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Abstract— Many application tasks require the cooperation of
two or more robots. Humans are good at cooperation in shared
workspaces, because they anticipate and adapt to the intentions
and actions of others. In contrast, multi-agent and multi-robot
systems rely on communication to exchange their intentions. This
causes problems in domains where perfect communication is
not guaranteed, such as rescue robotics, autonomous vehicles
participating in traffic, or robotic soccer.

In this paper, we introduce a computational model for implicit
coordination, and apply it to a typical coordination task from
robotic soccer: regaining ball possession. The computational
model specifies that performance prediction models are necessary
for coordination, so we learn them off-line from observed
experience. By taking the perspective of the team mates, these
models are then used to predict utilities of others, and optimize
a shared performance model for joint actions. In several exper-
iments conducted with our robotic soccer team, we evaluate the
performance of implicit coordination.

I. INTRODUCTION

As robotic systems are becoming more dextrous and sophis-
ticated, they are capable of executing more complex tasks.
Many of these more complex application tasks require two
or more robots to cooperate in order to solve the task. A
key aspect of these systems is that multiple robots share the
same workspace, and can therefore not abstract away from the
actions of other robots.

Humans are very good at performing joint actions in shared
workspaces. Consider two people assembling a bookcase. With
apparent ease, actions are anticipated and coordinated: one
person holds a shelf while the other screws it in place, and so
forth. A key aspect of this cooperation is that it is executed
with little or no communication. Humans achieve this by
inferring the intentions of others. Once the beliefs and desires
of the cooperating party are known, we simply imagine what
we would do in that situation. This is called the Intentional
Stance [5].

If I see you grab a screw-driver, I can assume you intend
to screw the shelf in place; there is no need for you to tell
me. By integrating your intentions into my own beliefs, I can
also anticipate that my holding the shelf will ease our task,
thereby coming closer to our joint desire of assembling the
bookcase. This is called implicit coordination, and is visualized
in Figure 1.

In contrast, coordination in multi-agent and multi-robot
systems is usually achieved by extensive communication of
intentions or utilities. This is called explicit coordination,
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and is visualized in Figure 2. Previous work on cooperation
seems to have focussed almost exclusively on this form of
coordination [1], [4], [6], [10], [15]. It has also been used in
the RoboCup mid-size league to allocate roles to the different
players [3], [12].

There are many domains in which implicit coordination
is used by humans: almost all team sports, construction of
bookcases and others, and also in traffic. Because implicit
coordination dispenses of the need for communication, there
are also many multi-robot domains that could benefit from this
approach. Rescue robotics and autonomous vehicles operating
in traffic are examples of domains in which robust communi-
cation is not guaranteed, but where correct coordination and
action anticipation is a matter of life and death. When it
comes to saving humans or avoiding accidents, it is better
to trust what you perceive, than what others tell you: seeing
is believing.
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A current research focus in cooperation is human-robot
interaction, for instance in space exploration [7] or rescue
robotics [9]. Our research group has a long-term project for
human-robot interaction in intelligent rooms. The room and
robot are equipped with cameras, laser range finders and RFID
tags, which provide robots with accurate information about
what is going on in the room.

When a robot and a human perform a joint action in their
shared workspace, e.g. setting the table in the kitchen, or seam
welding in outer space [7], it cannot be expected of humans to
continuously communicate their intentions. Instead, the robot
must be able to anticipate a human’s intentions, based on
predictive models of human behavior. We consider implicit
coordination to be essential for natural interaction between
robots and humans.

A typical coordination task from the robotic soccer domain
is to regain ball possession. Acquiring ball possession is a goal
for the team as a whole, but only one of the field players is
needed to achieve it. The benefit of having only one player
approach the ball is obvious: there will be less interference
between the robots, and it also allows the other robots to
execute other important tasks, such as strategic repositioning
or man marking. Of course, the robots must agree upon which
robot will approach the ball. The intuitive underlying rule is
that only the robot who is quickest to the ball should approach
it. This rule is also used in [8], in which each robot determines
the distance of each team mate to the ball. Based on this, each
agent decides if it will approach the ball or not. Coordination
is still explicit, because the agent who decides to approach the
ball first must ‘lock’ a shared resource, which prevents other
robots from chasing after it. The use of this global resource
requires communication.

