
Evaluating Multi-Agent Robotic Systems
Using Ground Truth

Freek Stulp, Suat Gedikli, and Michael Beetz

Informatik IX, Technische Universität München
D-85748 Garching bei München, Germany

{stulp|gedikli|beetz}@in.tum.de

Abstract. A thorough empirical evaluation of multi-agent robotic sys-
tems is greatly facilitated if the true state of the world over time can
be obtained. The accuracy of the beliefs as well as the overall perfor-
mance can then be measured objectively and efficiently. In this paper
we present a system for determining the ground truth state of the world,
similar to the ceiling cameras used in RoboCup small-size league. We
have used this ground truth data to evaluate the accuracy of the self-
and object-localization of the robots in our RoboCup mid-size league
team, the AGILO RoboCuppers. More complex models of the state es-
timation module have also been learned. These models provide insight
into the workings and shortcomings of this module, and can be used to
improve it.

1 Introduction

Evaluating dynamic robotic multi-agent systems is difficult for several reasons.
Since these systems are dynamic, it is difficult to capture the state of the world
at a certain time or at certain time intervals without interfering with the course
of events. How to accurately measure the position of a robot, if it is traveling
at 2m/s? Robotic platforms usually suffer from noisy sensors and hidden state.
A robot’s beliefs about the world are therefore incomplete, uncertain and inac-
curate. How to determine where a robot really was, if you only have its belief
state to judge by? Multi-agent systems also require that several subsystems are
evaluated at the same time, as well as the interactions between them.

We have implemented a system that can automatically provide ground truth
about the state of the world in dynamic robotic multi-agent systems such as
RoboCup teams. This information is stored in log-files, alongside the perceived
state of the world of each robot. This system is very similar to the global view
cameras use in the RoboCup small-sized league. It consists of one or more cam-
eras mounted above the field looking downward. Each robot has a distinctive
top-marker that is easy to detect by these cameras. Since the cameras are static,
and can locate the markers precisely, this yields very accurate data on the loca-
tion and orientation of each robot on the field.

We have found many uses for this ground truth data. Empirically evaluating
the performance of self-localization or other local state estimation algorithms

is possible, and we have also learned more complex models of the sensors and
state estimation algorithms. These models can greatly help to understand, and
improve the system.

In the remainder of this paper we proceed as follows. The next section de-
scribes the hardware of ground truth system, and the image processing used to
acquire accurate information on the poses of robots. In Section 3 we describe how
we use this information to evaluate and model our RoboCup team, the AGILO
RoboCuppers. Section 4 concludes with a summary and prospectives for future
research.

2 Acquiring ground truth

In this section we will briefly present the hardware and image processing used to
obtain the ground truth state of the world. This state consists of the location and
orientation of each robot, as well as the location of the ball. There are several
ways to locate robots, for instance based on ultrasound, such as Active Bat [13],
or the Cricket Location Support System [9], or based on Radio Frequency signal
strengths of packets on an wireless network [7]. The resolution of these methods
are 9cm, 1.2m and 1.5m respectively. The first one is too expensive, and the
latter two are too inaccurate. We have chosen a vision-based method which is
similar to the global vision system used in the small-size league of RoboCup [4].
It is combines high accuracy with low cost.

2.1 Hardware

Our ground truth system consists of two cameras with an opening angle of
90◦, at a height of approximately 3m above the field. The cameras are facing
downward, and together they cover the whole training field, which is 6.4m x
10.4m. The system is easily extendible to more cameras. For our training field
we will install a third camera for accuracy, and a standard 10m x 14m RoboCup
field will need four.

The maximum number of cameras that can be used is mainly limited by
the free PCI-Slots for the frame-grabbers. The computational power of the used
computer, and the bandwidth of the PCI-BUS do not physically limit the num-
ber of cameras, but do influence the frame-rate at which ground truth can be
computed. The cameras have a resolution of 384 x 288 Pixels and are connected
with 10m (S-Video Y/C) cables to the frame-grabbers. Using high quality cables
with less resistance and good shielding would also work for longer distances. For
a standard RoboCup field, the 10m cables are sufficient.

