
Tailoring Action Parameterizations to Their Task Contexts∗

Freek Stulp and Michael Beetz
Intelligent Autonomous Systems Group, Technische Universität München

Boltzmannstrasse 3, D-85747 Munich, Germany
{stulp,beetz }@in.tum.de

Abstract

Solving complex tasks successfully and efficiently
not only depends onwhatyou do, but alsohowyou
do it. Different task contexts have different perfor-
mance measures, and thus require different ways of
executing an action to optimize performance. Sim-
ply adding new actions that are tailored to perform
well within a specific task context makes planning
or action selection programming more difficult, as
generality and adaptivity is lost. Rather, existing
actions should be parametrized such that they opti-
mize the task-specific performance measure.
In this paper we propose a novel computation
model for the execution of abstract action chains.
In this computation model, a robot first learns
situation-specific performance models of abstract
actions. It then uses these models to automatically
specialize the abstract actions for their execution in
a given action chain. This specialization results in
refined chains that are optimized for performance.
As a side effect this behavior optimization also ap-
pears to produce action chains with seamless tran-
sitions between actions.

1 Introduction
State-of-the-Art autonomous robot controllers capable of
solving a large spectrum of complex tasks are typically
equipped with libraries of actions implemented by control
routines. The controllers then dynamically combine and par-
tially parameterize these actions on the fly in order to solve
the respective set of active tasks.

Consider, for example, the controllers for autonomous soc-
cer robots. These controllers are provided with actions for
navigating, kicking, searching, etc. During the game, the con-
trollers dynamically select these actions to perform their im-
mediate tasks. For example, they navigate to the ball in order
to get possession of it, or to clear a dangerous situation. In
another task context, they navigate in order to dribble the ball
towards the opponent’s goal. As a consequence, the use of
actions in different task contexts require the designer to rea-
son about how the implemented action will perform in these

∗The work described in this paper was partially funded by the
Deutsche Forschungsgemeinschaft in the SPP-1125.

contexts. On the one hand, programmers want to implement
the navigation action as fast as possible to be more agile and
mobile than the opponents. Unfortunately, fast navigation be-
havior will cause more frequent and harder collisions with the
ball when approaching it and thereby the robot will loose con-
trol of the ball. Even worse, while these hard collisions are
to be avoided when gaining control of the ball and dribbling,
they are often desirable in other task contexts such as clearing
a dangerous situation.

Most robot controllers deal with task contexts by pro-
viding variants of actions for the different task con-
texts. A soccer robot programmer provides, instead of
a single navigation action, a set of navigation actions
such as:clearBall , approachBall , dribbleBall ,
interceptBall , andblockOpponent . In the design
of the action libraries, most programmers consider a trade-off
between the compactness of the action library and its perfor-
mance. And they are typically willing to sacrifice compact-
ness for performance.

However, having only few abstract actions instead of many
specific actions has several advantages. Fewer actions need
to be implemented because viewed at an abstract level the
actions are applicable to a broader range of situations. At
more abstract levels the search space of plans is substan-
tially smaller and fewer interactions between actions need to
be considered. This not only eases the job of the program-
mers but also the computational task of automatic planning
systems. Having fewer actions also makes the system more
adaptive. Suppose the robots play on a new field on which the
dynamics of the robots are very different, and all navigation
actions perform badly. If there are many navigation routines,
they all have to be retuned, rewritten or relearned to perform
well in the new situation. The fewer actions there are, the
faster this can be done, and the more adaptive the system is.

In this paper we propose a novel computational model
for autonomous robot control that allows the control sys-
tem to use small sets of general and abstract actions while
at the same time achieving the performance of large sets
of specialized actions. The computational model performs
execution time and context-specific optimization of action
plans using learned performance models of the general ac-
tions. The basic idea of our approach is to learn perfor-
mance models of abstract actions off-line from observed ex-
perience. These performance models are rules that predict
the situation- and parameterization-specific performance of

abstract actions, e.g. the expected duration. Then, at execu-
tion time, our system determines the set of parameters that
are not set by the plan and therefore define the possible ac-
tion executions. It then determines for each abstract action
the parameterization such that the predicted performance of
the action chain is optimal.

In this paper, we investigate two mechanisms for execution
time and context specific action specialization:

1. Specialization of general actions for their improved ex-
ecution within given action chains.

2. Specialization of actions for predictive failure preven-
tion through subgoal assertion.

The technical contributions of this paper are fourfold.

1. We propose a novel computational model for the execu-
tion time optimization and generation of action chains
(section 2).

2. We show how situation-specific performance models
for abstract actions can be learned automatically, (sec-
tion 3).

3. We describe a mechanism for subgoal (post-condition)
refinement for action chain optimization. We apply our
implemented computational model to chains of naviga-
tion plans with different objectives and constraints and
different task contexts (section 4).

4. We show how performance models can be used to de-
termine when no action can solve the task, and subgoals
must be introduced to achieve the goal (section 5).

2 System overview
This section introduces the basic concepts upon which we
base our computational model of action chain optimization.
Using these concepts, we define the computational task and
sketch the key ideas for its solution. First of all, we will de-
scribe two exemplary scenarios that clarify the problem.

2.1 Two exemplary scenarios
In Figure 1, a typical situation from robotic soccer is shown.
The robot’s goal is to score a goal. A three step plan suffices
to solve this task: 1) go to the ball; 2) dribble the ball to
shooting position; 3) kick. If the robot naively executed the
first action (as depicted in Figure 1a), it might arrive at the ball
with the goal at its back. This is an unfortunate position from
which to start dribbling towards the goal. The problem is that
in the abstract view of the planner or programmer, being at
the ball is considered sufficient for dribbling the ball and the
dynamical state of the robot arriving at the ball is considered
to be irrelevant for the dribbling action.