In this paper, we present a computational model of implicit
coordination and apply this model to the ball approach task.
To infer the intentions of others, the agents first learn utility
prediction models from observed experience. For the ball
approach task, the utility measure is time, so the robots learn
to predict how long it will take to approach the ball. During
task execution, the robots locally predict the utilities for all
robots, and globally coordinate accordingly.

The contributions of this paper are:

o presenting a computational model for implicit coordina-
tion

o learning utility prediction models on real robots, and
comparing two learning methods previously used to learn
such models,

o demonstrating how these learned models can be used for
implicit coordination on real robots.

The rest of this paper is organized as follows. In the
next section, we present the computational model of implicit
coordination. In Section III, we show how prediction models
are learned on the robots. In Section IV, these models are used
to implicitly coordinate the robots, after which we conclude
with and present future work in Section V.

II. COMPUTATIONAL MODEL

A graphical representation of the computational model of
implicit coordination can be seen in Figure 3. Green (light)
items are fixed, and the same on all agents. Blue (dark) items
change during task execution. To the left are modules that can
be found in almost any agent. The state estimation modules
takes a percept, and derives a belief state from them. Given
its beliefs and desires, the agents decides its current intention.
This intention is executed in the real world as an action.

The modules that are necessary for implicit coordination
are to the right of the dashed line. The main module is the
Teammate Intention Inference, similar to the Computational
Cognitive Module described in [7]. It contains the following
submodules:

o Predictive models. These models map the intention and
belief of an agent to a performance measure. In the ball
approach task, the performance measure is time. The
models are learned from observed experience, as will be
described in Section III

o Shared performance models for joint actions. These de-
termine the performance of joint actions. For the ball
approach task, the shared performance model states that
the performance of the joint action ‘approach ball’ is
higher if only one robot approaches the ball.

e Perspective Taker. This module lets the agent imagine

what it would do if it were the other agents. To do this,
it swaps its own state with that of another agent in the
belief state, and determines its own intention based on
the joint desires and this ‘inverted’ belief state. Since the
agents have a joint goal, the desires of other agents are
the same as my own.
The agents can only take the perspective of others, if they
know each other’s state. Therefore, it is essential that the
state estimation provides each agent with estimates of the
states of others.
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Fig. 3. Computational model of implicit coordination



III. LEARNING PERFORMANCE MODELS

In the ball approach scenario, the utility describing how
well a robot can execute this task is time: the faster you can
approach the ball, the higher the utility. Therefore, each robot
will need to be able to predict how long it will take each
robot to approach the ball. These temporal prediction models
are learned from observed experience, using model trees and
neural networks.

A. Hardware

In this section, we will briefly present the hardware used to
conduct the experiments. One of the three field player of our
RoboCup mid-size team the ‘Agilo RoboCuppers’ is shown
on the left in Figure 4. The robots are customized Pioneer I
robots that use differential drive for locomotion. Two of them
use the original Pioneer I controller, and one uses a newer
faster Roboteq controller. The robots learn temporal prediction
models for both controllers.

A single forward facing CCD camera is used for state
estimation. It runs locally on each robot, and yields estimates
of the robot’s own position, as well as the positions of its team
mates, opponent players, and the ball [11]. For the experiments
we will present later, it is important that the variables are
controllable and reproducible. Therefore, we have used our
ground truth system to determine the positions of the robots
with even more accuracy. This ground truth system uses three
ceiling cameras to detect colored markers on top of the robot.
An image of one of the cameras can be seen to the right in
Figure 4.

Fig. 4. One of the three customized Pioneer I robots, and an image from
the ground truth system.

B. Acquisition of training examples

Examples are gathered by randomly choosing goal desti-
nation on the field, approaching them, thereby measuring the
time it took for the approach. To acquire sufficient data, we
not only record the time from the initial to the goal point, but
also from each intermediate point, at a rate of 10Hz. We store
the relevant variables from the belief state in a log file. These
four variables are: 1) translational velocity, 2) distance to the
goal, 3) angle to the goal, and 4) the difference between the
robot and goal orientation.

