
Learning Predictive Knowledge to Optimize Robot Motor Control

Freek Stulp, Alexis Maldonado and Michael Beetz

Abstract— By observing the execution of their actions, cog-
nitive robots become aware of their behavior. We describe a
system that acquires such knowledge, and uses it to reflect
future actions to autonomously avoid failures and optimize
future actions. The system has three types of motor control
knowledge, which are represented at different levels of abstrac-
tion, and acquired in different ways: 1) declarative knowledge
to select actions, 2) procedural knowledge to execute actions,
and 3) predictive knowledge to optimize action executions
with respect to execution duration and success. The robots
acquire predictive knowledge autonomously, by learning it
from observed experience. The generality of the approach
is demonstrated by applying the methods to three robotic
platforms: a Pioneer soccer robot, a simulated articulated B21
in a kitchen environment, and a PowerCube arm.

I. INTRODUCTION

In robotics, it is common to provide robots with a library
of durative actions relevant to the task domain. In soccer
for instance, robots will typically have dribbling and passing
actions. Actions constitute the procedural knowledge of a
robot. Actions are also referred to as skills, behaviors, motor
primitives, schemas, options, or macros [16].

To reason about their actions, cognitive systems must have
models of their actions. A model of an action predicts the
outcome or performance of an action in a given task context.
There is evidence for the widespread use of predictive
action models in human motor control, for instance in state
estimation and sensory cancellation, state prediction, context
estimation, and optimal control [26], [13], [17].

In this paper, we consider declarative and learned action
models, and describe how this knowledge is acquired, repre-
sented and applied in our robot control system. First of all,
declarative knowledge about actions is used to reason about
actions at an abstract level. By considering the effects of
actions, actions can be selected, combined and concatenated,
so as to achieve more complex tasks that individual action
could not achieve alone. Due to its abstract nature, it is
feasible to specify (‘declare’) declarative knowledge by hand.
For instance, being in possession of the ball in front of the
goal in the typical soccer scenario in Figure 1(a) can be
achieved by “First, approach the ball, and then, dribble it
towards the goal.”

This declarative statement is executed by consequently
executing the two corresponding actions approachBall
and dribbleBall with the task-specific parameters. These
actions represent the procedural knowledge of the robot. If
the robot naively executed the first action approachBall,

Intelligent Autonomous Systems Group, Technische Universität
München, Boltzmannstrasse 3, D-85747 Garching bei Munich, Germany,
{stulp,maldonad,beetz}@cs.tum.edu

The research reported in this paper is partly funded by the CoTeSys
cluster of excellence (Cognition for Technical Systems, www.cotesys.org)

(a) Selecting appropri-
ate action.

(b) A naive execution of
the plan.

(c) A time-optimal exe-
cution of the plan.

Fig. 1. Selecting, executing and optimizing actions with declarative,
procedural and predictive knowledge respectively.

it might arrive at the ball with the goal at its back, as depicted
in Figure 1(b). This is an unfortunate position from which to
start dribbling towards the goal. An abrupt transition occurs
between the actions, as the robot needs to brake to slowly
and carefully dribble the ball towards the goal.

What we would like the robot to do instead is to go to
the ball in order to dribble it towards the goal afterwards.
The robot should, as depicted in the Figure 1(c), perform the
first action sub-optimally in order to achieve a much better
position for executing the second plan step. The behavior
shown in Figure 1(c) exhibits seamless transitions between
actions and has higher performance, achieving the ultimate
goal in less time.

Apparently, mapping the declarative statement to the cor-
responding actions raises some questions: ‘What is the best
angle of approach?’ or also ‘Will I collide with the ball
before achieving the desired angle?’ The answers to these
questions are not relevant at an abstract declarative level,
but are relevant to robust and efficient execution.

We demonstrate that predictive knowledge, in the form
of learned action models, enables robots to answer these
questions autonomously in real-time. For instance, if the
robot could predict that the execution as in Figure 1(c)
is faster than Figure 1(b), it could commit to the action
parameterization of the faster one. As it is difficult to
hand-code action models, robots acquire action models by
observing the executions of actions, and learning a general
model from these observations with tree-based induction.

Fig. 2. Interactions between the three types of knowledge.

