUSION

For standard everyday manipulation tasks, humans use
standard pre-planned [15] stereotypical [25] reaching mo-
tions which have been optimized with respect to various crite-
ria. This optimization-induced standardization allows human
reaching trajectories to be represented very compactly, as has
been shown for locomotion [1].

In this paper, we derive a compact model from tracked hu-
man reaching trajectories, and port it to an articulated robot.
We have shown that the robot is able to follow principal
trajectories from the compact model, and that it can generate
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Fig. 10. The B21 robot reproducing a principal trajectory with its PowerCube arm. Please also see the accompanying video.

novel trajectories through interpolation. The compact model
representation is validated by the observation that trajectories
executed by the robot have similar counterparts amongst the
trajectories executed by the human.

We are currently extending the work described in this
paper in several ways. First of all, we are conducting further
experiments with 5 more subjects. In these experiments, we
will only place obstacles in the area where obstacles had
an effect on the trajectories, allowing a more dense obstacle
distribution. In a further follow-up experiment, we also intend
to use obstacles of different sizes.

Fig. 11. Even though a DMP
is trained with a principal tra-
jectory with only one specific
goal position, it generalizes to
other goal positions, whilst re-
taining the general shape of
the trajectory. In this image,
the default principal trajectory
(light green) was modified by
the DMP to reach goals that
are respectively 10cm over,
under, and behind the original
goal (dark green).

The advantages of DMPs
have not yet been fully exploited
in this article. For instance, A
DMP can take goal locations
other than that with which it
was trained, and still generate
a qualitatively similar trajectory.
Preliminary work, depicted in
Figure 11, shows that this is
indeed the case for our robot. In
future work, we want to com-
pare these trajectories to those
of humans, if the target glass is
placed at another position, e.g.
B6. Can DMPs extrapolate and
explain this behavior for which
they were not trained as well?
Also, we intend to encode the
four principal trajectories and
their in one single DMP, which
takes parameters that define how
much of each principal trajecto-
ries is involved in generating the
motion. Appropriate parameters
for a given task context then depend on the size and location
of the obstacle. We see this as an alternative to on-line
obstacle avoidance with potential fields [18].

ACKNOWLEDGEMENTS

We are grateful to Heiko Hoffmann and Pierre Roduit
for providing us with the Matlab code described in [11]

and [19] respectively. The research described in this article is
funded by the CoTeSys cluster of excellence (Cognition for
Technical Systems, http://www.cotesys.org), part of
the Excellence Initiative of the DFG.

REFERENCES

[1] G. Arechavaleta, J-P. Laumond, H. Hicheur, and A. Berthoz. The
nonholonomic nature of human locomotion: a modeling study. In IEEE
International Conference on Biomedical Robotics and Biomechatron-
ics., 2006.

[2] Dmitry Berenson, Rosen Diankov, Koichi Nishiwaki, Satoshi Kagami,
and James Kuffner. Grasp planning in complex scenes. In IEEE-RAS
International Conference on Humanoid Robots, 2007.

[3] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Springer Hand-
book of Robotics, chapter 59. Robot programming by demonstration.
Springer, 2008.

[4] S. Calinon, F. Guenter, and A. Billard. On learning, representing
and generalizing a task in a humanoid robot. IEEE Transactions on
Systems, Man and Cybernetics, Special issue on robot learning by
observation, demonstration and imitation, 37(2):286–298, 2007.

[5] Craig S. Chapman and Melvyn A. Goodale. Missing in action: the
effect of obstacle position and size on avoidance while reaching.
Experimental Brain Research, 2008.

[6] Paul Fitzpatrick, Giorgio Metta, and Lorenzo Natale. Towards long-
lived robot genes. Robotics and Autonomous Systems, 56(1):29–45,
2008.

[7] T. Flash and B. Hochner. Motor primitives in vertebrates and
invertebrates. Current Opinion in Neurobiology, 15:660–666, 2005.

[8] Ajo Fod, Maja J Mataric, and Odest Chadwicke Jenkins. Automated
derivation of primitives for movement classification. Autonomous
Robots, 12(1):39–54, 1 2002.

[9] Brian Gerkey, Richard T. Vaughan, and Andrew Howard. The
Player/Stage Project: Tools for multi-robot and distributed sensor
systems. In Proceedings of the 11th International Conference on
Advanced Robotics (ICAR), pages 317–323, 2003.

[10] S. Giszter, F. Mussa-Ivaldi, and E. Bizzi. Convergent force fields or-
ganized in the frog’s spinal cord. Journal of Neuroscience, 13(2):467–
491, February 1993.

[11] Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Dynamic move-
ment primitives for movement generation motivated by convergent
force fields in frog. In Roy Ritzmann and Robert Quinn, editors,
Fourth International Symposium on Adaptive Motion of Animals and
Machines, Case Western Reserve University, Cleveland, OH, 2008.

[12] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with
nonlinear dynamical systems in humanoid robots. In International
Conference on Robotics and Automation (ICRA2002), 2002.

[13] O. Jenkins, R. Bodenheimer, and R. Peters. Manipulation manifolds:
Explorations into uncovering manifolds in sensory-motor spaces. In
International Conference on Development and Learning (ICDL), 2006.

[14] A. A. Maciejewski and C. A. Klein. The singular value decomposition:
Computation and applications to robotics. International Journal of
Robotics Research, 8(6):63–79, 1989.



2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 7

[15] Mark Mon-Williams, James R. Tresilian, Vanessa L. Coppard, and
Richard G. Carson. The effect of obstacle position on reach-to-grasp
movements. Experimental Brain Research, 137:497–501, 2001.

[16] A. Morales, T. Asfour, P. Azad, S. Knoop, and R. Dillmann. Integrated
grasp planning and visual object localization for a humanoid robot with
five-fingered hands. In IROS, 2006.

[17] E. Oztop, D.W. Franklin, T. Chaminade, and G. Cheng. Human-
humanoid interaction: Is a humanoid robot perceived as a human?
International Journal of Humanoid Robotics, 2(4):537–559, 2005.

[18] Dae-Hyung Park, Heiko Hoffmann, and Stefan Schaal. Movement re-
production and obstacle avoidance with dynamic movement primitives
and potential fields. In International Conference on Humanoid Robots,
2008.

[19] Pierre Roduit, Alcherio Martinoli, and Jacques Jacot. A quantita-
tive method for comparing trajectories of mobile robots using point
distribution models. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2441–
2448, 2007.

[20] Sam Roweis and Lawrence Saul. Nonlinear dimensionality reduction
by locally linear embedding. Science, 290(5500):2323–2326, 2000.

[21] Stefan Schaal. Is imitation learning the route to humanoid robots?
Trends in Cognitive Sciences, 3(6):233–242, 1999.

[22] Ruben Smits, Tinne De Laet, Kasper Claes, Peter Soetens, Joris De
Schutter, and Herman Bruyninckx. Orocos: A software framework for
complex sensor-driven robot tasks. IEEE Robotics and Automation
Magazine, 2008.

[23] Freek Stulp and Michael Beetz. Refining the execution of abstract
actions with learned action models. Journal of Artificial Intelligence
Research (JAIR), 32, June 2008.

[24] T. Wimbock, C. Ott, and G. Hirzinger. Impedance behaviors for two-
handed manipulation: Design and experiments. In ICRA, 2007.

[25] Daniel Wolpert and Zoubin Ghahramani. Computational principles of
movement neuroscience. Nature Neuroscience Supplement, 3:1212–
1217, 2000.