What we would like the robot to do instead is to go
to the ball in order to dribble it towards the goal after-
wards. The robot should, as depicted in the Figure 1b,
perform the first action sub-optimally in order to achieve
a much better position for executing the second plan step.
This behavior could be achieved by designing a new action,
e.g. goToPoseInOrderToDribbleTheBallToX , that
takes into account that we plan to dribble the ball to a cer-
tain position afterwards. Its long name already indicates the
loss of generality, and it is also not guaranteed that this action

b)

Goal: Score!
Plan:
− goToPose
− dribbleBall
− kick

Goal: Score!
Plan:
− goToPose
− dribbleBall
− kick

Goal: Score!
Plan:
− goToPoseInOrderToDri..
− dribbleBall
− kick

a) c)

Figure 1: Three alternative plan executions to approach the
ball in order to dribble it.

provides the optimal position from which to start dribbling.
Preferably, an existing action should be parameterized such
that it performs well with respect to the performance mea-
sure of the given context. Again, there is also a solution that
only usesgoToPose action. By determining the angle of
approach at which the overall performance of the plan is opti-
mal, and parameterizinggoToPose so that it approaches the
ball at this angle, also leads to improved performance. The
behavior shown in Figure 1c exhibits seamless transitions be-
tween plan steps and has higher performance, achieving the
ultimate goal in less time than in Figure 1a. This optimiza-
tion, called subgoal refinement, can also be automated, as will
be demonstrated in section 4.

Another frequent task in robotic soccer is to approach the
ball. In Figure 2, the defender’s goal is to clear the ball, and
it has decided to do so by approaching the ball from behind,
and kicking it away from the goal. One way to execute this
plan is by first executing its generalgoToPose action. How-
ever, since this action does not take the ball into account, it
might bump into it before achieving the desired position and
orientation, as can be seen in Figure 2a.

− goToPose
− goToPose
− kick

− kick
− approachBall− goToPose

− kick

a) b) c)

Goal: Clear ball
Plan:

Goal: Clear ball
Plan:

Goal: Clear ball
Plan:

Figure 2: Three alternative plan executions to approach the
ball.

To solve this problem, a specialized action that takes the
ball into account could be written, e.g.approachBall .
This variant is shown in Figure 2b, and would work
fine. However, there is also a solution that only uses the
goToPose action, and that does not require us to write
approachBall . The solution is to introduce an interme-
diate way-point that ensures there will be no collision with
the ball, and performing the navigation task with by append-
ing two goToPose actions. Since the chosen path is similar
to the pathapproachBall would probably choose, perfor-
mance is not lost. When a way-point is needed, and where it
should lie is determined automatically, using subgoal asser-
tion, which will be presented in section 5.

2.2 Conceptualization
Our conceptualization for the computational problem is based
on the notion of actions, performance models of actions,
teleo-operators, teleo-operator libraries, and chains of teleo-
operators. In this section we will introduce these concepts.

Actions are control programs that produce streams of con-
trol signals, based on the current estimated state, thereby in-
fluencing the state of the world. The basic action we use
here isgoToPose , which navigates the robot from the cur-
rent pose (at timet) [xt,yt,φt] to a future destination pose
[xd,yd,φd] by setting the translational and rotational velocity
of the robot:

goToPose (xt,yt,φt,xd,yd,φd)→ vtra,vrot

Teleo-operators (TOPs)consist of an action, as well as
pre- and post-conditions[Nilsson, 1994]. The post-condition
represents the intended effect of the TOP, or its goal. It spec-
ifies a region in the state space in which the goal is sat-
isfied. The pre-condition region with respect to a tempo-
rally extended action is defined as the set of world states in
which continuous execution of the action will eventually sat-
isfy the post-condition. They are similar to Action Schemata
or STRIPS operators in the sense that they are temporally ex-
tended actions that can be treated by the planner as if they
were atomic actions.

State−space State−space

ActionPre−Cond.

Post−Cond.

Figure 3: An abstract teleo-operator.

The goToPoseTOP has the empty pre-condition, as it
can be executed from any state in the state space. Its post-
condition is [xt ≈ xd,yt ≈ yd, φt ≈ φd]. Its action is
goToPose .

TOP libraries contain a set of TOPs that are frequently
used within a given domain. In many domains, only a small
number of control routines suffices to execute most tasks, if
they are kept general and abstract, allowing them to be ap-
plicable in many situations. Our library contains the TOPs:
goToPoseTOP anddribbleBallTOP .

A TOP chain for a given goal is a chain of TOPs such
that the pre-condition of the first top is satisfied by the current
situation, and the post-condition of each step satisfies the pre-
condition of the subsequent TOP. The post-condition of the
last TOP must satisfy the goal. It represents a valid plan to
achieve the goal.

Post−Cond.

Pre−Cond. Pre−Cond.

State−space

Action i Action i+1
Goal

Post−Cond.
Current state

Figure 4: A chain of teleo-operators.

Subgoal refinementis the process of choosing a specific
state as a subgoal, from the set of states defined by the post-
condition of a preceding and pre-conditions of a subsequent

action in a teleo operator chain. In Figure 5, such a specific
subgoal has been chosen. This state will be visited in the
transition from one action to the next.

Post−Cond.

Pre−Cond. Pre−Cond.

State−space

Action i Action i+1
Goal

Post−Cond.
Current state

Refined subgoal

Figure 5: Subgoal refinement.