The interactions between the three types of knowledge
are depicted in the system overview in Figure 2. When
faced with a task, the first step is to use human-specified



declarative knowledge to generate an abstract plan to solve
the task. Then, this plan is mapped to the actions in the action
library, which constitutes the procedural knowledge. Finally,
with two procedures called subgoal assertion and subgoal
refinement, the exact execution of the actions is refined and
optimized with learned action models, which constitute the
predictive knowledge. In a preceding off-line step, the action
models are learned from observed experience.

The main contributions of this paper are: 1) demonstrating
how action models enable robots to autonomously opti-
mize plans that are generated with declarative knowledge.
2) proposing methods with which robots can learn to predict
action performance and outcome based on observed experi-
ence 3) empirically verifying that this leads to more efficient,
robust, and effective behavior.

We apply our approach to three robotic domains, depicted
in Figure 3: 1) robotic soccer, using both the real and
simulated Pioneer I robots of our RoboCup mid-size league
team the ‘AGILO RoboCuppers’ [3]. 2) service robotics, with
a simulated B21 in a kitchen environment. 3) arm control,
using two degrees of freedom of a PowerCube arm from
Amtec Robotics.

Fig. 3. The three robotic platforms used in this paper.

The rest of this paper is structured as follows. First, we
describe how each of the three types of control knowledge
is represented and acquired in Section II. In Section III,
we described how declarative and procedural knowledge are
combined to generate executable plans, and in Sections IV
and V, we demonstrate how predictive knowledge enables
robots to optimize plan execution with subgoal refinement
and subgoal assertion. Related work is presented in Sec-
tion VI, and we conclude with Section VII.

II. CONTROL KNOWLEDGE REPRESENTATION

In this section, we describe how our robots represent
and acquire procedural, declarative and predictive control
knowledge.

A. Procedural knowledge

Procedural knowledge consists of a library of durative
actions. Actions generate streams of primitive motor com-
mands, and encapsulate knowledge about how certain goals
can be achieved in certain task contexts. For instance, hu-
man and robot soccer players will typically have dribbling,
kicking, and passing actions, that achieve different goals
within different soccer contexts. Because actions only apply
to limited task contexts, they are easier to design or learn
than a controller that must be able to deal with all possible
contexts [13], [15]. Libraries of actions are used extensively
in robotics control [16].

In cognitive science, the conceptual equivalent to actions
are inverse models [26], [21]. In [13], human motor control
is modeled as the interaction of a library of inverse models,
paired with forward models.

In our system implementation, actions are hand-coded
C++ or Python functions. As the approach described in this
paper is independent of action implementations, we do not
elaborate on them here, but refer to Appendix A of [24].

B. Declarative knowledge

Declarative structure captures abstract knowledge about
tasks [12]. It is used to select the appropriate actions for a
given task.

In cognitive science, the difference between declarative
and procedural knowledge was dramatically witnessed in the
patient H.M. [22] After a severe brain operation, H.M. was
unable to store novel facts in declarative memory, but was
able to acquire new skills. For instance, with training H.M.
improves and becomes skilled at tracing geometrical shapes
seen only in the mirror, but when asked, reports having no
recollection of ever having done such as task before.

In our system implementation, the Planning Domain De-
scription Language PDDL2.1 [10] is used to describe abstract
actions, as well as goals, states and plans. The declarative
knowledge about an action consists of its preconditions and
effects (add- and delete-list), as depicted in Figure 4. The
PDDL action library is specified manually by the designer.
The main reason is that the high level of abstraction of
PDDL enables us to easily transfer our knowledge about how
we would solve a task to the robot controller. Also, such
knowledge is difficult for robots to obtain autonomously.
Other recent examples of robot controllers that use such
abstract action descriptions for plan generation are [7], [5].

(:action approachball

:parameters (?from ?to)

:precondition (and (robot ?from) (ball ?to) )

:effect (and (not (robot ?from)) (atball ?to) ))

Fig. 4. PDDL specification of an action.

C. Predictive knowledge

In cognitive science, there is a distinction between inverse
models, which map desired states to motor commands,
and forward models, which map motor commands to state
changes [26]. Forward models are not entities that are fixed
at birth, but that must rather be learned and updated through
experience. This allows forward models to be learned for
new action contexts, or for newly acquired actions. In this
paper and in [9], actions and action models are similar to
inverse models and forward models respectively.