C. Learning methods

Model trees are functions that map continuous or nominal
features to a continuous value. The function is learned from
examples, by a piecewise partitioning of the feature space. A
linear function is fitted to the data in each partition. Model
trees are a generalization of decision trees, in which the
nominal values at the leaf nodes are replaced by line segments.
A benefit of model trees is that they can be transformed
into sets of rules that are suited for human inspection and
interpretation. For more information about model trees, and
how they can be used to learn action models of navigation
tasks, we refer to see [13].

In [2], neural networks have been successfully used to learn
temporal prediction models of navigation tasks. The neural
network we use has four input nodes, one for each of the
features described in Section III-B. It has two hidden layers
with five nodes each, and one output node: predicted time.

Since it is not clear which learning method is better suited
for learning temporal prediction models, we apply both tech-
niques and compare them quantitatively.

D. Evaluation

Both model trees and neural networks were trained with the
data acquired on the robots. To analyze how many navigation
tasks (or runs) are needed to acquire an accurate prediction
model we determined the error of the learned models with
varying numbers of training runs. In Figure 5 it can be seen
how the error decreases as we use more training runs for
the Roboteq controller, for both learning methods. The error
measure is the mean absolute error between the predicted and
the actual time, based on 80 test navigation tasks. This test set
is not in the training set. After approximately 300 navigation
tasks, adding more examples hardly improves accuracy, and
we stopped gathering examples.
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Fig. 5. Dependence of prediction accuracy on number of navigation tasks

Note that the navigation tasks have, on average, a duration
of approximately 6 seconds, so 300 training and 80 test runs
take about 2300 seconds, or 40 minutes. This is well within the
continuous operational range of the robots (battery life-time,
etc.). The examples are logged at 10Hz, so 300 navigation
tasks yields 18000 (300runx6s/runx 10example/s) examples
for training the models. The mean absolute error of the models
used for the Roboteq controller was 0.176s for the model tree,
and 0.180s for the neural network. For the older Pioneer I
controller these values are 0.207s and 0.217s respectively.



IV. IMPLICIT COORDINATION EXPERIMENTS

To evaluate if the learned prediction models are sufficient
for implicit coordination, we have conducted two experiments,
one in a dynamic, and one in a static environment. For each
experiment, we used three robots, two with the slow controller,
and one with the fast controller. Each robot has a temporal
prediction model for both controllers, and knows which robot
has which controller.

The questions we will answer with these experiments are:
1) Do the robots have accurate estimates of each other’s
position... 2) and of the time it will take them to reach the
goal? 3) Do the robots agree upon who should approach
the ball... 4) and did they actually choose the quickest? 5)
Are temporal prediction models necessary, or would a more
simple value such as distance suffice? 6) How robust is implicit
coordination against errors in state estimation? 7) When does
implicit coordination fail?

A. Dynamic environment experiment

In this experiment, the robots continuously navigated to ran-
domly generated positions on the field. Once a robot reached
its destination, the next random position was generated. These
poses were generated such that interference between the robots
was excluded. For about half an hour (18 000 examples),
the robots perform their random navigation routines. Each
robot records the state estimation results locally every 100ms.
Figure 6 displays which information was gathered in each
log file. Temporal prediction is recorded for both the model
trees (mt) and neural networks (nn). Each robot also records
who they think should approach the ball at that time, without
ever actually approaching the ball. Before the experiment,
the robots synchronize their clocks. The times stamps can
therefore be used to merge the three distributed files for further
evaluation after the experiment.
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Fig. 6. Visualization of the log-files acquired in the dynamic experiment.

B. Static environment experiment

In the previous experiment, it is impossible to measure if
the temporal predictions were actually correct, and if potential
inaccuracies caused the robots’ estimate of who is quickest to
be incorrect. Therefore a second experiment was conducted.

First, the robots navigate to three random positions and
wait there. They are then synchronously requested to record

the same data as in the first experiment, but only for the
current static state. Then, one after the other, the robots
are requested to drive to the goal position, and the actual
approach duration was recorded. This static environment is
less realistic, but allows us to compare the predicted time with
the actually measured time for each robot. The log-files are
almost identical to the ones in the dynamic experiment. The
only difference is that they also contain the actually measured
time for the robot, and contain only 200 examples, as we
record one example for each episode, and not every 100ms.