The robots can be distinguished from one another using color markers, ex-
actly as in done in the RoboCup small-size league [4]. The markers we use are
shown in Figure 1. The largest circle, which we will refer to as the main-circle,
indicates to which team the robot belongs (cyan/magenta). The two smaller
yellow or blue circles, which we will refer to as the sub-circles, are a binary en-
coding of the player’s number. The first image in Figure 2 shows two robots

with top markers representing #1 and #3. This binary encoding only allows for
four (22) distinct markers per team, as shown in figure 1. Recent rule changes in
RoboCup mid-size league allow for more than four players. By adding a small
circle, or adding a color we could have eight (23) or nine (32) distinct markers,
respectively.

The marker is essentially an abstraction of the robot’s pose. The marker has
been specifically designed for perception with a color camera, so that it can be
detected well, and localized accurately. It is not our goal to capture other aspects
of the robot’s state (kickers, grippers, arms), this abstraction therefore suffices.
Also, the methods described in this paper assume that the marker is parallel to
the floor. For legged robots, this assumption might not always hold.

Fig. 1. The top markers

2.2 Calibration and camera localization

The ceiling cameras were formerly used on our robots. Therefore, all the algo-
rithms for camera and color calibration on the robots can simply be applied
in the new configuration as well. For practical reasons, we have therefore de-
cided to reuse the manual calibration methods, instead of automatic calibration
methods proposed in RoboCup small-size league [5, 12]. Camera localization is
automated, using the localization methods previously employed on the robots.

Calibrating the internal camera parameters is done using a commercial soft-
ware package. Some images of a calibration plate in different positions and angles
are taken. The software package then deals with the camera parameter optimiza-
tion. The entire procedure takes about 10 minutes per camera.

For color calibration, we grab images and manually map image regions to
given color classes. The software then generalizes over these color samples, which
cover about 10 to 20% of all colors in the 16 bit color-space, so that each possible
color in the color-space can be mapped to a given color class. This is stored in
a look-up table for each camera. This procedure takes about 10 to 15 minutes
per camera.

The cameras localize themselves using the same algorithms used on our
robots [1]. The only difference is that the robots assume that the camera has
only three degrees of freedom, as the actual six degrees are computationally too
expensive. Since the ceiling cameras only have to localize themselves once, and

accuracy is more important, we use the full six degrees. Since localization is
automated, this procedure only takes a few minutes.

Once the cameras are in place on the ceiling, or attached to some scaffolding,
the entire calibration and localization procedure will take less than thirty minutes
per camera. Four cameras will therefore take two hours. Because the cameras can
be calibrated in parallel, four people could manage it in thirty minutes. On our
field, all cameras can use the same look-up table generated by color calibration.
This step therefore only has to be executed once. This might not be the case
for fields that are inhomogeneously lit, or cameras that are not so similar to one
another.

2.3 Image processing software

Each camera grabs images at a rate of 15Hz. The first image in Figure 2 shows
an example of such an image. The images are then segmented by color using the
look-up tables generated during color calibration.

Fig. 2. Intermediate steps in image processing.

In order to detect the markers, we first search for blobs corresponding to
the colored circles on the markers. For each blob, the center is computed. Then
we have to determine if a blob represents a circle on a marker or not. As the
sizes of the main-circles and sub-circles are known, we can filter out blobs not
belonging to a marker by size and compactness. To take into account that the
shape and size of a blob will vary with the position of the marker on the field,
the measures of compactness and size are position dependent. To compute ap-
propriate thresholds, the center of each blob is projected on a plane parallel to
the floor at the height of the robots. This projection is used to determine the
expected shape and size of this blob. Only blobs that have the right size and
shape, within a certain margin of error, are accepted as belonging to a marker.
For the partially overlapping area of two cameras, we use the average of two

blobs of the same color, if they overlap more than 20%. This yields a set of ma-
genta, cyan, blue, yellow and orange blobs, as can be seen in the second image
of figure 2. The centers and color label of all these blobs are stored in a list for
further computation.