In the system implementation, action models take the
same parameters as their corresponding action, and return
the predicted execution duration or success. The advantage
of learning action models over analytical methods is that it
is based on real experience, and therefore takes all factors
relevant to performance into account. Also, many hand-coded
actions are difficult to formalize analytically, or analysis is



impossible because the inner workings of the action are
unknown [2].

Training examples for learning action models are gathered
by executing an action, and observing the results. The
running example in this section will be learning to predict the
execution duration of the goToPose action for the AGILO
robot. The robot first executes the goToPose action 290
times, for random positions on the field. Before learning,
the data is transformed to a feature space appropriate for
the action. Data acquisition continues until the error of the
learned model on a separate test set stabilizes. How many
executions are actually necessary to learn an accurate model
is domain dependent, and will be presented in Section IV-A.

Then, decision trees and model trees are trained with this
data to acquire a general model of the action. Decision trees
are functions that map continuous or nominal input features
to a nominal output value. The function is learned from
examples by a piecewise partitioning of the feature space.
One class is chosen to represent the data in each partition.
Model trees are a generalization of decision trees, in which
the nominal values at the leaf nodes are replaced by line
segments. A line is fitted to the data in each partition with
linear regression. This linear function interpolates between
data in the partition, which enables model trees to approxi-
mate continuous functions. For more information on decision
and model trees, and how they are learned with tree-based
induction, we refer to [19], [24].

1) Action Model: Execution Duration Prediction: To vi-
sualize action models learned with model trees, an example
of execution duration prediction for a specific situation is
depicted in Figure 5. This model for the goToPose action in
the soccer domain (real robots) is learned from 290 episodes.

In the situation depicted in Figure 5, the variables dist,
angle to, v, and vg are fixed to 1.5m, 0◦, 0m/s, and 0m/s
for visualization purposes only. For these values, Figure 5
shows how the predicted time depends on angle at, once
in a Cartesian, once in a polar coordinate system. The plots
consists of five line segments. This means that the model tree
has partitioned the feature space into five areas, each with its
own linear model. Below the two plots, one of the learned
model tree rules that applies to this situation is displayed.
Arrows indicate this linear model in the plots.

Fig. 5. An example situation, two graphs of time prediction for this
situation with varying angle at, and the model tree rule for one of the
line segments.

2) Action Model: Failure Prediction: The simulated soc-
cer robots also learn to predict failures in approaching the
ball with the goToPose action. A failure occurs if the robot
collides with the ball before the desired state is achieved.
The robots again learn an action model from experience.
To acquire experience, the robot executes goToPose a
thousand times, with random initial and goal states. The ball
is always positioned at the destination state. The initial and
goal state are stored, along with a flag that is set to Fail
if the robot collided with the ball before reaching its desired
position and orientation, and to Success otherwise.

The learned decision tree and a graphical representation,
are depicted in Figure 6. The goal state is represented by
the robot, and different areas indicate if the robot can reach
this position with goToPose without bumping into the ball
first. Remember that goToPose has no awareness of the
ball at all. The model simply predicts when its execution
leads to a collision or not. Intuitively, the rules seem correct.
When coming from the right, for instance, the robot always
clumsily stumbles into the ball, long before reaching the
desired orientation.

Fig. 6. The learned decision tree that predicts if a collision will occur.

3) Empirical Evaluation: The different domains and ac-
tions for which action models of execution duration are
learned are listed in the first two columns of Table I. The
subsequent columns list the number of episodes executed
to gather data for the training set n, the mean execution
duration per episode t, the total duration of data gathering
for the training set t · n, as well as the model’s error (MAE)
on a separate test set with 1

3n episodes. In the next sections,
we demonstrate that these action models are accurate enough
to enable a significant improvement of action execution.

Robot Action n t t · n MAE
(s) (h:mm) (s)

Pioneer I goToPose 290 6.4 0:31 0.32
(Real) dribbleBall 202 7.7 0:26 0.43
Pioneer I goToPose 750 6.2 1:18 0.22
(Simulated) dribbleBall 750 7.4 1:32 0.29
B21 goToPose 2200 9.0 5:45 0.52

reach 2200 2.6 1:38 0.10
PowerCube reach 1100 2.9 0:53 0.21

TABLE I
LIST OF ACTIONS AND THEIR ACTION MODEL ACCURACIES.