Performance models of actionsmap a specific situation
onto a performance measure. These models can be used to
predict the performance outcome of an action if applied in
a specific situation, by specifying the current state (satisfy-
ing the pre-conditions) and end state (satisfying the post-
conditions). An example of a performance measure is pre-
dicted execution time:

goToPose.time (xt,yt,φt,xd,yd,φd)→ t

2.3 Computational task and solution idea
The on-line computational task is to optimize the overall per-
formance of a TOP chain. The input consists of a TOP chain
that has been generated by a planner, that uses a TOP library
as a resource. The output is an intermediate refined subgoal
that optimizes the chain, and is inserted in the chain. Exe-
cuting the TOP chain is simply done by calling the action of
each TOP. This flow is displayed in Figure 6.

To optimize action chains, the pre- and post-conditions of
the TOPs in the TOP chains are analyzed to determine which
variables in the subgoal may be freely tuned. These are the
variables that specify future states of the robot, and are not
constrained by the pre- and post-conditions of the respec-
tive TOP. For the optimization of these free variables, per-
formance models of the actions are required. Off-line, these
models are learned from experience for each action in the
TOP library. They are used by the subgoal refinement sys-
tem during execution time, but available as a resource to other
systems as well.

Refined (optimal) subgoal

Perf.Model1O
ff

−l
in

e
O

n−
lin

e TOP chain

Execute TOP chain

Generate TOP chain

Learn Performance Model

and
Subgoal assertion

Subgoal refinement

Pre/Post−conds

Action
TOP1

TOP Library

Figure 6: System Overview.

One of the big advantages of our approach is that neither
TOP library, nor the generation of TOP chains (the planner)
nor the TOP chain executor need to be modified in any way to

accommodate the action chain optimization system. We as-
sume that the programmer provides a library of actions con-
taining domain knowledge expressed in the pre- and post-
condition, and has mechanisms for generating and execut-
ing chains of these actions, be it through planning, arbitration
schemes, or simply manual specification. Although each of
these components is a research field in its own right, our pa-
per will not focus on them, also to emphasize that our system
does not rely on their implementation.

The next three sections describe the main components in
Figure 6. In section 3 we describe how performance models
of actions are learned from experience. Subgoal refinement
and subgoal assertion are presented in sections 4 and 5 re-
spectively.

3 Learning performance models
To perform subgoal refinement and assertion, performance
models of each action in the TOP library must be available.
For each action, the robot therefore learns a function that
maps situations to the cost of performing this action in the
respective situation. The robot will approximate the perfor-
mance function by learning decision and model trees based
on observed experience.

Let us consider the navigation actiongoToPose . This
navigation action is based on computing a Bezier curve, and
trying to follow it as closely as possible[Beetzet al., 2004].
Our dribbleBall action uses the same method, but re-
stricts deceleration and rotational velocity, so as not to loose
the ball. We abstract away from their implementation, as our
methods consider the actions to be black boxes, whose per-
formance we learn from observed experience.

To gather experience, with which the model will be
learned, the robot executes the action under varying situa-
tions, observes the performance, and logs the experience ex-
amples. Since the method is based solely on observations,
it is also possible to acquire models of actions whose inter-
nal workings are not accessible. The examples are gathered
using our simulator, which uses learned dynamics models of
the Pioneer I platform. It has proven to be accurate enough
to port control routines from the simulator to the real robot
without change.

The variables that were recorded do not necessarily corre-
late well with the performance. We therefore design a trans-
formed feature space with less features, but the same potential
for learning accurate performance models. In Figure 7 it is
shown how exploiting transformational and rotational invari-
ance reduces an original six-dimensional feature space into a
three-dimensional one, with the same predictive power.

Currently, we perform the transformation manually for
each action. In our ongoing research we are investigating
methods to automate the transformation. By explicitly rep-
resenting and reasoning about the physical meaning of state
variables, we research feature language generation methods.

The last step is to approximate a function to the trans-
formed data. Depending on whether a nominal or continu-
ous value needs to be predicted, we use a decision or model
tree respectively. Both methods learn a mapping from input
features to output feature from experience, by a piecewise re-
cursive partitioning of the examples in feature space. Parti-
tioning continues until all the examples in a partition can be

3−D:6−D:

xd

xd dϕydtx yt tϕ

y d

tx

y t

tϕ ϕd

angle_at_dest ,dist ,
angle_to_dest

, ,, , ,

dist

an
gl

e_
to

_d
es

t

angle_at_dest

Figure 7: Transformation of the original state space into a
lower-dimensional feature space.

approximated well by a simple representative model. Deci-
sion trees use a nominal value, and model trees a linear func-
tion to represent the data in a partition.

We use decision and model trees because 1) they can be
transformed into sets of rules that are suited for human in-
spection and interpretation 2) comparative research shows
they are the very appropriate for learning action models
[Belker, 2004; Balac, 2002] 3) they tend to use only rele-
vant variables. This means we can start off with many more
features than are needed to predict performance, having the
model tree function as an automatic feature selector.

3.1 Prediction of execution duration
The first performance model we have learned is execution du-
ration. It maps a current state and a goal state to the expected
time needed to achieve the goal state with this action.

To gather experience, the robot executed each action thou-
sand times, with random initial and destination poses. The
robot recorded the direct variables and the time it took to
reach the destination state at 10Hz, thereby gathering 75 000
examples of the format [xt,yt,φt,xd,yd,φd,time] per action.
Using our Pioneer I robots, acquiring this amount of data
would take approximately two hours of operation time.

Additional transformed features that were used to learn
the model are shown in Figure 7. The model tree was ac-
tually learned on an 11-dimensional feature space [xt,yt,φt,
xd,yd,φd,dx,dy,dist,angle to dest,angle at dest]. The
model tree algorithm automatically discovered that only
[dist,angle to dest,angle at dest] are necessary to accu-
rately predict performance.