Each orange center is assumed to be a ball. Every magenta and cyan center
in this array is assumed to be a main-circle. We then search all blue and yellow
centers whose distance to the main-circle are in the range 14.5±5.0. The distance
between two sub-circles must be within the range 18.0±6.0. Only these configu-
rations of blob centers are deemed to be a marker. With the center position of the
main-circle we can determine the location of the marker, and with the direction
of the two sub-circles the orientation of the marker. The color of the main-circle
encodes the robot’s team, and the color of the sub-circles the robot’s number.
Since each marker is unique, there is no data association problem between a
robot and a detected marker.

These results are communicated to and displayed in the program we use to
monitor the state of the world, as can be seen in the last image. In this example,
there are two robots, whose self-localization is displayed in blue. Their actual
position, determined by the ground truth system, is displayed as a white line,
the start of which indicates the robot’s center. The orange ball is where robot
3 beliefs the ball to be, and the ground truth position is displayed in red. This
graphical display allows us to make quick on-line inferences: “Robot 3 is localized
very well, and has localized the ball reasonably. Robot 1 is not localized that
well, but good enough for performing useful behavior.”

2.4 Accuracy of ground truth estimates

Although we assume that the ground truth data represents the actual state of
the world, it is of course an estimate. The question is if this estimate is accurate
and certain enough to evaluate and model a robot, or a team of robots. These
issues are discussed in this section.

Theoretical accuracy: We determine the highest theoretical accuracy that
can be achieved, based on the image resolution (384 x 288), the height of the
camera (3m), the opening angle of the lens (90◦). For these values, one pixel in
the image represents an area of approximately 1.22cm x 1.64cm at center of the
image, up to 2.44cm x 3.25cm at the border of the image. Determining positions
of pixels with higher resolution is insignificant. By using large color markers with
a diameter between 15 and 20cm, the marker’s size in the image is 20 to 170
pixels. The center of each blob can be calculated more precisely than one pixel,
so theoretically, the center of the circle can be determined more precisely.

Accuracy for static objects: To determine the actual accuracy of robot
localization by the ground truth system, we placed a robot with marker on fifteen
different positions on the field. We measured the actual position by hand (ground
ground truth, so to speak), and compared it to the pose estimated by the system.
For the localization of the robots we have an accuracy of 0.3 to 5.2 cm and for
its orientation 1 to 2.3◦.

Accuracy for dynamic objects: As it is difficult to measure the location
of moving robots by hand, we were not able to determine these values for moving
robots. Since the shutter speed of our cameras is 1/120s, the maximum distance
a robot can drive during an exposure is 1.7cm for a robot traveling at 2m/s. The
maximum angle it can turn in 1/120 of a second is about 4◦ for a robot turning
with 500◦/s. These values are lower than the theoretical accuracy that can be
obtained, so we do not expect blurring to influence the accuracy significantly.
Also, since the image processing algorithms have no internal state, each image
is processed completely independently of all previous images. Therefore errors
are not propagated and accumulated.

Since the cameras are not synchronized, there might be a delay between im-
ages taken by different cameras. This might be a problem, when two overlapping
cameras detect the same robot at different times. Given that the frame-rate is
15Hz, the maximum distance a robot can drive between these two times is about
7cm, and the maximum angle a robot can turn is 19◦. The estimated world state
is not really a snapshot, but a time interval of the real world state. For the
overlapping area recorded by two cameras, we reduce the temporal and spatial
errors by averaging all blobs detected by both cameras, as described in Section
2.3.

Robustness of marker detection: Apart from the accuracy, another im-
portant issue is whether a marker is detected at all. To evaluate this we have
conducted three experiments. First of all, we placed eight markers on the field,
and determined how often they were detected over 4100 frames, which is about
4.5 minutes. Some are detected 97-99% of the time, and others a full 100%. The
average is 99.0%. The complete results are listed in Table 1, in the row labeled
Static. In the second experiment we removed one of the eight markers from the
field, and measured how often it was (falsely) detected over an interval of 6000
frames, which is more than 6.5 minutes. This was done for all eight markers.
Most markers were correctly never detected. The results are listed in the second
row of Table 1, labeled Removed. In the last experiment, we drove a robot across
the field by remote control for 2000 frames, which is more than 2 minutes. This
was repeated for each marker. The results were not as good as for the static
experiment, but nevertheless detection rates are still 97.5% on average. Results
are listed in the row labeled Dynamic.

