
Action-Related Place-Based Mobile Manipulation

Freek Stulp, Andreas Fedrizzi, Michael Beetz
Intelligent Autonomous Systems Group, Technische Universität München, Germany

Abstract—In mobile manipulation, the position to which the
robot navigates has a large influence on the ease with which a
subsequent manipulation action can be performed. Whether
a manipulation action succeeds depends on many factors,
such as the robot’s hardware configuration, the controllers the
robot uses to achieve navigation and manipulation, the task
context, and uncertainties in state estimation. In this paper, we
present ‘ARPLACE’, an action-related concept of place which
takes these factors, and the context in which the actions are
performed into account. Through experience-based learning,
the robot first learns a so-called generalized success model,
which discerns between positions from which manipulation
succeeds or fails. On-line, this model is used to compute a
ARPLACE, a probability distribution that maps positions to a
predicted probability of successful manipulation, and takes the
uncertainty in the robot and object’s position into account. In
an empirical evaluation, we demonstrate that using ARPLACEs
for least-commitment navigation improves the success rate of
subsequent manipulation tasks substantially.

I. INTRODUCTION

A key aspect of mobile manipulation research is that
navigation and manipulation are not considered in isolation,
but that the focus is on developing methods to navigate in
order to manipulate. The close coupling between navigation
and manipulation becomes apparent in Fig. 1, where the
robot’s task is to approach the table in order to grasp a cup.
A trivial approach to solving this task is simply going to a
position such that the target object is well-in-reach. However,
a more careful look at the question raises some serious
issues: What is a good place in the context of an intended
manipulation action? Does well-in-reach always imply that
the target object can really be reached, given the hardware
and control software of the robot? How can such a concept
of ‘place’ take into account uncertainties about the robot’s
self-localization and estimated target object position?

1. robot base navigates to table 2. robot arm reaches for cup

Fig. 1. A reach and grasp trajectory performed during a public demon-
stration. (Note that the operator is holding a camera, not a remote control!)

We address these questions by developing the concept
of action-related place, denoted ARPLACE, that takes into
account the manipulation and navigation skills of a robot, as

well as its hardware configuration. The ARPLACE is repre-
sented as a probability distribution, that maps (estimations
of) the target object’s and robot’s position to a probability
that the target object will be successfully grasped from that
position.

Fig. 2. Probability distribution of suc-
cessful manipulation, given a pose esti-
mation of the cup. This is the robot’s
ARPLACE for this task.

Fig. 2 visualizes an
ARPLACE for a given
target object position.
The ARPLACE imple-
ments a least commit-
ment realization of po-
sitions, meaning that the
robot does not commit
itself to a specific goal
position, but can refine
it as the robot learns
more about the task con-
text, e.g. better estima-
tions of the target object’s pose, observed clutter in the
environment, etc. The concept of ARPLACE is very flexible
and can also be used to find good positions for manipulat-
ing multiple objects, to optimize the place for executing a
sequence of manipulation actions, or to optimize secondary
constraints like time.

By actively considering a multitude of appropriate ma-
nipulation positions in a least-commitment way, ARPLACE
forestalls and avoids positions from which manipulation is
difficult. Our empirical evaluation demonstrates that this
leads to more robust mobile manipulation.

Manually designing an explicit model of ARPLACE that
takes all the questions in the first paragraph into account
is tedious and error-prone due to the large state space. An
alternative to explicit modeling is advocated in a recent
roadmap paper for manipulation [12]: “it seems almost
inevitable that learning will play an important role in robot
manipulation”. We believe that the robot should develop its
concept of ARPLACE 1) autonomously, through learning
from interactions with the environment 2) with respect to
its own capabilities, which are limited by the hardware and
control programs.

As depicted in the computational model of our approach
in Fig. 3, the robot learns its concept of ARPLACE by first
gathering experience in simulation. By using Support Vec-
tor Machines, we then acquire classification boundaries. A
classification boundary models regions from which a certain
manipulation task was successfully executed. As a final step
of model creation we compile the multiple classification
boundaries into one generalized success models (GSM).
This is done by using a Point Distribution Model (PDM).
During online task execution, the robot queries the GSM

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Received February 28, 2009.

to determine positions that are appropriate for starting the
manipulation task.