We will now give an example of one of the rules learned by
the model tree. In Figure 8, we depict an example situation
in which dist andangle to dest are to 2.0m and 0◦ respec-
tively. Given these values we could plot a performance func-
tion for varying values ofangle at dest. These plots are also
depicted in Figure 8, once in a Cartesian, once in a polar coor-
dinate system. In the linear plot we can clearly see five differ-
ent line segments. This means that the model tree has parti-
tioned the feature space fordist=2.0m andangle to dest=0◦

into five areas, each with its own linear model. Below the two
plots, one of the learned model tree rules that applies to this
situation is displayed. An arrow indicates its linear model
in the plots. The polar plot clearly shows the dependency of
predicted execution time on the angle of approach for the ex-
ample situation. Approaching the goal at 0 degrees is fastest,
and would take a predicted 2.1s. Approaching the goal at 180

0 59.2−180 180
0

1

2

3

4

5

6

7

Angle at goal (degree)

Ti
m

e
(s

)

 2

 4

 6

 8

30

210

60

240

90

270

120

300

150

330

180 0

situation:

angle_at_dest = [−180,180]
angle_to_dest = 0.0
dist = 2.0 2m

model tree rule:
if (2.3 > dist > 1.86)

(angle_to_dest < 49.7)if
if (angle_at_dest < 59.2)

then time = 1.26*dist

+ 0.018*angle_to_dest

+ 0.0037*angle_at_dest

− 0.42

angle_at_dest (degree)

p
r
e
d
i
c
t
e
d

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
)

Figure 8: An example situation, two graphs of time prediction
for this situation with varyingangle at dest, and the model
tree rule for one of the line segments.

degrees means the robot would have to navigate around the
goal point, taking much longer (6.7s).

To evaluate the accuracy of the performance models, we
again randomly executed each action to acquire test exam-
ples. For the actiongoToPose , the mean absolute error and
root-mean-square error between predicted and actual execu-
tion time were 0.31s and 0.75s. For thedribbleBall rou-
tine these values were 0.29s and 0.73s. As we will see, these
errors are accurate enough to optimize action chains.

3.2 Prediction of ball approach failure
The goToPose action can often be used well to approach
the ball. However, in some situations it will bump into the
ball before achieving the desired orientation, as was shown
in Figure 2. The second performance model we have learned
predicts whether executinggoToPose will lead to a colli-
sion with the ball or not.

To acquire experience, the robot again executed
goToPose a thousand times, with random initial and
destination poses, the ball always positioned at the desti-
nation pose. The robot recorded 65 000 training examples
of the format [xt,yt,φt,xd,yd,φd,collided?] per action. The
flag collided? is set toCollision for all the examples in
a whole run, if the robot eventually collided with the ball
before reaching its desired position and orientation, and to
Success otherwise.

The model was learned with the same 11-dimensional
transformed feature space as used in learning temporal pre-
diction. Again, only [dist,angle to dest,angle at dest]
were used to predict a collision.

The learned tree, as well as a graphical representation of
it, are depicted in Figure 9. The goal pose is represented by
the robot, and different areas indicate if the robot can reach
this position withgoToPose , without bumping into the ball
first. Remember thatgoToPose has no awareness of the ball
at all. The model simply predicts when its execution leads to
a collision or not. Intuitively, the rules seem correct. When
coming from the right, for instance, it can be seen that the
robot always disrespectfully stumbles into the ball, long be-
fore reaching the desired orientation. Behind the ball, the
robot may not be too close to the ball (checkered area), un-
less it is facing it. This last rule is indicated by the arrows
pointing in the direction of the ball.

� � � � � � � � �

� � � � � � � � �

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

	 		 	

������

� �� �� �

� � �� � �� � �
� � �� � �� � �

(angle_to_goal < 49)

(dist_to_goal < 0.93)

(angle_at_goal < 56)

yes

no

CollisionSuccess
Success

Collision

yes

yes

no

no

Figure 9: The learned decision tree that predicts whether an
unwanted collision will happen.

To evaluate the accuracy of this model, the robot executed
another thousand runs, and compared predicted collision with
observed collisions. The decision tree predicts collisions cor-
rectly in almost 90% of the cases. A more thorough analysis
is depicted in Table 1. The model is quite pessimistic, as it
predicts failure 61%, whereas in reality it is only 52%. In
10% of cases, it predicts a collision when it actually does not
happen. This is preferable to an optimistic model, as it is
better to be safe than sorry.

Observed Total
Coll. Succ. Predicted

Predicted Coll. 51% 10% → 61%
Succ. 1% 38% → 39%

↓ ↓ ↓
Total Observed 52% 48% → 100%

Table 1: Accuracy of ball collision prediction.

Actually, this decision tree is much more than a perfor-
mance model. It can be considered as the conditions in
which goToPose will successfully approach the ball. We
now have an teleo-operatorapproachBallTOP , with dif-
ferent preconditions fromgoToPoseTOP. However, since
approachBallTOP also uses the actiongoToPoseTOP
there is no explicit actionapproachBall . We have only
determined the conditions under whichgoToPose must be
executed to achieve successful ball approach. We will make
use of this when applying automatic subgoal assertion in sec-
tion 5.

4 Automatic subgoal refinement
As depicted in Figure 6, the automatic subgoal refinement
system takes the performance models and a chain of teleo-
operators as an input, and returns a refined intermediate goal
state that has been optimized with respect to the performance
of the overall action chain. To do this we need to specify
all the variables in the task, and recognize which of these
variables influence the performance and are not fixed. These
variables form a search space in which we will optimize the
performance using the learned action models.