Experiment #Frames Magenta (%) Cyan (%) Mean (%)
1 2 3 4 1 2 3 4

1) Static 4100 100.0 99.2 100.0 97.7 100.0 99.7 98.0 97.1 99.0

2) Removed 6000 0.0 0.0 0.0 0.0 0.1 0.5 0.0 0.4 0.2

3) Dynamic 2000 99.0 96.7 98.8 96.2 98.8 98.2 96.4 96.1 97.5

Table 1. Results of marker detection robustness experiments

2.5 Logging the ground truth

As is customary in RoboCup mid-size league our robots communicate their state
estimation results to a central computer. This data is used for monitoring the
robots’ beliefs about the world on-line. Since the data is already available cen-
trally in the monitoring program, it stores it in one log file. This is similar to
the logging system of the Ulm Sparrows [6].

As discussed in section 2.3, the monitoring program also receives the data
from the ground truth system. Therefore, it was a simple step to include the
ground truth data into the log file. As the clocks of all robots and the ground
truth system are synchronized, we have a distinct correspondence between the
robots belief state and its actual pose given by the ground truth data. This
enables a direct comparison, on- and off-line.

3 Evaluating and modeling the AGILO
RoboCuppers

In this section we will discuss how we have used the ground truth system to
evaluate and model our RoboCup mid-size team, the AGILO RoboCuppers.
The data we acquire is not only used for determining quantitative measures of
performance, but also to learn complex and qualitative models of the system’s
competences and weaknesses. Since such models help to understand the system
and to break down its complexity, it is also an important aspect of evaluating it.

3.1 Evaluating state estimation accuracy

Before we could acquire ground truth data to evaluate the accuracy of self-
localization, we measured it by hand for static positions, as described in section
2.4. Of course, this yields too few, and more annoyingly, unrealistic data. When
the robots are performing their task self-localization is much more difficult, as
they are constantly moving, and landmarks are occluded by teammates and op-
ponents. The ground truth data allows us to measure the performance constantly
over time, and under realistic conditions.

In three friendly matches against the Ulm Sparrows [6] we were able to log
approximately two hours of net playing time. Quantitative data for these exper-
iments can be found in Table 2. The left, center and right column display the
accuracies (Root-Mean-Square Error, or RMSE) and the standard deviation of
the self-localization, of the ball observations and of the opponent observations
of the individual robots. These results are taken from [1].

The localization worked very well for the goal-keeper (#1) and the striker
(#4). Their localization accuracies are estimated to be 12 and 19 cm, respec-
tively. This is not surprising for the goal-keeper, since it is quite stationary and
can observe the penalty area lines well most of the time and use them for precise
localization. The accuracy achieved by robot (#4) is quite remarkable since it
traveled long distances across the field and scored several goals. The inferior

Self-Localization Ball Observations Opponent Observations
Robot RMSE (m) std.dev. (m) RMSE (m) std.dev. (m) RMSE (m) std.dev. (m)

1. Match

#1 0.12 0.07 0.31 0.23 0.38 0.26
#2 0.33 0.15 0.38 0.25 0.50 0.26
#3 0.24 0.11 0.24 0.22 0.46 0.26
#4 0.19 0.09 0.25 0.23 0.37 0.25

2. Match

#1 0.11 0.06 0.33 0.22 0.42 0.26
#2 0.33 0.19 0.35 0.25 0.48 0.27
#3 0.21 0.10 0.28 0.24 0.40 0.24
#4 0.20 0.10 0.25 0.26 0.35 0.24

3. Match

#1 0.12 0.09 0.27 0.22 0.40 0.26
#2 0.37 0.21 0.34 0.26 0.51 0.26
#3 0.23 0.11 0.26 0.22 0.44 0.25
#4 0.19 0.10 0.18 0.20 0.38 0.25

