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1 Motivation

In Machine Learning, the success and performance of learning often critically depends
on the feature space provided. For instance, when learning a classifierf1, . . . , fn → c
that maps featuresf1, . . . , fn to classesc, appropriate encodings off1, . . . , fn are often
as important as the choice of learning algorithm itself.

This is particularly true for robot learning, where feature spaces are typically high
dimensional and features are continuous. Consider an example from a robotic naviga-
tion, depicted in Figure 1. In [1], the robot learns to predict navigation execution dura-
tion given the current and goal pose, from observed experience. By exploiting transla-
tional and rotational invariances, the original 6-dimensional state space can be reduced
to 3 dimensions. The benefit is that fewer examples are needed to learn an accurate
prediction model.
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Fig. 1. Original and transformed feature spaces for a robotic navigation task. The 3-dimensional
space is more appropriate for learning, as it contains the same information yet is more compact.

For many applications, it is common to design feature spaces manually. State vari-
ables are composed into higher level features using domain-specific knowledge. Un-
fortunately, manually designing these feature languages is tedious, because each new
learning problem usually needs its own customized feature space. It is also error-prone,
as relevant information in the original state space might be lost in the transformation.
To overcome these problems, we propose an algorithm that automatically generates
compact feature spaces, based on Equation Discovery.



2 Combining Equation Discovery and Machine Learning

Our feature space generation algorithm is based onEquation Discovery(ED). ED sys-
tems introduce new variables from a set of arithmetical operators and functions. The
algorithm explores the hypothesis space of all equations, restricted by heuristics and
constraints. A classical representative is BACON [2], which rediscovered Kepler’s law
(T 2 = kR3). A graphic example can be seen to the left in the figure below, in which five
input variables are mapped to the target by the equationt = |i1|+ (i2/i3) +

√
i5. The

advantage of ED is that it yields a compact representation and human readable output.
For instance, would the simplicity and elegance of Kepler’s law be obvious from the
learned weights in a neural network? However, the equations are restricted by the op-
erators provided, in contrast to for instance neural networks, which can learn complex
non-linear relationships.
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Equation Discovery Machine Learning
+ Can approximate complex data
− Result difficult to interpret− Function limited by operators given

+ Result is compact and interpretable
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Fig. 2.Combining Equation Discovery and Machine Learning

Our novel approach combines the strengths of ED, being the compactness and inter-
pretability of the resulting function, and ML, being its ability to approximate complex
data. We do this by allowing ED to discover many equations, which, when applied to
the input data, yield data that has a higher correlation with the target data. ED is halted
at a certain depth, and from the multitude of generated equations (features), those most
appropriate for learning are selected. The algorithm essentially searches for relation-
ships between several input variables and the target variable that can be described well
with operators, and leaves more complex relationships to machine learning.

The algorithm combines alln initial features with thek given operators, yielding
new equations. These new features are added to the original set. This is repeated recur-
sively d times, yielding equations with at most2(d−1) operators. Since the complex-
ity of this algorithm isΘ(k2d−1n2d

), we should avoid generating irrelevant features.
Mathematical constraints eliminate equations that generate neutral elements (e.g. x/x,



x-x). Term reduction removes terms with the same semantics but different syntax (e.g.
x ∗ 1/y = x/y). Units are respected to avoid for example subtracting meters from mil-
limeters, or meters from seconds. Furthermore, domain dependent operators can further
control search. For example, in a geometrical domain it makes sense to add trigono-
metric operators and constraints how to use them, such as “applyatan only to two
distances”.

We further direct search by choosing only features that predict the target value well.
This is done by computing the linear correlation coefficientr of the feature with the
target value. This approach is fast, but suffers the same problems as other filter meth-
ods [3]. At each depth, only the bestp% of features are added to the set for further
processing.

3 Results

First we evaluated our system withEquation Rediscovery.This is the process of dis-
covering an equation from data generated by a known target equation. For every term
containing up to seven operators, thirty random equations were generated and tested.
Equations with up to two operators are always discovered, equations with three oper-
ators in most cases and everything above depends a lot on the structure of the term.
An example of a short equation that was not discovered is(w/(x ∗ y)) − z, while
f0 ∗ f1 + f2 ∗ f3 + f4 ∗ f5 + f6 ∗ f7 + f8 ∗ f9 was found. The runtime in any case
is less than a minute on an x86 computer with 1500 MHz processor clock speed.

Prediction Models for Robots.As a real-world example we used the example from
the introduction in which robots need to learn to predict expected action durations. The
goal was to discover the Euclidean distance to the final position and the angle between
the starting position and the shortest path and between there and the final position.
Geometrical constraints and operators were added to guide search. Note that these are
not problem, but domainspecific. This means they are much more general, and will
hold in many problems in the same domain.

These first results indicate that this approach can guide and sustain the design of
feature languages for new problems. Nonetheless, some domain knowledge is still nec-
essary when constructing sensible features for complex real-world tasks. Future work
aims at processing nominal as well as numerical input values, and implementing more
sophisticated relevance measures than linear correlation coefficient.
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