4.1 State variables
In the dynamic system model[Dean and Wellmann, 1991]
the world changes through the interaction of two processes:
thecontrolling process, in our case the low-level control pro-
grams implementing the action chains generated by the plan-
ner, and thecontrolled process, in our case the behavior of the
robot. The evolution of the dynamic system is represented
by a set ofstate variablesthat have changing values. The
controlling process steers the controlled process by sending
control signalsto it. These control signals directly set some
of the state variables and indirectly other ones. The affected
state variables are called thecontrollablestate variables. The
robot for instance can set the translational and rotational ve-
locity directly, causing the robot to move, thereby indirectly
influencing future poses of the robot.

For the robot, a subset of the state variables isobservableto
its perceptive system, and they can be estimated using a state
estimation module. For any controller there is a distinction
betweendirectandderivedobservable state variables. All di-
rect state variables for the navigation task are depicted in Fig-
ure 10. Direct state variables are directly provided by state
estimation, whereas derived state variables are computed by
combinations of direct variables. No extra information is con-
tained in derived variables, but if chosen well, derived vari-
ables are better correlated to the control task.

tx

y t

tϕy i

ϕi

ϕg

xi gx

y g

Figure 10: Direct state variables relevant to the navigation
task.

State variables are also used to specify goals internal to
the controller. These variables arebound, conform to plan-
ning terminology. It is the controller’s goal to have the bound
internal variables (approximately) coincide with the external
observable variables. The robot’s goal to arrive at the inter-
mediate position could be represented by the state variables
[xi,yi]. By setting the velocities, the robot can influence its
current position [xt,yt] to achieve [xt ≈ xi,yt ≈ yi].

4.2 Determining the search space
To optimize performance, only variables that actually influ-
ence performance should be tuned. In our implementation,

this means only those variables that are used in the model
tree to partition the state space at the nodes, or used in the
linear functions at the leaves.

In both the learned model trees for the actionsgoToPose
and dribbleBall , the relevant variables aredist,
angle to dest andangle at dest. These are all derived vari-
ables, computed from the direct variables [xt,yt,φt,xi,yi,φi]
and [xi,yi,φi,xg,yg,φg], for the first and second action re-
spectively. So by changing these direct variables, we would
change the indirect variables computed from them, which in
effect would change the performance.

But may we change all these variables at will? Notxt,yt,
or φt, as we cannot simply change the current state of the
world. Also we may not alter bound variables that the robot
has committed to, being [xi,yi,xg,yg,φg]. Changing them
would make the plan invalid.

This only leaves the free variableφi, the angle at which the
intermediate goal is approached. This acknowledges our intu-
ition from Figure 1 that changing this variable will not make
the plan invalid, and that it will also influence the overall per-
formance of the plan. We are left with a one-dimensional
search space to optimize performance.

4.3 Optimization
To optimize the action chain, we will have to find those val-
ues for the free variables for which the overall performance
of the action chain is the highest. The overall performance
is estimated by summing over the performance models of all
actions that constitute the action chain. In Figure 11 the first
two polar plots represent the performance of the two indi-
vidual actions for different values of the only free variable,
which is the angle of approach. The overall performance is
computed by adding those two, and is depicted in the third
polar plot.

 3
 6
 9
 12

30

210

60

240

90

270

120

300

150

330

180 0

Time action 1 (s)

 3
 6
 9
 12

30

210

60

240

90

270

120

300

150

330

180 0

Time action 2 (s)

 3
 6
 9
 12

30

210

60

240

90

270

120

300

150

330

180 0

Total time (s)

2.1s

5.4s

+ =

goToPose (s) dribbleBall (s) dribbleBall (s)
goToPose +

2.3s

3.8s
total = 7.5s total = 6.1s

Figure 11: Selecting the optimal subgoal by finding the opti-
mum of the summation of all action models in the chain.

The fastest time in the first polar plot is 2.1s, for angle of
approach of 0.0 degrees. The direction is indicated from the
center of the plot. However, the total time is 7.5s, because
the second action takes 5.4s for this angle . These values can
be read directly from the polar plots. However, this value
is not the optimum overall performance. The minimum of

the overall performance is 6.1s, as can be read from the third
polar plot. Below the polar plots, the situation of Figure 1 is
repeated, this time with the predicted performance for each
action.

We expect that for higher-dimensional search spaces, ex-
haustive search may be infeasible. Therefore, other optimiza-
tion techniques will have to be investigated.

4.4 Results
To determine the influence of subgoal refinement on the over-
all performance of the action chain, we generated a thousand
situations with random robot, ball and final goal positions.
The robot executed each navigation task twice, once with sub-
goal refinement, and once without. The results are summa-
rized in Table 2. First of all, the overall increase in perfor-
mance over the 1000 runs is 10%. We have split these cases
into those in which the subgoal refinement yielded a higher,
equal or lower performance in comparison to not using re-
finement. This shows that the performance improved in 533
cases, and in these cases causes a 21% improvement. In 369
cases, there was no improvement. This is to be expected, as
there are many situations in which the three positions are al-
ready optimally aligned (e.g. in a straight line), and subgoal
refinement will have no effect.

Before filtering Total Higher Equal Lower
runs 1000 533 369 98

improvement 10% 21% 0% -10%
After filtering Total Higher Equal Lower

runs 1000 505 485 10
improvement 12% 23% 0% -6%

Table 2: Results, before and after filtering for cases in which
performance loss is predicted.