C. Results

Q1) Do the robots have accurate estimates of each other’s
positions? Since ground truth provides all the robots with the
same information, there are hardly any errors in the robot’s
estimation of their own and other’s state. No system is perfect
however, and in Table I we list the small errors that arose. As
an example, the value 4.3 in this table means that the distance
between the belief of robot 2 (the estimator) about the position
of robot 1 (the estimatee), differs 4.3cm from robot 1’s own
belief of its position. This question, as well as the next two,
were answered by using the data of the dynamic experiment.

Position (cm)
Estimator
R1 R2 R3

R1 0 43 39
Estimatee R2 | 2.0 0 1.8
R3 | 1.8 15 0

TABLE I
POSITION ESTIMATION ERRORS.

Q2) Do the robots have accurate estimates of the time it will
take each other to reach the goal? Table II is very similar to
Table I. However, here we do not list the difference in position
estimate, but the difference in temporal prediction, for both
models trees and neural networks. The errors are listed in ms,
so the robots do indeed have accurate estimates of each other’s
approach times.

MT (ms) NN (ms)
Estimator Estimator
Rl R2 R3 Rl R2 R3
R1 0 15 22 0 18 26
Estimatee  R2 10 0 12 16 0 16
R3 13 12 0 17 15 0
TABLE 11

TIME PREDICTION ERRORS FOR MODEL TREES AND NEURAL NETWORKS

Q3) Do the robots agree upon who should approach the
ball? To answer this question, we simply determined how
often all three robots agreed on which robot should approach
the ball. The results are listed in III, in the row labeled “Chose
the same robot?”. Given the accurate estimates the robots have
of each other’s states, and the accurate predicted times that
arise from this, it should not be surprising that the robots have



almost perfect agreement (>98%) on who should approach the
ball.

Temporal Predictor
Model Neural Distance
Tree  Network
Chose the same robot? 99% 98% 99%
Chose the quickest robot? 96% 95% 81%
TABLE III

AGREEMENT AND CORRECTNESS IN IMPLICIT COORDINATION

Q4) Do the robots choose the quickest one? Agreeing about
who should go to the ball is of little use if the chosen robot
isn’t actually the quickest. Therefore, we would also like
to know if the chosen robot is actually the quickest one to
approach the ball. Of course, this could only be determined in
the static experiment, in which the actual times it took each
robot to approach the ball were recorded. A robot’s decision to
coordinate is deemed correct, if the robot that was the quickest
was indeed predicted to be the quickest. For model trees, the
robots were correct 96% of the time, and for neural networks
95%, as can be seen in Table III.

Q5) Are temporal prediction models necessary, or would a
more simple value such as distance not suffice? Using only
distance as a rough estimate of the approach time, as done in
[8], would save us the trouble of learning models. Although
time is certainly strongly correlated with distance, using dis-
tance alone leads to significantly more incorrect coordinations.
The last column in Table III shows this. Agreement is still very
good (99%), but the robot that is really the quickest is chosen
only 81% of the time. So, when using distance, the robots are
still very sure about who should approach it, but they are also
wrong about it much more often.

Q6) How robust is implicit coordination against errors in
state estimation? As we saw, almost perfect coordination was
achieved in the dynamic experiment. This is not so surprising,
as the robots have very accurate estimates of each other’s
states. To analyze how noise in the estimates of the other
robot’s states influences coordination, we took the original
log files, and added Gaussian noise of varying degrees to the
estimates that robots have of each other’s pose ([z¢,y:,¢:])
The predicted times were then computed off-line, based on
these simulated log files.

The results are shown in Figure 7. The x-axis shows the
standard deviation of the Gaussian noise added to the data. So
the first column, in which there is no added noise, represents
the results of the dynamic experiment, which had been listed
in Table III. The y-axis shows the percentage of examples
in which 0,1,2 or 3 robots intended to approach the ball. Of
course, ‘1’ means that coordination succeeded.

We can clearly see that coordination deteriorates when
robots do not know each other’s states so well. If you have
a robotic (soccer) team, and know the standard deviation
between the robot estimations of each other’s positions, the
graph tells you how well implicit coordination would work in
this team.
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Fig. 7. Influence of simulated state estimation errors on implicit coordination.