To evaluate the accuracy of the ball approach failure
model, the robot executes another thousand runs. The result-
ing confusion matrix is depicted in Table II. The decision
tree predicts collisions correctly in almost 90% of the cases.



Observed Total
Fail Success Predicted

Predicted Fail 51% 10% → 61%
Success 1% 38% → 39%

↓ ↓ ↘
Total Observed 52% 48% 89%

TABLE II
CONFUSION MATRIX FOR BALL COLLISION PREDICTION.

III. GENERATING EXECUTABLE PLANS

We now describe how executable plans are generated using
declarative and procedural knowledge. In the subsequent two
sections, we show how the robots optimize these plans using
predictive knowledge.

Abstract plans are generated using the declarative knowl-
edge about the actions. For this, we use the Versatile
Heuristic Partial Order Planner [27]1. Apart from the PDDL
representations of the actions, an abstract goal and state
represented in PDDL are also passed as an input to VHPOP.
Usually, the abstract state is derived from the continuous be-
lief state of the robot through a process called anchoring [8].
As in the International Planning Competition, we consider
a limited number of scenarios, enabling us to specify the
scenarios in PDDL in advance.

The output of VHPOP is a list of symbolic actions and
causal links, as depicted in Figure 7. This plan corresponds
to the example in Figure 1. Causal links specify which action
was executed previously to achieve an effect which meets the
precondition of the current action. A chain of such abstract
actions represents a valid plan to achieve the goal.

Initial 0 : (robot pos1) (ball pos2) (final pos3)

Step 2 : (approachball pos1 pos2)

0 -> (robot pos1)

0 -> (ball pos2)

Step 1 : (dribbleball pos2 pos3)

2 -> (atball pos2)

Goal :

0 -> (final pos3)

1 -> (atball pos3)

Fig. 7. The output of VHPOP is a PDDL plan with causal links.

The chain of abstract actions in Figure 7 represents the
declarative knowledge needed to achieve the goal. The next
step is to map declarative knowledge to the executable
actions in the action library, i.e. the procedural knowledge.

PDDL plans are instantiated with executable actions by
first extracting symbolic actions and causal links in the plan,
and then instantiating the symbolic actions one by one. For
each symbolic action, the executable action is retrieved by
its name. For instance, the PDDL action ‘dribbleball’ is
simply mapped to the C++ action ‘dribbleBall’. Then,
the symbolic parameters of the PDDL action (e.g. pos1)
must be mapped to the continuous parameters of the exe-
cutable action (e.g. x,y,φ,v), which are read from the robot’s

1VHPOP can be downloaded free of cost at
http://www.tempastic.org/vhpop/

continuous belief state. Note that the symbolic parameters
themselves have no meaning in the belief state. They are
just labels used in the PDDL plan. However, causal links
define predicates over these labels which do have a meaning
in the belief state. For instance, 0 -> (robot pos1)
means that pos1 refers to the position of the robot at time
0, which is the initial state. Therefore, the first parameters of
the executable action approachBall are set to the initial
position of the robot: x=0,y=1,φ=0,v=0. The result of this
process is a (partially) instantiated sequence of executable
actions.

(approachball pos1 pos2)

(dribbleball pos2 pos3)

⇒

approachBall(x=0,y=1,φ=0,v=0,xg=3,yg=1,φg=[-π,π],vg=[0,0.3])

dribbleBall(x=3,y=1,φ=[-π,π],v=[0,0.3], xg=1,yg=3,φg=2.6,vg=0)

Fig. 8. A partially instantiated action sequence.

Note that not all parameters are bound. For instance,
although the initial position of the ball binds the x and y
values related to pos2, it does not constrain the φ or v,
as the ball’s orientation and speed are not stored in the
belief state. Therefore, the φ is free to choose between
-π and π. The atball predicate further constrains the
translational velocity to be in the range [0m/s,0.3m/s]. If
several such predicates hold for an action parameter value,
the possible ranges and values are composed. The partially
unbound values in the executable action sequence are called
free action parameters. In the next section, we describe how
predictive knowledge can be used to optimize the values of
these parameters.