Unfortunately, applying our method causes a decrease of
performance in 98 out of 1000 runs. To analyze in which
cases subgoal refinement decreases performance, we labeled
each of the above runsHigher , Equal or Lower . We then
trained a decision tree to predict this nominal value. This tree
yields four simple rules which predict the performance differ-
ence correctly in 86% of given cases. The rules and a graph-
ical representation are depicted in Figure 12. In this graph,
the robot always approaches the centered ball from the left at
different distances. The different regions indicate whether the
performance increase/decreased due to subgoal refinements,
if the goal lies in this region. Three instances with different
classification and therefore different colors circles have been
inserted.

The rules declare that performance will stay equal if the
three points are more or less aligned, and will only decrease
if the final goal position is in the same area as which the
robot is, but only if the robot’s distance to the intermediate
goal is smaller than 1.4m. Essentially, this last rule states that
the robot using the Bezier-basedgoToPose has difficulty
approaching the ball at awkward angles if it is close to it.
In these cases, small variations in the initial position lead to
large variations in execution time, and learning an accurate,
general model of the action fails. The resulting inaccuracy
in temporal prediction causes suboptimal optimization. Note

that this is a shortcoming of the action itself, not the chain
optimization methods.

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

�������� 	 		 	

 � � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

 �

(dist1 < 1.4)

Higher

no(angle_between_goals < 50)

(angle_between_goals < 122)

Equal

Higher
Lower

yes

yes

yes

no

no

Figure 12: The decision tree that predicts whether subgoal
refinement will make the performance better, worse or have
no influence at all.

We then performed another thousand test runs, as described
above, but only applied subgoal refinement if the decision
tree predicted applying it would yield a higher performance.
Although increase in overall performance is not so dramatic
(from 10% to 12%), the number of cases in which perfor-
mance is worsened by applying subgoal refinement has de-
creased from 98 (10%) to 10 (1%). Apparently, the decision
tree correctly filtered out cases in which applying subgoal re-
finement would decrease performance.

Without subgoal refinement, the transitions between ac-
tions were very abrupt. In general, these motion patterns
are so characteristic for robots that people trying to imitate
robotic behavior will do so by making abrupt movements be-
tween actions. In contrast, one of the impressive capabilities
of animals and humans is their capability to perform chains
of actions in optimal ways and with seamless transitions be-
tween subsequent actions. It is interesting to see that requir-
ing optimal performance can implicitly yield smooth transi-
tions in robotic and natural domains, even though smoothness
in itself is not an explicit goal in either domain.

Summarizing: subgoal refinement with filtering yields
smooth transitions and a 23% increase in performance half
of the time. Only once in a hundred times does it cause a
small performance loss.

5 Automatic subgoal assertion
In the previous section, we have seen how subgoals can be
refined in order to optimize performance. In this section,
we will show how performance models can be used to detect
when the assertion of a new subgoal is necessary.

We use a scenario in which a robot approaches a ball,
introduced in section 2.1. A difficulty in approaching the
ball is that the robot might collide with the ball before it
has reached its desired position and orientation. Since our
goToPose action is not aware of these potential collisions,
it is not always appropriate for approaching the ball. Actu-
ally, it can be derived from Table 1 that it fails in 52% of
cases. To solve this problem, one could write a new action,
e.g. approachBall . It would probably be very similar to
goToPose , but take the ball into account.

Instead of writing a new action, thereby causing the prob-
lems discussed in the introduction, it is also possible to reuse
goToPose , and adapt it to the current context. First of all,

it is important to recognize thatgoToPose is actually suc-
cessful in approaching the ball almost half the time (Table 1).
Fortunately, we have models that can predict when success
is probable. So when the goal is to approach the ball, and
the performance model predicts thatgoToPose can do this
collision-free, this action is executed as is.

When no action can be parameterized in such a way that
ball approach is likely to succeed, we need to find a chain of
actions that can. This is done in a means-ends fashion. First,
the robot determines which actions can achieve the goal, and
which preconditions must hold for this action to succeed.
Then, it determines if any action can achieve these precondi-
tions. In our example, a sequence of twogoToPose actions
can achieve the goal. A constraint is that the second action
in the sequence must be able to reach the ball without unin-
tentional collisions. This could be any position in the most
left area of Figures 9 and 13, because the performance model
predicts that there will be no collision when starting from any
of the position in this area.

� � � � � � � � � �

� � � � � � � � � �

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

Figure 13: Subgoal assertion to avoid collisions with the ball.

Although all positions in this area can function as an inter-
mediate goal for the twogoToPose actions, the overall ex-
pected execution duration is different for all off them. There-
fore, we sample a thousand points from the area, and com-
pute the overall performance by adding the predicted time of
the first and secondgoToPose actions in the action chain.
The point with the best performance, that is, fastest execution
time, is chosen to be the intermediate point. This optimiza-
tion process is nothing else than subgoal refinement, as has
been presented in section 4.

In Figure 13, three instances of the problem are depicted.
Since the robot to the left is in the area in which no collision
is predicted, it simply executesgoToPose , without assert-
ing a subgoal. The model predicts that the other two robots
will collide with the ball when executinggoToPose , and a
subgoal is asserted. The optimal positions of the subgoals,
determined by subgoal refinement, are shown as white cir-
cles.

5.1 Results
To evaluate automatic subgoal assertion we executed a thou-
sand random ball approaches, once with assertion, and once
without. The results are summarized in Table 3. It is clear that
using onlygoToPose is not very successful. It approaches
the ball collision-free less than half the time. This is actually
exactly what our performance model predicts, as can be seen
in Table 1. Applying subgoal assertion dramatically improves
this. In less than 3% of cases does the ball approach fail.