Q7) When does implicit coordination fail? In our original
dynamic experiment, implicit coordination almost never fails,
so this question does not really apply to this data. Therefore,
we analyzed the log files to which Gaussian noise with a
standard deviation of 0.1 was added. In Figure 7, this is
the third column in both bar plots. For this noise level,
coordination succeeds 90% of the time. In the simulated log
file we labeled all examples in which exactly one robot decided
to approach the ball with Success, and others with Fail.
A decision tree was then trained to predict this value.

The learned tree is represented graphically in Figure 8. For
both prediction models the main rule is that if the difference
in predicted times between two robots is small, coordination
is likely to fail, and if it is large, it is likely to succeed. This is
intuitive, because if the difference between the times is large,
it is less likely that adding errors to them will invert which
time is the smallest. Note that in between these two limits,
there is a "gray’ area, in which some other rules were learned.
They only accounted for a small number of example, so for
clarity, we will not discuss them here.

Difference of predicted times (s)

- -

0.40 0.85
. Coordination
‘/ /=
or OO
NN: % Coordination
. Succeeds 0

Fig. 8. Representation of the decision tree that predicts coordination success.

Humans also recognize when coordination might fail. For
example, in sports like soccer or volleyball, it is sometimes
not completely clear who should go for the ball. Humans
solve this problem by making a brief exclamation such as
“Mine!”, or “Leave it!”. So in these cases, humans resort to
explicit coordination and communicate their intentions. Not
only do humans have utility models of each other to coordinate
implicitly, they are also aware when confusion might arise.
The learned decision tree essentially provides the robots with
similar awareness, as they predict when implicit coordination
failure is likely. So, they could be used to determine when
robots should resort to other methods of coordination. For
instance, our robots have a simple locker-room agreement



that when coordination failure is predicted, the robot with the
higher number will approach the ball (excluding the goalie).
Finally, in Figure 9, we present an illustration of how the
robots coordinate in practice. It is easiest to understand this
image if one imagines that the robots are standing still at
the drawn positions, and the ball is rolling slowly from left
to right. At every Scm of the ball’s trajectory, the robots
determine who is quickest to the ball at that time. This robot
is connected to the current ball’s position by a brighter (green)
line. When the decision tree predicts that coordination might
fail, the robots between which confusion might arise are both
connected to the ball’s position by a black line. Note that this
image was generated in simulation, not with the real robots.

Fig. 9. Example of implicit coordination. Green (bright) lines represent that
only one robot would approach the ball at this position. Black lines show
when coordination is predicted to likely fail. The robots must all approach
the ball from the right.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented a computational model
of implicit coordination. It requires that agents know each
other’s state, and that they have performance prediction models
of each other. We have learned accurate temporal prediction
models using neural networks and model trees, and compared
both methods. These temporal prediction models were used
to coordinate three robots in a typical robotic soccer task:
regaining ball possession. Various experiments were conducted
to demonstrate the good performance of implicit coordination.

Up till now the temporal prediction models were learned
from experience that was gathered in an environment in which
there were no interfering robots. However, in a real game the
approach time depends very much on the position of opponent
robots. We are currently learning temporal prediction models
that include other (opponent) robots.

In soccer, ball approach duration is certainly not the only
measure of utility. Who should approach the ball also depends
on the different roles the players have, as well as strategic
positioning considerations. If I am a defender marking an
opponent attacker in my penalty area, it is unwise to approach
the ball, just because I happen to be the closest. Including
more complex utility models that take strategic considerations
into account in our framework is possible, as long as each
robot knows the utility models of the others.

In joint research with the University of Ulm and Technical
University of Graz, we are forming a heterogeneous soccer
team of robots with differing hardware and software systems.
The goal is to achieve cooperation without major changes

in the software of the individual teams. The first step had
been to facilitate belief exchange [14], and currently we are
working on realizing implicit coordination, for which we have
just acquired the first promising results. Since the robots differ
in their dynamics, a prediction model for each type of robot
must be learned and distributed before playing as a team.

The inspiration for this research actually arose from the
practical implications of this collaboration. By using implicit
coordination, each group could implement the abstract idea
of the Intentional Stance independently of the software of
the others. Therefore, rewriting parts of the different action
selection architectures, or implementing negotiation schemes
to allow for explicit coordination was not necessary.
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