Mean of all matches

#1 0.12 0.08 0.29 0.22 0.40 0.26
#2 0.34 0.18 0.36 0.25 0.50 0.26
#3 0.23 0.11 0.26 0.23 0.44 0.25
#4 0.19 0.10 0.21 0.22 0.37 0.25

Table 2. Evaluation of state estimation accuracy

accuracies of robot (#2) and robot (#3) led to further investigations and it was
found, that both robots were using suboptimal camera parameterizations. Fur-
thermore, robot (#2) was also using a suboptimal color lookup table, and as
such failed to produce good classification results for a wide range of images. The
addition of a suboptimal color classifier causes the localization algorithm to be
unstable and fail more often by two orders of magnitude. This is a clear example
of how the quantitative evaluation of the robotic system using the ground truth
gives insight of the system’s performance, and can help in detecting errors.

Table 2 also summarizes the input data used to test the opponent tracking
algorithm. Self-localization errors and inaccuracies often cause errors in ball and
opponent observations. As a rule of thumb, the errors for opponent observations
are usually greater than the errors for ball observations. This is due to the
unique circular shape of a ball. Arbitrary robot shapes hamper the opponent
detection routines and as such add an indirect level of noise. The unfortunate
influence of the wrong intrinsic camera parameters of robots (#2) and (#3) on
the observations is clearly visible.

In [8], Merke et al. also use a laser range finder as an external sensor to
determine the actual position of a robot, and evaluate its self-localization. Un-
fortunately, the laser range finder cannot measure orientation, and the system

has not been designed to track multiple robots. Their main aim was to record
the ground truth for a omni-vision benchmark.

3.2 Learning models of the system

More elaborate sensor models can also be learned using the ground truth data.
Apart from determining the mean error, as discussed in section 3.1, interesting
and more complex aspects are: Does the robot perceive objects that aren’t there
(hallucinations)? Does the robot not perceive objects that are there (oversights)?
Can it be predicted when these failures arise?

Using the ground truth system, we can detect hallucinations and oversights
automatically. If a robot’s state estimation detected an object at a certain posi-
tion, but ground truth did not (within a 30cm radius), the robot has hallucinated
this object. If the ground truth system detected an object, but the robot did not
(again within 30cm radius), the robot has overseen this object. We have used
Quinlan’s C4.5 decision tree learning algorithm to learn predictive rules as to
whether or not to integrate an observation into state estimation considering the
current situation [11]. The robot learned rules that an observation is likely to be
informative if

1. the observed distance D is less than 3.76086 and the robot has not lost track
of its position

2. the robot is not turning, the angle φ between the observation and the direc-
tion the camera is pointed to is less than 22.91◦ and D ≤ 5.42

3. the robot is turning, D ≤ 6.87, and φ ≤ 43.6

There is a wealth of information in such learned models. First of all, it gives
us insight into the workings and performance of the system. Apparently, the
robot has problems discerning objects at distances larger them 3.7 meters. This
performance loss might be due to insufficient image resolution or camera height.
We could change this, make more experiments with ground truth, and relearn
the decision tree to see if the changes have led to improved performance.

Second, it can be used to improve the state estimation itself. In state estima-
tion it is often assumed that every observation provides the robot with additional
information that can be used to improve the state estimate. In reality, however,
this is often not true. Applying the learned rules above to filtering observations
we could reduce the hallucinated observations by one third. Since these obser-
vation are not used for further processing, state estimation also becomes more
efficient. This example show clearly that having a model of the system and its
shortcomings can help to understand and improve it.

Finally, in the future we will use the learned decision tree to improve our
simulator. At the moment the simulator uses accurate learned models of the
robot’s dynamics [3]. The “sensor model” is very crude however: each agent
simply receives the exact locations of all the objects in its field of view. The
learned rules could be used to improve this model, and generate hallucinations,
or generate oversights by deleting certain objects. When and where to do this
can be determined using the decision tree.

3.3 Providing robots with the global state

Having access to the global game state also allows a thorough evaluation of the
action selection module, independent of the inaccuracies and uncertainties that
arise from the state estimation performed locally on the robot.