IV. APPLYING ACTION MODELS: SUBGOAL REFINEMENT

In the previous section, declarative knowledge is used to
generate abstract plans, and procedural knowledge is used
to execute them. However, one of the remaining questions
presented in the introduction cannot be answered by either
kind of knowledge: ‘What is the best angle of approach?’
This is because the mapping from declarative to procedural
knowledge is ambiguous, and free action parameters remain.
Subgoal refinement is the process of choosing (refining) the
values of the free action parameters at the subgoal, so that
they are optimal with respect to the predicted performance.
Here, this performance is execution duration, which is pre-
dicted with the action model presented in Section II-C.1.

Using redundant degrees of freedom to optimize subor-
dinate criteria has been well studied in the context of arm
control, both in humans [21], [26] and robots [23], [18].
Arm poses are said to be redundant if there are many arm
configurations that result in an equivalent pose. In the work
cited above, all these configurations are called uncontrolled
manifold, motion space, or null space, and finding the
best configuration is called redundancy resolution or null-
space optimization. A difference between typical redundancy
resolution techniques and our approach is that the former
optimizes actions themselves, whereas we rather optimize
transitions between actions.



In the running example from Figure 1, the free action
parameter is the angle of approach. The three graphs in
Figure 9 represent the execution duration of the first and
second action, as well as their sum for all possible angles
of approach. Subgoal refinement determines the free action
parameter for which the overall performance is optimal. The
most right graph in Figure 9 is essentially the search space
for subgoal refinement. In this case, the lowest execution
time of 6.5 seconds is achieved for an angle of 50◦. Note that
greedily optimizing the performance of only the first action
(2.5s) leads to a lower overall performance (7.4) seconds.

Fig. 9. Selecting the optimal subgoal by finding the optimum of the
summation of all action models in the chain.

For this example, these minima can easily be read from
the graph, as the search space has only one dimension.
When applying subgoal refinement to real problems, search
spaces of ten dimensions easily arise, and exhaustive search
becomes intractable. Therefore, we use a genetic algorithm
to determine the optimum. Each action parameter is encoded
by one floating point in the chromosome, and the fitness
function is simply the summation of the action models of the
actions involved. Optimization time is usually small in com-
parison to the gain in performance. For the extreme scenario,
where several actions with many free action parameters are
optimized, our implementation of the genetic algorithm still
takes less than 0.5s to get a good result.

A. Empirical Evaluation

In the soccer domain, subgoal refinement was evaluated
both on the real robots and in simulation, by executing the
scenario in Figure 1 for varying positions of the robot and
the goal.

In the service robotics domain, two scenarios are tested.
In the first scenario, the goal is to put a cup from one
table to another. In each evaluation episode, the topology
of the environment in each scenario stays the same, but the
initial robot position, the tables, and the cups are randomly
displaced. Scenario 2 is a variation of Scenario 1, in which
two cups had to be delivered.

In the arm control domain, sequences of reaching move-
ments are performed. Because this particular task does not
require abstract planning, we did not use VHPOP. For

demonstration purposes, we had the arm draw the first letter
of the first name of each author of [25], and chose 4/5
waypoints accordingly. To draw these letters, only two of the
six degrees of freedom of the arm are used. The free action
parameters are the angular velocities at these waypoints.

Table III lists the results of applying subgoal refinement
to the different domains and scenarios. n is the number of
episodes tested and tg and ts are the mean execution times
of the entire action sequence with the greedy approach (in
which only the current action was optimized) and subgoal
refinement (which optimizes the current and next action).
The fifth column lists the mean improvement achieved with
subgoal refinement. The p-value of the improvement was
computed using a dependent t-test with repeated measures.
A significant and substantial improvement occurs in all but
one domain.