We have also investigated under which circumstances a

direct with subgoal
(no subgoal) assertion

Success 47% 97%
Collision 53% 3%

Table 3: The effects of applying subgoal assertion to the ball
approach task.

subgoal was introduced, and if it was helpful to do so. In
37% of cases, no subgoal was needed, as no collision was pre-
dicted. In 52%, a subgoal was asserted, causing a successful
completion that was not possible without a subgoal. In 10%
of cases, a subgoal was introduced unnecessarily, as the task
could have been solved without a subgoal. Note that all these
percentages are roughly the same as those in Table 1. In-
appropriately introducing the subgoal caused a performance
loss of 11% in these cases.

Summarizing: if subgoal assertion is not necessary, it is
usually not applied. Half of the time, a subgoal is introduced,
which raises successful task completion from 47 to 97%. In-
frequently, subgoals are introduced inappropriately, but the
performance loss in these cases is an acceptable cost com-
pared to the pay-off of the dramatic increase in the number of
successful task completions.

6 Related Work
Most similar to our work is the use of model trees to learn
performance models to optimize Hierarchical Transition Net-
work plans[Belker, 2004]. In this work, the models are used
to select the next action in the chain, whereas we refine an
existing action chain. Therefore, the planner can be selected
independently of the optimization process.

Reinforcement Learning (RL) is another method that seeks
to optimize performance, specified by a reward function. Re-
cent attempts to combat the curse of dimensionality in RL
have turned to principled ways of exploiting temporal ab-
straction[Barto and Mahadevan, 2003]. Several of these
Hierarchical Reinforcement Learningmethods, e.g. (Pro-
grammable) Hierarchical Abstract Machines[Parr, 1998;
Andre and Russell, 2000], MAXQ [Dietterich, 2000], and
Options[Suttonet al., 1999]. All these approaches use the
concept of actions (called ‘machines’, ‘subtasks’, or ‘options’
respectively). In our view, the benefits of our methods are that
they acquire more informative performance measures, facili-
tate the reuse of action models, and scale better to continuous
and complex state spaces.

The performance measures we can learn (execution time,
action failure) areinformativevalues, with a meaning in the
physical world. Future research aims at developing meaning-
ful composites of individual models. We will also investigate
dynamic objective functions. In some cases, it is better to be
fast at the cost of accuracy, and sometimes it is better to be
accurate at the cost of speed. By weighting the performance
measures time and accuracy accordingly in a composite mea-
sure, these preferences can be expressed at execution time.
Since the (Q-)Value compiles all performance information in
a single non-decomposable numeric value, it cannot be rea-
soned about in this fashion.

The methods we proposedscalebetter to continuous and

complex state spaces. We are not aware of the application
of Hierarchical Reinforcement Learning to (accurately simu-
lated) continuous robotic domains.

In Hierarchical Reinforcement Learning, the performance
models of actions (Q-Values) are learned in the calling con-
text of the action. Optimization can therefore only be done
in the context of the pre-specified hierarchy/program. In
contrast, the success of action selection in complex robotic
projects such as WITAS[Doherty et al., 2000], Minerva
[Thrunet al., 1999], and Chip[Firby et al., 1996], depends on
the on-line autonomous sequencing of actions through plan-
ning. Our methods learn abstract performance models of ac-
tions, independent of the context in which they are performed.
This makes themreusable, and allows for integration in plan-
ning systems.

The only approach we know of that explicitly combines
planning and RL is RL-TOPS (Reinforcement Learning -
Teleo Operators) [Ryan and Pendrith, 1998]. Abrupt tran-
sitions arise here too, and the author recognizes that “cut-
ting corners” between actions would improve performance,
but does not present a solution.

Many behavior based approaches also achieve smooth mo-
tion by a weighted mixing of the control signals of various
actions[Saffiotti et al., 1995; 1993]. In computer graph-
ics, this approach is calledmotion blending, and is also
a wide-spread method to generate natural and fluent tran-
sitions between actions, which is essential for lifelike an-
imation of characters. Impressive results can be seen in
[Perlin, 1995], and more recently[Shapiro et al., 2003;
Kovar and Gleicher, 2003]. Since there are no discrete tran-
sitions between actions, they are also not visible in the exe-
cution. In all these blending approaches, achieving optimal
behavior is not an explicit goal; it is left to chance, not objec-
tive performance measures.

A very different technique for generating smooth transi-
tions between skills has been developed for quadruped robots
[Hoffmann and D̈uffert, 2004], also in the RoboCup do-
main. The periodic nature of robot gaits allows their mean-
ingful representation in the frequency domain. Interpolat-
ing in this domain yields smooth transitions between walk-
ing skills. Since the actions we use are not periodic, these
methods do unfortunately not apply.

Reusing actions and transferring knowledge between them
are also key concepts in life-long learning[Thrun and
Mitchell, 1993]. This approach exploits the notion that learn-
ing to run is much more easy when you already know how to
walk, just as approaching a ball is more easy if you already
know how to navigate. In[Thrun and Mitchell, 1993], knowl-
edge is transfered between tasks by reusing neural networks
that have been trained on one task as a bias for similar, per-
haps more complex tasks that have yet to be learned.

7 Conclusion and Future Work
The central idea of this work is that by adapting action param-
eterization, actions can be tailored to the task context. There
is no longer a need to write a new action for each new con-
text, and generality is maintained. Instead of using manual
parameterization, we use learned action models to optimize
the parameters with respect to the given performance mea-
sure.

On-line optimization of action chains allows the use of
planning with abstract actions, without losing performance.
Optimizing the action chain is done by asserting and refining
under-specified intermediate goals, which requires no change
in the planner or plan execution mechanisms. To predict the
optimal overall performance, performance models of each in-
dividual abstract action are learned off-line and from experi-
ence, using model trees.

