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ABSTRACT

As agent systems are solving more and more complex tasks
in increasingly challenging domains, the systems themselves
are becoming more complex too, often compromising their
adaptivity and robustness. A promising approach to solve
this problem is to provide agents with reflective capabilities.
Agents that can reflect on the effects and expected perfor-
mance of their actions, are more aware and knowledgeable
of their capabilities and shortcomings.

In this paper, we introduce a computational model for
what we call action awareness. To achieve this awareness,
agents learn predictive action models from observed experi-
ence. This knowledge is then used to optimize, transform
and coordinate plans. We apply this computational model
to a number of typical scenarios from robotic soccer. Various
experiments on real robots demonstrate that action aware-
ness enables the robots to improve the performance of their
plans substantially.

Categories and Subject Descriptors

1.2.9 [Artificial Intelligence]: Robotics—autonomous ve-
hicles; 1.2.8 [Artificial Intelligence|: Problem Solving,
Control Methods, and Search—plan execution, formation,
and generation

General Terms
Computational Model

Keywords

learning action models, plan optimization

1. INTRODUCTION

Improvements in agent technology allows agent systems
to solve more and more complex tasks. As the tasks and
environments become more complex, so do the agent sys-
tems themselves. This often compromises the robustness
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and adaptivity of the system, leading to a shorter opera-
tional life-time. A promising approach to solve this problem
is to provide the agents with reflective capabilities [2]. When
the agents are aware of what they are doing, and why, they
become more robust, and can adapt to new situations. We
call this action awareness.

We investigate the issues of action awareness and its appli-
cations in the context of multi-robot control. Robotic soccer
is a good example of a domain in which the agent’s interac-
tions with the environment are often very complex. There-
fore, hand-coding the controller is intractable and failure-
prone. However, by reasoning about their actions, robots
are able to choose the appropriate action, and optimize its
parameterization on-line themselves.
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Figure 1: Three typical robotic soccer scenarios in-
cluding control tasks requiring action awareness.

In this paper, we will propose a novel computational
model for the acquisition and application of action aware-
ness. It shows how action awareness can be acquired by
learning predictive action models from observed expe-
rience (Section 2). We then explain how action awareness
can be used to optimize (Section 3.1), transform (Sec-
tion 3.2), and coordinate (Section 3.3) underspecified plans
with highly parameterizable actions in the context of robotic
soccer. While the individual contributions are not new, we
do not know of a system implementing this as a comprehen-
sive computational model, and applying it to autonomous
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modules, and to the right are the novel modules that gener-
ate and exploit action awareness. When the robot has idle
time, it learns prediction models for the actions in the ac-



tion library. During operation time, action chains are gener-
ated. Three modules then take these chains, and optimize,
transform, and coordinate them using the pre- and post-
conditions, as well as the prediction models. The modified
chains then simply replace the original ones, and are exe-
cuted.
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Figure 2: Computational Model

2. BECOMING ACTION AWARE:
LEARNING PREDICTION MODELS

The robots achieve action awareness by learning action
prediction models from observed experience. Given a spe-
cific scenario, these models should predict whether an ac-
tion is likely to succeed, and what its expected performance
will be. In this section, we will explain how temporal and
failure prediction models were learned. The experiments in
this paper were conducted with three customized Pioneer I
robots of our RoboCup mid-size team the Agilo RoboCup-
pers. The robots use differential drive for locomotion, and
a single forward facing CCD camera for state estimation.

2.1 Action Performance Prediction

Being aware of an action’s expected performance is valu-
able knowledge. In many robotic domains, execution time
is an important performance measure. Therefore we learn
temporal prediction models. For our actions goToPose and
dribbleBall, the model should predict the expected time of
navigating from a start to a goal pose with this action. This
model is acquired by training a model tree with data ac-
quired on real robots. The training examples for the model
tree were acquired by randomly choosing goal destination
on the field, executing the goToPose or dribbleBall ac-
tion, and measuring the time it took for the approach. In
[6] we determined that 40 minutes operation time on a real
robot yields enough examples to acquire an accurate tem-
poral prediction model. The mean absolute error between
the actual an predicted approach time for the goToPose and
dribbleBall actions are 0.18s and 0.22s respectively.

2.2 Action Failure Prediction

The goToPose action can often be used well to approach
the ball. However, in some situations it will bump into the
ball before achieving the desired orientation, as can be seen
in Figure 1. The second performance model we have learned

predicts whether executing goToPose will lead to a collision
with the ball or not. This model was learned by training a
decision tree on data acquired in simulation. The training
examples for this tree were acquired by having the robot
executed goToPose a thousand times, with random initial
and destination poses, the ball always positioned at the des-
tination pose. For each run, we record if the robot had a
Collision with the ball before reaching its desired position
and orientation. If not, the run was a Success. On a test
set, the learned decision tree predicts collisions correctly in
almost 90%.

3. APPLYING PREDICTION MODELS TO
AGENT CONTROL

In this section we will show how prediction models can be
used to optimize, transform and coordinate plans.