Scenario n tg ts 1− ts/tg p

Soccer (Simu.) 100 9.8s 9.1s 6.6% 0.00
Soccer (Real) 100 10.6s 9.9s 6.1% 0.00
Kitchen (Sc. 1) 100 46.5s 41.5s 10.0% 0.00
Kitchen (Sc. 2) 100 91.7s 85.4s 6.6% 0.00
Manipulation 4 10.6s 10.0s 5.7% 0.08

TABLE III
SUBGOAL REFINEMENT RESULTS

Figure 12 depicts the results from the manipulation do-
main. The angular velocities were set to zero (green, dashed)
or optimized with subgoal refinement (blue, solid). The axes
represent the angles of the two joints. This figure shows well
qualitatively that the trajectories ares smoother with subgoal
refinement: the arms often draws one long stroke, rather than
discernible line segments. Since the manipulation domain
was mainly included for visualization purposes, there are
only a few episodes.

Fig. 12. Drawing letters with (blue, solid) and without (green dashed)
subgoal refinement.

Although optimizing execution duration also leads to
smoother motion in the manipulation domain, in humans it
more likely arises from variability minimization [23]. Our
main goal is not to explain or model human motion, but
rather to optimize actions sequences.

V. APPLYING ACTION MODELS: SUBGOAL ASSERTION

In the previous section, the soccer robot reused and refined
the approachBall action so that it performs well in the
task context of first approaching and then dribbling the ball.
In this section, we show that the goToPose action can
be reused and refined so that it can be used in the context
of approaching the ball. This is possible, because for both
humans and robots, approaching a ball is very similar to



Fig. 10. Search space for subgoal refinement in subgoal assertion with two goToPose actions. Fig. 11. Example assertions.

navigating without considering the ball. On an abstract level,
both involve going from some state to another state on
the field, and both should be implemented to execute as
efficiently and fast as possible.

However, there are also slight differences between these
two tasks. When approaching the ball it is important to not
bump into it before achieving the desired state. In Section II-
C.2, we demonstrated that this failure occurs approximately
half the time. On the other hand, goToPose also succeeds at
approaching the ball half the time, and can be reused without
change in these cases.

The key to reuse is therefore being able to predict when
an action will fail, and when it will succeed at a novel task.
When it is predicted to succeed, the action is executed as
is. If the action will fail, another action should be executed
beforehand, such that the robot ends up in a state from which
the action will succeed. As a novel subgoal is introduced, this
approach is therefore called subgoal assertion.

When mapping the declarative action approachBall to
the goToPose action(s), a call is first made to the failure
prediction action model described in Section II-C.2. If a
success is predicted, approachBall is instantiated with
one goToPose action. If the goToPose action is predicted
to fail, approachBall is instantiated with a sequence of
two goToPose actions. Examples of both situations are
depicted in Figure 11.

The intermediate subgoal between the two goToPose
can be chosen anywhere in the green area (S) in Figure 6,
as the execution of the second goToPose is predicted to
succeed from this area. The free action parameters of this
subgoal are optimized automatically with subgoal refinement.
This ensures that the values for the intermediate parameters
minimize the predicted execution duration, and that the
transition between the two goToPose actions is smooth.
Note that the intermediate goal between the actions must
lie within the green area in Figure 6 to ensure that the
execution of the second goToPose action will succeed. This
requirement puts constraints on the values of the intermediate
parameters. To ensure that subgoal refinement only considers
states in the green area of Figure 6, the action model for the
second action is modified so that it returns an INVALID flag
for these states. This approach has been chosen as it requires
little modification of the optimization module.

Analogously to Figure 9, the predicted execution durations
of the two actions for varying x and y, as well as their
summation are depicted in Figure 10. Invalid values are
rendered in red on the ground plane. Note that due to removal

of invalid values, the shape of the functions on the ground
plane in the last two graphs corresponds to Figure 6 and 11.

In Figure 11, three instances of the problem are depicted.
Since the robot to the left is in the area in which no
collision is predicted, it simply executes goToPose, without
asserting a subgoal. The model predicts that the other two
robots will collide with the ball when executing goToPose,
and a subgoal is asserted. The subgoals, determined by
subgoal refinement, are depicted as well.

A. Empirical Evaluation
To evaluate automatic subgoal assertion, a hundred ran-

dom ball approaches are executed in simulation, once with
subgoal assertion, and once without. Without assertion, the
results are similar to the results reported in Table II. A
collision is again correctly predicted approximately half the
time: 52% of these hundred episodes. Subgoal assertion is
applied in these cases, and is almost always successful: the
number of successful executions is raised from 47 to 97%.