Fig. 3. Computational model (Numbers refer to sections in the paper).

The rest of this paper is structured as follows. In the
next section, we discuss related work. We then describe
the concept of ARPLACE in Section III. How the GSM is
learned is explained in Section IV. Section V shows how
the GSM is used to compute an ARPLACE. In Section VI
we present an empirical evaluation of the system, and we
conclude with Section VII.

II. RELATED WORK

The topics of navigation [6], motion planning [14], and
manipulation planning [12] have been studied extensively in
isolation, but not as much so in a holistic approach.

Berenson et al. [3] deal with the problem of finding opti-
mal start and goal configurations for manipulating objects in
pick-and-place operations. They explicitly take the placement
of the mobile base into account. But as they are interested in
the optimal start and goal configurations, they do not have a
probabilistic representation of the whole space.

The capability map is another option to model robot con-
figurations that lead to successful grasping [19]. Capability
maps can be used to find regions where the dexterity of a
manipulator is high. As they only consider the kinematics of
a robot, they are not optimized for a given skill repertoire or
environment; in short, they are not action-related. Although
new versions of the capability map consider arm motion to
reach a certain pose [19], they do not cope with the problem
of uncertain pose estimations.

Learning success models can be considered pre-condition
learning. Most research in this field focusses on learning
symbolic predicates from symbolic examples [7]. These
approaches have not been applied to robots, as the representa-
tions used are not able to encapsulate the complex conditions
that arise from robot dynamics and action parameterization.
In robotics, the focus in pre-condition learning is therefore
rather on grounding pre-conditions in robot experience. ‘Dex-
ter’ learns sequences of manipulation skills such as searching
and then grasping an object [10]. Declarative knowledge
such as the length of its arm is learned from experience.
Learning success models has also been done in the context
of robotic soccer, for instance learning the success rate of
passing [5], or approaching the ball [17]. Our system extends
these approaches by explicitly representing the regions in
which successful instances were observed, and compute a
GSM for these regions.

Friedman and Weld demonstrated the advantages of least
commitment planning in [8]. They showed that setting open

conditions to abstract actions and later refining this choice to
a particular concrete action can lead to exponential savings.
The principle of lazy evaluation was applied to motion
planning by Bohlin and Kavraki [4]. They were able to sig-
nificantly reduce the number of collision checks for building
a PRM.

III. CONCEPT OF ARPLACE

We propose the concept of ARPLACE as a powerful
and flexible representation of the utility of positions in the
context of action-related mobile manipulation. Instead of
committing to a specific position in advance, an ARPLACE
enables least-commitment planning, as a whole range of
positions are predicted to be successful, or at least probable.
The robot will start to move to a position that is good
enough to execute the subsequent manipulation action and
will refine the goal position while it moves. In the context
of our scenario of grasping a cup from a table, this would
mean that the concept of ARPLACE finds a solution area
that is good enough for the robot to start moving. For
instance, the robot could choose any of the positions for
which P (succ|t) > 0.95 ∗ max(P (succ|t)). As the robot
approaches the table, new sensor data comes in, and the
robot’s state estimate is updated (i.e. accuracy of the cup
position, information on clutteredness of regions, etc.). As a
consequence the ARPLACE is updated, and becomes more
and more precise.

The principle of least commitment is especially powerful
in real environments, where complete information, required
to compute optimal goal positions, is not available. Even if
the environment is completely observable, dynamic proper-
ties could make an optimal pre-planned position suboptimal
or unaccessible. A least-commitment implementation can
delay decisions as long as possible, and therefore is more
flexible while reducing the need for replanning.