3.1 Plan Optimization

Actions and action chains are often underspecified in plans.
Take the example in Figure 3. The robot’s plan is to ap-
proach the ball, and dribble it to the specified point. If it
approached the ball as fast as possible, it would end up in
the position on the top field in the image. This is an unfor-
tunate position from which to start dribbling towards the
goal. The problem is that, according to the planner, being
at the ball is considered sufficient for dribbling the ball, and
the angle of approach is considered to be irrelevant for the
consecutive dribbling action. So, the intermediate state is
under-specified, and we are allowed to choose any state from
the set of intermediate states that the conditions deem valid.
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Figure 3: Overview of plan optimization.

What we would like the robot to do is to go to the ball in
order to dribble it towards the goal afterwards. The robot
should, as depicted in the right field in Figure 3, perform the
first action sub-optimally in order to achieve a much better
position for executing the second plan step. Our action-
aware plan execution system can determine optimal inter-
mediate states on the fly, using predictive models. We call
this subgoal refinement.

First of all, the agent has to determine which variables
can be used for optimization. That is, which variables are
not bound by the plan. In this example, the only free vari-
able is the angle of approach. For an explanation of how
free variables are determined automatically, we refer to [4].
To optimize the action chain, we will have to find those val-
ues for the free variables for which the performance of the
action chain is the highest. This overall performance is es-
timated by summing over the temporal prediction models
of all actions that constitute the action chain. In Figure 3,



the predicted execution time of the first action in the left
situation is 2.1s. However, the total time is 7.5s, because
the second action takes 5.4s for this angle. Although the
first action is executed very fast, this is not the optimum
overall performance. By performing the first action subop-
timally, an minimum overall predicted performance of 6.1s
can be achieved, for an angle of 59°. This particular exam-
ple yields a performance increase of 38%. The mean increase
over a 1000 examples with random robot, ball and final goal
positions was 12%.

Without subgoal refinement, the transitions between ac-
tions were very abrupt. In general, these motion patterns
are so characteristic for robots that people trying to imitate
robotic behavior will do so by making abrupt movements be-
tween actions. In contrast, one of the impressive capabilities
of animals and humans is their capability to perform chains
of actions in optimal ways and with seamless transitions be-
tween subsequent actions. It is interesting to see that requir-
ing optimal performance can implicitly yield smooth transi-
tions in robotic and natural domains, even though smooth-
ness in itself is not an explicit goal in either domain.

3.2 Plan Transformation

In planning systems, the pre-conditions determine a set
of states in which the action can be executed. Frequently,
actions can be reused to perform other tasks than those they
were originally designed for. For instance, the goToPose
action can also be used to approach the ball. However, since
goToPose does not consider the ball, it will sometimes bump
into it before achieving the goal pose. In Section 2.2 we saw
that a decision tree could be learned to accurately predict
when this happens. In a sense, this decision tree can be seen
as a learned pre-condition for a new approachBall action.
This pre-condition can be used to determine when a plan
to approach the ball will fail, and transform it so that a
collision is avoided. Exactly how this is done is discussed in
more detail in [5].

3.3 Plan Coordination

Many complex application tasks require two or more agents

to cooperate in order to solve the task. A key aspect of these
systems is that multiple agents share the same workspace,
and can therefore not abstract away from the actions of other
robots. Therefore, agents must not only be aware of their
own actions, but also of those of others. Humans are very
good at performing joint actions in shared workspaces, be-
cause they are very aware of the actions of others. Humans
achieve this by inferring the intentions of others. Once the
beliefs and desires of the cooperating party are known, we
imagine what we would do in that situation. In contrast,
coordination in multi-agent systems is usually achieved by
extensive communication of intentions or utilities [3].

We believe that there are many domains in which im-
plicit coordination is essential. Rescue robotics and au-
tonomous vehicles operating in traffic are examples of do-
mains in which robust communication is not guaranteed, but
where correct coordination and action anticipation is a mat-
ter of life and death. We also consider implicit coordination
to be essential for natural interaction between robots and
humans. It cannot be expected of humans to continuously
communicate their intentions. Instead, the robot must be
able to anticipate a human’s intentions, based on predictive
models of human behavior.
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Figure 4: Overview of plan coordination.

A typical coordination task from the robotic soccer do-
main is to regain ball possession. Acquiring ball possession
is a goal for the team as a whole, but it can be achieved
by only one of the field players. Of course, the robots must
agree upon which robot will approach the ball. The intu-
itive underlying rule is that only the robot who is quickest to
the ball should approach it. The key to achieving implicit
coordination is perspective taking. If the robots have esti-
mates of each other’s states, they can predict ball approach
time for the others just as well as for themselves. In a sense,
the awareness of their own action also provides them with
awareness of actions of others. Once each robot has com-
puted each robot’s predicted ball approach time, each robot
can determine if it is the fastest or not.

Our experiments have shown that the robots reach almost
perfect agreement on this (99%), without communication
[6]. The robot on which agreement is reached is indeed the
quickest in 96% of the experiments.
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