VI. RELATED WORK

Refining procedural knowledge instead of learning pre-
dictive knowledge. Optimizing action execution can also be
done by tailoring the procedural knowledge itself to different
task contexts, for instance by implementing novel actions.
This is a laborious task, as each task context, and there are
usually many, would require their own task-specific action.
Many specific actions make action selection programming
and planning more complex, and make the system less
adaptive, less general and more difficult to maintain.

Reinforcement Learning (RL) is another method that seeks
to optimize execution performance with respect to a reward
function. Recent attempts to combat the curse of dimension-
ality in RL have turned to principled ways of exploiting
temporal abstraction [1]. The only approach we know of
that combines Reinforcement Learning with explicitly rep-
resented declarative knowledge to generate action chains is
RL-TOPS (Reinforcement Learning - Teleo Operators) [20].
Values and action-value pairs for temporally abstracted RL
policies can be considered action models. However, our
action models are action-specific, not task-specific (rewards
are given for finishing tasks, not actions), and have more
more informative performance measures. This facilitates the
reuse of action models for novel tasks.

Learning predictive knowledge from procedural
knowledge. Related work on learning prediction models
by observing the outcome of executing actions has enabled
robots to predict: gripper poses with Bayesian networks [9],



optimal navigation parameters with Dynamic Bayesian Net-
works [14], cost models for indoor navigation actions with
regression [11] and model [4] trees. In these approaches,
action models are used to improve the execution of isolated
tasks on one type of robot. In our approach, action models
are an integral and central part of the computational model,
are acquired automatically, represented explicitly, and used
as modular resources for different kinds of control problems.
The generality of our approach is demonstrated by its use on
three different robotic platforms.

Interaction of procedural and predictive knowledge.
The Modular Selection And Identification for Control (MO-
SAIC) architecture [13] integrates action models into a
computational model for motor control. This framework uses
paired inverse and forward models to model two problems:
how to learn inverse models for tasks, and how to select
the appropriate inverse model, given a certain task. This
architecture has not been designed for robot control.

Interaction of declarative and procedural knowledge.
Other recent approaches to using symbolic planning for
robots focus on different problems that arise when such plans
are executed on real robots. For instance, by using probabilis-
tic planners in the abstract planning domain [5]. aSyMov [7]
reasons about geometric preconditions and consequences of
actions in a simulated 3-D world. Note that our methods are
not incompatible with [5], [7].

Hybrid motion planning approaches such as [6], compute
and commit to plans offline, but leave freedom in the plans to
react to unforeseen circumstances. Whereas these approaches
consider the freedom between the subgoals, subgoal refine-
ment considers the freedom at the subgoal itself.

In the XFRMLearn framework, human-specified declar-
ative knowledge is combined with robot-learned knowl-
edge [2]. Navigation plans are optimized with respect to
execution time by analyzing, transforming and testing plans.
XFRMLearn learns by testing plans, whereas we learn the
analysis phase.

VII. CONCLUSION

To reason about their actions, cognitive systems must have
models of their actions. In this paper, we present a system
that reasons about models at two levels of abstraction. First of
all, abstract declarative models, which are manually specified
in PDDL, are used to select (chains of) actions. Declarative
plans are mapped to actions using an action instantiation
algorithm. The resulting action sequences are then optimized
with action models, which predict the execution duration and
success of an action, given its parameters. Since it is difficult
to specify action models manually, the robots apply tree-
based induction to learn them from experience, gathered by
observing the execution of their own actions. Our empirical
evaluation demonstrates that predictive knowledge enables
robots to optimize their behavior autonomously in real-time.

We demonstrated how the robots learn accurate action
models for actions with up to 8 parameters. For a higher
number of dimensions, manually specified feature spaces
and tree-based induction might not yield accurate models.
Future work aims at using more abstract feature spaces and

different learning algorithms. We also aim at learning other
performance measures, such as energy consumption, and
combining different action models to be able to optimize
multi-criteria performance measures.

REFERENCES

[1] A. Barto and S. Mahadevan. Recent advances in hierarchical rein-
forcement learning. Discrete event systems, 2003.

[2] M. Beetz and T. Belker. XFRMLearn - a system for learning structured
reactive navigation plans. In Proceedings of the 8th International
Symposium on Intelligent Robotic Systems, 2000.