The concept of ARPLACE is implemented as a contin-
uous probability distribution that represents the probability
of successfully grasping the target object when standing
at a certain position. A position p is a 3-tuple given by
p := {(x, y, a) | x ∈ R, y ∈ R, a ∈] − 2π, .., 2π]}. Given
an estimation of the target object’s pose po, the covariance
matrix of the pose estimation C(po), and the covariance ma-
trix of the robot’s localization estimation C(pr), the concept
of ARPLACE assigns a probability value to all positions p,
so that P (p) = f(po, C(po), C(pr)). How a representation
of an ARPLACE looks like can be seen in Fig. 2. A video
that shows how changes in C(po) and C(pr) affects the
ARPLACE is submitted as supplementary material to this
paper.

The most probable position is not always the one with
the highest utility. Consider for example the case that the
battery of a robot is low. In this case, a superior strategy
could be to move directly to the table instead of moving
around the table, even if the probability of grasping the
object would be higher. The concept of ARPLACE can be
easily transfered to a utility- based representation by creating
heuristics that consider arbitrary secondary constraints like

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Received February 28, 2009.

power consumption, time, end-effector-movement, or torque-
change. Selecting subgoal parameters such that they optimize
secondary criteria is known as subgoal refinement [17].

Finally, ARPLACEs for multiple actions can be composed
by intersecting them. Assume we have computed ARPLACEs
for two different actions (a1 and a2). If the success proba-
bilities of the ARPLACEs is independent, we can compute
the ARPLACE for executing both actions in parallel by
multiplying the probabilities of the ARPLACEs of a1 and
a2. Fig. 4 illustrates this for the task of concurrently grasping
two cups. This composition would be impossible if the robot
commits itself to specific positions in advance.

-1 -0.5 0

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

-1 -0.5 0 -1 -0.5 0

∩ =

Fig. 4. Left distribution: grasp cup with left gripper. Center distribution:
grasp cup with right gripper. Right distribution: Grab both cups with
left/right gripper respectively. It is the product of the other two distributions.

IV. LEARNING A GENERALIZED SUCCESS
MODEL FOR ARPLACE

In this section, we describe the implementation of the off-
line phase of the computational model, depicted in Fig. 3.

A. Acquiring Training Data

The robot first gathers training data by repeatedly exe-
cuting a navigate-reach-grasp action sequence (see Fig. 5).
To acquire sufficient data in little time, we perform the
training experiments in the Gazebo simulator. The robot is
modeled accurately, and thus the simulator provides training
data that is also valid for the real robot. The action sequence
is executed for a variety of task-relevant parameters. In
our scenario we tried to grasp a cup, and the task-relevant
parameters were the x, y position of the cup on a table. The
12 cup positions on the table with which the robot is trained
are depicted in Fig. 6. For each cup position, the action
sequence was executed 350 times. The initial position for
reaching and grasping was randomly sampled, and the result
whether the robot was able to grasp the cup or not was stored
in a log-file.

B. Computing Classification Boundaries

To acquire success models, we compute a classification
boundary around the successful samples using Support Vec-
tor Machines (SVM), using the implementation by [16]. We
used a Gaussian kernel with σ=0.03, and cost parameter
C=20.0. Fig. 6 depicts the resulting classification boundaries
for different configurations of task-relevant parameters. To
us, the data and the clusters are shifted a bit more to the
right (from the robot’s point of view) than we would have
expected when grasping the cup with the right arm. This
is due to the hard-ware and kinematics of the robot, which

Fig. 5. Two experiment runs with different samples for the robot position.
The navigate-reach-grasp sequence in the upper row succeeds. It fails in the
lower sequence because the robot is too far away from the cup.

are not very human-like. This effect speaks in favor of our
experience-based learning over hand-coding, as our intuitions
about a good ’place’ for robot manipulation apparently do not
always correspond to the ’place’ that is really the best for a
particular robot.

The models on average classify 5% of examples wrongly
when using a training/test set that contain 66%/33% of the
data respectively, and 3% when using the training data as the
test data.