Applying subgoal refinement and assertion to the presented
scenarios yields significant performance improvement. How-
ever, the computational model underlying the optimization
is certainly not specific to this scenario, or to robot naviga-
tion. In principle, learning action models from experience
using model trees is possible for any action whose relevant
state variables can be observed and recorded. The notion of
controllable, bound and free state variables are taken directly
from the dynamic system model and planning approaches,
and apply to any scenario that uses these paradigms. Our
future research therefore aims at applying these methods in
other domains, for instance robots with articulated arms and
grippers, for which we also have a simulator available.

Currently, we are evaluating if subgoal refinement im-
proves plan execution on real Pioneer I robots as much as
it does in simulation. Previous research has shown that action
models learned in simulation can be applied to real situations
with good result[Bucket al., 2002; Belker, 2004].

References
[Andre and Russell, 2000] David Andre and Stuart Russell. Pro-

grammable reinforcement learning agents. InConference on
Neural Information Processing Systems (NIPS), 2000.

[Balac, 2002] N. Balac.Learning Planner Knowledge in Complex,
Continuous and Noisy Environments. PhD thesis, Vanderbilt Uni-
versity, 2002.

[Barto and Mahadevan, 2003] A. Barto and S. Mahadevan. Recent
advances in hierarchical reinforcement learning.Discrete event
systems, 2003.

[Beetzet al., 2004] Michael Beetz, Alexandra Kirsch, and Armin
Müller. RPL-LEARN: Extending an autonomous robot control
language to perform experience-based learning. In3rd Interna-
tional Joint Conference on Autonomous Agents & Multi Agent
Systems (AAMAS), 2004.

[Belker, 2004] T. Belker.Plan Projection, Execution, and Learning
for Mobile Robot Control. PhD thesis, Department of Applied
Computer Science, Univ. of Bonn, 2004.

[Bucket al., 2002] Sebastian Buck, Michael Beetz, and Thorsten
Schmitt. Reliable Multi Robot Coordination Using Mini-
mal Communication and Neural Prediction. In M. Beetz,
J. Hertzberg, M. Ghallab, and M. Pollack, editors,Advances in
Plan-based Control of Autonomous Robots. Selected Contribu-
tions of the Dagstuhl Seminar “Plan-based Control of Robotic
Agents”, Lecture Notes in Artificial Intelligence. Springer, 2002.

[Dean and Wellmann, 1991] T. Dean and M. Wellmann.Planning
and Control. Morgan Kaufmann Publishers, 1991.

[Dietterich, 2000] Thomas G. Dietterich. Hierarchical reinforce-
ment learning with the MAXQ value function decomposition.
Journal of Artificial Intelligence Research, 13:227–303, 2000.

[Dohertyet al., 2000] P. Doherty, G. Granlund, K. Kuchcinski,
E. Sandewall, K. Nordberg, E. Skarman, and J. Wiklund. The
WITAS unmanned aerial vehicle project. InProceedings ECAI-
00, 2000.

[Firby et al., 1996] R. Firby, P. Prokopowicz, M. Swain, R. Kahn,
and D. Franklin. Programming CHIP for the IJCAI-95 robot
competition.AI Magazine, 17(1):71–81, 1996.

[Hoffmann and D̈uffert, 2004] J. Hoffmann and U. D̈uffert. Fre-
quency space representation and transitions of quadruped robot
gaits. In Proceedings of the 27th conference on Australasian
computer science, 2004.

[Kovar and Gleicher, 2003] L. Kovar and M. Gleicher. Flexible au-
tomatic motion blending with registration curves. InProceedings
of ACM SIGGRAPH, 2003.

[Nilsson, 1994] N.J. Nilsson. Teleo-reactive programs for agent
control. Journal of Artificial Intelligence Research, 1994.

[Parr, 1998] Ronald Parr. Hierarchical Control and learning for
Markov Decision Processes. PhD thesis, University of California
at Berkeley, 1998.

[Perlin, 1995] Ken Perlin. Real time responsive animation with
personality. IEEE Transactions on Visualization and Computer
Graphics, 1(1):5–15, 1995.

[Ryan and Pendrith, 1998] M. Ryan and M. Pendrith. RL-TOPs: an
architecture for modularity and re-use in reinforcement learning.
In Proc. 15th International Conf. on Machine Learning, 1998.

[Saffiottiet al., 1993] A. Saffiotti, E. H. Ruspini, and K. Konolige.
Blending reactivity and goal-directedness in a fuzzy controller. In
Proc. of the IEEE Int. Conf. on Fuzzy Systems, pages 134–139,
San Francisco, California, 1993. IEEE Press.

[Saffiottiet al., 1995] A. Saffiotti, K. Konolige, and E.H. Ruspini.
A multivalued-logic approach to integrating planning and con-
trol. Artificial Intelligence, 1995.

[Shapiroet al., 2003] Ari Shapiro, Frederic Pighin, , and Petros
Faloutsos. Hybrid control for interactive character animation. In
Pacific Graphics, pages 455–461, 2003.

[Suttonet al., 1999] Richard S. Sutton, Doina Precup, and Satin-
der P. Singh. Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning.Artificial Intelli-
gence, 112(1-2):181–211, 1999.

[Thrun and Mitchell, 1993] S. Thrun and T. Mitchell. Lifelong
robot learning. Technical Report IAI-TR-93-7, University of
Bonn, Department of Computer Science, 1993.

[Thrunet al., 1999] S. Thrun, M. Bennewitz, W. Burgard, A.B.
Cremers, F. Dellaert, D. Fox, D. Hahnel, C. Rosenberg, N. Roy,
J. Schulte, and D. Schulz. MINERVA: A tour-guide robot that
learns. InKI - Kunstliche Intelligenz, pages 14–26, 1999.