[3] M. Beetz, T. Schmitt, R. Hanek, S. Buck, F. Stulp, D. Schröter, and
B. Radig. The AGILO robot soccer team experience-based learning
and probabilistic reasoning in autonomous robot control. Autonomous
Robots, 17(1):55–77, 2004.

[4] T. Belker. Plan Projection, Execution, and Learning for Mobile Robot
Control. PhD thesis, University of Bonn, 2004.

[5] A. Bouguerra and L. Karlsson. Symbolic probabilistic-conditional
plans execution by a mobile robot. In IJCAI-05 Workshop: Reasoning
with Uncertainty in Robotics (RUR-05), 2005.

[6] O. Brock and O. Khatib. Elastic Strips: A framework for integrated
planning and execution. In Proceedings International Symposium on
Experimental Robotics, 1999.

[7] S. Cambon, F. Gravot, and R. Alami. A robot task planner that merges
symbolic and geometric reasoning. In ECAI, 2004.

[8] S. Coradeschi and A. Saffiotti. Perceptual anchoring of symbols for
action. In IJCAI, 2001.

[9] A. Dearden and Y. Demiris. Learning forward models for robotics. In
IJCAI, 2005.

[10] M. Fox and D. Long. PDDL2.1: An extension of PDDL for expressing
temporal planning domains. Journal of AI Research, 20:61–124, 2003.

[11] K. Haigh. Situation-Dependent Learning for Interleaved Planning and
Robot Execution. PhD thesis, School of Computer Science, Carnegie
Mellon University, 1998.

[12] S. Hart, S. Ou, J. Sweeney, and R. Grupen. A framework for
learning declarative structure. In Workshop on Manipulation for
Human Environments, Robotics: Science and Systems, 2006.

[13] M. Haruno, D. Wolpert, and M. Kawato. MOSAIC model for
sensorimotor learning and control. Neural Computation, 2001.

[14] G. Infantes, F. Ingrand, and M. Ghallab. Learning behaviors models
for robot execution control. In Proceedings of the 17th European
Conference on Artificial Intelligence (ECAI), 2006.

[15] R. Jacobs and M. Jordan. Learning piecewise control strategies in
a modular neural network. IEEE Transactions on Systems, Man and
Cybernetics, 23(3):337–345, 1993.

[16] M. Matarić. Behavior-based robotics as a tool for synthesis of artificial
behavior and analysis of natural behavior. Trends in Cognitive Science,
2(3):82–87, 1998.

[17] B. Mehta and S. Schaal. Forward Models in Visuomotor Control.
Journal of Neurophysiology, 2002.

[18] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal. Comparative
experiments on task space control with redundancy resolution. In IEEE
International Conference on Intelligent Robots and Systems, 2005.

[19] R. Quinlan. Learning with continuous classes. In A. Adams and
L. Sterling, editors, Proceedings of the 5th Australian Joint Conference
on Artificial Intelligence, pages 343–348, 1992.

[20] M. Ryan and M. Pendrith. RL-TOPs: an architecture for modularity
and re-use in reinforcement learning. In Proc. 15th International Conf.
on Machine Learning, 1998.

[21] S. Schaal and N. Schweighofer. Computational motor control in
humans and robots. Current Opinion in Neurobiology, 2005.

[22] W. Scoville and B. Milner. Loss of recent memory after bilateral hip-
pocampal lesions. Journal of Neurology, Neurosurgery and Psychiatry,
20:11–21, 1957.

[23] G. Simmons and Y. Demiris. Biologically inspired optimal robot
arm control with signal-dependent noise. In Proceedings of IEEE
International Conference on Intelligent Robots and Systems, 2004.

[24] F. Stulp. Tailoring Robot Actions to Task Contexts using Action
Models. PhD thesis, Technische Universität München, 2007.

[25] F. Stulp, W. Koska, A. Maldonado, and M. Beetz. Seamless execution
of action sequences. In ICRA, 2007.

[26] D. Wolpert and Z. Ghahramani. Computational principles of move-
ment neuroscience. Nature Neuroscience Supplement, 3, 2000.

[27] H. Younes and R. Simmons. VHPOP: Versatile heuristic partial order
planner. Journal of Artificial Intelligence Research, 20:405–430, 2003.