-0.6

-0.4

-0.2

0

0.2

-0.6

-0.4

-0.2

0

0.2

-1.1 -1 -0.9 -0.8 -0.7 -0.6

-0.6

-0.4

-0.2

0

0.2

-1.1 -1 -0.9 -0.8 -0.7 -0.6 -1.1 -1 -0.9 -0.8 -0.7 -0.6 -1.1 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0

-0.3 -0.2 -0.1 0.0

-0
.2

0
.0

0
.2

-0.3 -0.2 -0.1 0.0

-0
.2

0
.0

0
.2

-0.3 -0.2 -0.1 0.0

-0
.2

0
.0

0
.2

Fig. 6. Successful grasp positions and their classification boundaries. Every
sub-image shows the boundary that corresponds to the cup position that is
visualized with the black cup. To save space, the table on which the cup is
placed is only shown in the right-most graphs, and not all failed data points
are drawn. Data points correspond to the center of the robot base.

C. Computing the Point Distribution Model

As input a PDM requires n points that are distributed
over the contour. We distribute 20 points equidistantly over

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Received February 28, 2009.

each boundary, and determine the correspondence between
points on different boundaries by minimizing the sum of the
distances between corresponding points, while maintaining
order between the points on the boundary. The result is
depicted in Fig. 7, where only 4 of the 12 classification
boundaries are depicted for clarity.

Fig. 7. Point-alignment

Given the aligned points on
the boundaries, we compute a
PDM. Although PDMs are most
well-known for their use in
computer vision, we use the no-
tation by Roduit et al. [15],
who focus on robotic applica-
tions. First, the 2D boundaries
are merged into one 40x12 ma-
trix H, where the columns are
the concatenation of the x and
y coordinates of the 20 points
along the classification bound-
ary. Each row represents one boundary. The next step is
to compute P, which is the matrix of eigenvectors of the
covariance matrix of H. Given P, we can decompose each
boundary hk in the set into the mean boundary and a linear
combination of the columns of P as follows hk = H+P·bk.
Here, bk is the so-called deformation mode of the kth bound-
ary. This is the Point Distribution Model. To get an intuition
for what the PDM represents, the first two deformation modes
are depicted in Fig. 8(a), where the values of the first and
second column of B are varied between their maximal and
minimal value.

-1 -0.9 -0.8 -0.7
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-1 -0.9 -0.8 -0.7
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Mean
of PDM

Classification boundar
reconstructed with PDM

Classification boundary
from which PDM

is computed

(a) First and second deformation mode in B.

-1 -0.9 -0.8 -0.7
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(b) Reconstructing the
boundaries from Fig. 6.

Fig. 8. A generalized success model based on a Point Distribution Model.

By inspecting the eigenvalues of the covariance matrix of
H, we determined that the first 2 components already contain
96% of the deformation energy. Therefore, we use only the
first 2 deformation modes, without losing much accuracy.
Fig. 8(b) demonstrates that the original 12 boundaries can
be reconstructed well when using combinations of only the
first two deformation modes.

The advantage of the PDM is not only that it substantially
reduces the high dimensionality of the initial 40D boundaries.
It also allows us to interpolate between them in a principled

way using only two deformation parameters. The PDM is
therefore a compact, general, yet accurate model for the
classification boundaries.

D. Relation to Task-relevant Parameters
The final step of model learning is to relate the specific

deformation of each boundary (contained in B) to the values
of the task-relevant parameters (like the x and y coordinates
of cup position) that are varied during data collection. Since
the correlation coefficients between the first and second
deformation modes and the task relevant parameters T are
0.99 and 0.97 respectively, we simply compute the linear
relation between them with W = [1 T]/BT .

Given a novel position tnew = 〈xnew, ynew〉 of the cup on
the table, the GSM allows to quickly compute the area from
which a successful grasp can be expected for this specific sit-
uation. First, we compute the appropriate deformation values
from the cup position with bnew = ([1 tnew] ·W)T . Then
the boundary is computed with hnew = H + P · bnew. This
boundary estimates the area in which the robot should stand
to be able to make a successful grasp. This approach adheres
to the proposed strategy of “learning task-relevant features
that map to actions, instead of attempting to reconstruct a
detailed model of the world with which to plan actions” [12].

V. COMPUTING ARPLACES ON-LINE

In this section, we describe how appropriate ARPLACEs
for manipulation are determined on-line. We call this module
’planning for manipulation’ (PLA4MAN). As can be seen in
the computational model in Fig. 3, this module takes the
GSM and the probabilistic belief state as input, and returns
an ARPLACE such as depicted in Fig. 2 or Fig. 4.

A. Uncertainty in Object Position
At the end of the previous section, we demonstrated

how a hnew classification boundary is reconstructed, given
specific task relevant parameters tnew = 〈xnew, ynew〉.
Due to sensor noise and other factors that influence the
state estimation, the task relevant parameters can never be
known exactly, and uncertainty must be modeled. The belief
state therefore also associates a covariance matrix with each
position:

(σ2
xx σ

2
yx

σ2
xy σ

2
yy

)
, computed by our vision-based object

localization module [13].
Because of this uncertainty, it does not suffice to compute

only one classification boundary given the most probable
position of the cup as the ARPLACE from which to grasp.
This might lead to a failure if the cup is not at the position
where it was expected. To solve this problem, we use a
Monte-Carlo simulation to generate a probabilistic advice on
where to navigate to grasp the cup. This is done by taking 100
samples from the Gaussian distribution of the cup position,
given its mean and covariance matrix. This yields a matrix
of task relevant parameters ts = [xs ys]. The corresponding
classification boundaries hs are computed for the samples
by using the method described above. In Fig. 9(a), 30 out of
the 100 boundaries are depicted. These were generated from
the task relevant parameters x=-0.3, y=0.1, σxx=σyy=0.05,
σxy=σyx=0.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Received February 28, 2009.

y

-1.2 -1 -0.8 -0.6

-0.4

-0.2

0

0.2

0.4

0.6

Mean
of PDM

Classificatio
boundary for
x=-0.3, y=0.1

-0.4 -0.2

Sampled cup
positions

x

(a) Sampled classification boundaries
(hs).

x

y

-1.2 -1 -0.8 -0.6

-0.4

-0.2

0

0.2

0.4

0.6

S
te

e
p

 d
e
c
li
n

e

(b) Discretized relative sum
of the boundaries.

Fig. 9. Monte-Carlo simulation of classification boundaries to compute
ARPLACE.

We then generate a discrete grid in which each cell mea-
sures 2.5×2.5cm, and compute the number of classifications
boundaries that classify this cell as a success. Dividing
the result by the overall number of boundaries yields the
probability that grasping the cup will succeed from this
position. The corresponding distribution, which takes the
uncertainty of the cup position into account, is depicted in
Fig. 9(b) (2D), as well as in Fig. 2 (3D).

It is interesting to note the steep decline on the right side
of the distribution (in the direction of the table). This is
intuitive, as the table is located on the right side, and the
robot bumps into the table when moving to the sampled
initial position, leading to an unsuccessful navigate-reach-
grasp sequence. Therefore, none of the 12 boundaries contain
this area, and the variation in P on the right side of the
PDM is low. Variations in B do not have a large effect on
this boundary, as can be seen in Fig. 9(b). When summing
over the sampled boundaries, this leads to a steep decline in
success probability in the direction of the table.

B. Uncertainty in Robot Position

The Adaptive Monte Carlo Localization from the Player
project [9] also returns a covariance matrix for the robot’s
position. This uncertainty must be taken into account in
ARPLACE. For instance, although any position near to the
left of the steep incline in Fig. 9(b) is predicted to be success-
ful, they might still fail if the robot is actually more to the
right than expected. Therefore, we convolve the ARPLACE
as depicted in Fig. 9(b) with the discretized (2.5 × 2.5cm)
probability distribution of the robot’s position. The result can
be seen in Fig. 10(a). Note that this convolution also works
for multi-modal distributions as returned by particle filters.

The distribution in Fig. 10 is the robot’s concept of
ARPLACE which takes into account the uncertainty in both,
the pose of the robot, and of the target object. These
distributions are generated from a model that is very much
grounded in observed experience, as it was learned from
observation. Note that this concept is also specific for the
task context and the skills of the robot. Using a different
robot or controller would lead to different observations, and
hence to a different concept of successful ARPLACEs. It is

the developmental process of learning ARPLACE that allows
us to apply it to a wide range of robots and controllers.
Fig. 10(b) depicts how the probability distribution is affected
by varying task relevant parameters. Please notice in the first
row, how it becomes ‘more difficult’ (less likely to succeed)
to grasp the cup as the cup moves away from the table’s
edge.

VI. EMPIRICAL EVALUATION

At a day of open house, our B21 mobile manipulation plat-
form continually performed an application scenario, where it
locates, grasps, and lifts a cup from the table and moves it
to the kitchen oven. Fig. 1 shows two images taken during
the demonstration. The robot performed this scenario 50
times in approximately 6 hours, which has convinced us that
the robot hardware and software are robust enough to be
deployed amongst the general public. After the open day, we
ran the same experiment, but this time with the PLA4MAN
module included. The focus of this experiment was on our
error-recovery system described in [1], and the improved
performance of the robot cannot quantatively be attributed
to the PLA4MAN module or the error-recovery system.
However, a major qualitative improvement we certainly can
attribute to the PLA4MAN module was that the cup can now
be grasped from a much larger area on the table.

An empirical evaluation was done in the Gazebo simulator.
We compared the PLA4MAN module to another strategy
which we call FIXED. FIXED implements the well-in-reach
strategy by always moving to a location that has the same
relative offset to the target object. The relative location
was chosen to be the offset with the best possible overall
performance. The cup was placed in three different locations.
In one experimental episode, we first determine the real
position of the cup, and sample an observed position given
the real position po of the cup and the covariance matrix
C(po). Given the estimated cup position, the robot then
uses the PLA4MAN or well-in-reach module to compute an
ARPLACE and performs the manipulation action. When the
robot is able to perform the manipulation task after moving to
the proposed position we mark the experiment as SUCCESS.
Otherwise we mark the experiment as FAILED.

S
u

cc
e

ss
 (

%
)

0

10

20

30

40

50

60

70

80

90

Pla4Man
Fixed

Covariance matrix of object localization

Fig. 11. Result of the empirical evaluation. The x-axis shows experiments
with different values for C(po). The y-axis shows the success rate.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Received February 28, 2009.

(a) Distribution for parameters:
x=-0.3, y=0.1, σxx=σyy=0.05.

(b) These images show how varying certain task-relevant parameters affects the shape of the distribution.
The table and the cup are drawn to scale in the xy-plane.

Fig. 10. Final distributions, after convoluting the uncertainty in the robot pose with a distribution as depicted in Fig. 9(b). These distributions represent
the robot’s probabilistic least-commitment ARPLACE, which is task-related, skill-specific, and grounded in experience.

Fig. 11 shows the results of the evaluation. Naturally, the
performance of both methods decreases, as the robot becomes
more and more uncertain about the pose of the cup. One
result is that PLA4MAN always performs better than FIXED.
Another important result is that while the uncertainty rises,
the performance of FIXED suffers more than the performance
of PLA4MAN. This can be explained by the fact, that
PLA4MAN tries to stay away from steep declines, when the
estimations of the robot get more uncertain.

VII. CONCLUSION

In this article, we have presented a system that enables
robots to learn a concept of ARPLACE that is compact,
grounded in observed experience, and tailored to the robot’s
hardware and controller. The main advantage is that our
system integrates the often disconnected research areas of
navigation and manipulation planning. By studying the cou-
pling and interactions between both fields, it is often possible
to find ARPLACEs where the objects can be grasped by
using standard behavior like motion primitives. ARPLACE
is modelled as a probability distribution, which enables
the robot to perform least-commitment planning, instead
of prematurely committing itself to specific positions that
could be suboptimal. Optimizing the probability of successful
grasping resulted in more robust behavior on our mobile
manipulation platform.

We are currently extending our approach in several di-
rections. We are applying our approach to more complex
scenarios, and different domains. For instance, we are learn-
ing higher-dimensional ARPLACE concepts. New aspects
that we are taking into account, are different kinds of
objects which require different kinds of grasps, two-handed
manipulation, and using secondary constraints to model
more complex utility functions. We are also investigating
extensions and other machine learning algorithms that will
enable our methods to generalize over larger spaces.

REFERENCES

[1] M. Beetz, F. Stulp, et al. Generality and legibility in mobile ma-
nipulation. Autonomous Robots Journal, Special Issue on Mobile
Manipulation (submitted for review), 2009.

[2] D. Berenson, R. Diankov, K. Nishiwaki, S. Kagami, and J. Kuffner.
Grasp planning in complex scenes. In IEEE-RAS International
Conference on Humanoid Robots, 2007.

[3] D. Berenson, H. Choset, and J. Kuffner. An Optimization Approach to
Planning for Mobile Manipulation. In Proc. of the IEEE International
Conference on Robotics and Automation, 2008.

[4] R. Bohlin, and L. E. Kavraki. Path Planning using lazy PRM. In IEEE
International Conference on Robotics and Automation, 2000.

[5] S. Buck and M. Riedmiller, Learning situation dependent success
rates of actions in a RoboCup scenario. In Pacific Rim International
Conference on Artificial Intelligence, 2000.

[6] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun . Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, Boston, 2005.

[7] B. Clement, E. Durfee, and A. Barrett. Abstract reasoning for planning
and coordination. J. of Artificial Intelligence Research, 28, 2007.

[8] M. Friedman, and D. S. Weld. Least commitment action-selection. In
Proc. of the International Conf. on AI Planning Systems, 3, 1996.

[9] B. Gerkey, R. T. Vaughan, and A. Howard. The Player/Stage Project:
Tools for multi-robot and distributed sensor systems. In Proceedings
of the 11th International Conference on Advanced Robotics, 2003.

[10] S. Hart, S. Ou, J. Sweeney, and R. Grupen. A framework for learning
declarative structure. In RSS-06 Workshop: Manipulation for Human
Environments, 2006.

[11] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with
nonlinear dynamical systems in humanoid robots. In International
Conference on Robotics and Automation (ICRA2002), 2002.

[12] C. Kemp, A. Edsinger, and E. Torres-Jara. Challenges for robot
manipulation in human environments. IEEE Robotics and Automation
Magazine, 14(1):20–29, 2007.

[13] U. Klank, M. Z. Zia, and M. Beetz. 3D Model Selection from an
Internet Database for Robotic Vision. In International Conference on
Robotics and Automation (ICRA), 2009.

[14] S. LaValle. Planning Algorithms. Cambridge University Press, 2006.
[15] P. Roduit, A. Martinoli, and J. Jacot. A quantitative method for com-

paring trajectories of mobile robots using point distribution models.
In Proceedings of IROS, pages 2441–2448, 2007.

[16] S. Sonnenburg, G. Raetsch, C. Schaefer, and B. Schoelkopf. Large
scale multiple kernel learning. Journal of Machine Learning Research,
7:1531–1565, 2006.

[17] F. Stulp and M. Beetz. Refining the execution of abstract actions with
learned action models. JAIR, 32, June 2008.

[18] M. Wimmer, F. Stulp, S. Pietzsch, and B. Radig. Learning local
objective functions for robust face model fitting. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 30(8):1357–1370, 2008.

[19] F. Zacharias, Ch. Borst, and G. Hirzinger. Positioning Mobile Ma-
nipulators to Perform Constrained Linear Trajectories. In Proc. of the
IEEE/RSJ International Conf. on Intelligent Robots and Systems, 2008.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Received February 28, 2009.