In our system, the first step in developing or adapting control routines is made
in the MRose simulator [3]. This simulator has an accurate learned model of the
robot dynamics, and can simulate multiple robots on one field in parallel, using
the same controller the robots use in the real world. Even though this simulator
has good models of the environment, the low-level routines do not map to the
real controller perfectly. Testing of the controller on the real robot is necessary
to fine-tune the low-level routines. Without ground truth, this is difficult, as the
robot’s imperfect state estimation makes is difficult to see the effects of changes
to the low-level controllers, because unexpected behavior might arise due to false
self-localization.

To make this process easier we have enabled functionality to provide the
robots with the global state, as computed by the ground truth cameras. This is
exactly the same as in RoboCup small-size league. Using this set-up, we can test
the robots’ control routines, without depending on state estimation.

Of course, the final step is always to test the routines on a real robot with
local state estimation. Assuming perfect localization is a fallacy, and routines for
dealing with uncertain localization must also be implemented and tested. The
ground truth system provides us with an intermediate and useful development
step between the simulator and the real robot with local state estimation.

4 Conclusion and future work

In this paper we have presented a system for acquiring and storing ground truth
data for dynamical multi-robot systems, such as our RoboCup team. We have
also discussed how this data can be used to evaluate the robot’s performance,
and how plan to construct models of the sensors and state estimation algorithms.

Our future research will aim at learning further and more elaborate models to
understand and improve state estimation. Another exciting direction is learning
models of the opponents using ground truth. Up till now, such research has been
confined to the simulation league in RoboCup [10, 2]. This is probably due to
the accuracy and completeness of the data. The similar data provided by the
ground truth system will hopefully allow the acquisition of similarly expressive
models.

The ground truth system could also be used to assist the referee in RoboCup
games. It can accurately measure when a ball is over the line, when a goal has
been scored, or when a robot has been in a penalty area for too long. Collisions
could be determined by projecting a model of the robots’ shape onto the field
at the measured pose, and detect if they make contact.

Acknowledgements

The work described in this paper was partially funded by the German Research
Foundation (DFG) in the SPP-1125, “Cooperating Teams of Mobile Robots in
Dynamic Environments”.

References

1. Michael Beetz, Thorsten Schmitt, Robert Hanek, Sebastian Buck, Freek Stulp, De-
rik Schröter, and Bernd Radig. The AGILO 2001 robot soccer team: Experience-
based learning and probabilistic reasoning in autonomous robot control. Au-
tonomous Robots, special issue on Analysis and Experiments in Distributed Multi-
Robot Systems, 2004.

2. Michael Beetz, Thomas Stammeier, and Sven Flossmann. Motion and episode
models for (simulated) football games: Acquisition, representation, and use. In
Proceedings of the International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS04), 2004.

3. S. Buck, M. Beetz, and T. Schmitt. M-ROSE: A Multi Robot Simulation Environ-
ment for Learning Cooperative Behavior. In H. Asama, T. Arai, T. Fukuda, and
T. Hasegawa, editors, Distributed Autonomous Robotic Systems, 5. Springer, 2002.

4. Laws of the robocup F180 league 2004. http://www.itee.uq.edu.au/˜wyeth/F180
5. Alexander Gloye, Anna Egorova, Mark Simon, Fabian Wiesel, and Raúl Rojas.

Plug & play: Fast automatic geometry and color calibration for tracking mobile
robots. In RoboCup 2004 International Symposium, 2004.

6. Gerhard Kraetzschmar, Gerd Mayer, Hans Utz, and et al. The Ulm Sparrows 2003.
RoboCup 2003 International Symposium Padua, 2003.

7. A. Ladd, K. Bekris, G. Marceau, A. Rudys, L. Kavraki, and D. Wallach. Robotics-
based location sensing using wireless ethernet. Technical Report TR02-393, De-
partment of Computer Science, Rice University, 2002.

8. A. Merke, S. Welker, and M. Riedmiller. Line based robot localization under nat-
ural light conditions. In European Conference on Arificial Intelligence Machine
Learning (ECAI) 2004, Workshop on Agents in real-time and dynamic environ-
ments, 2004.

9. Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan. The Cricket
location-support system. In Proceedings of the Sixth Annual ACM International
Conference on Mobile Computing and Networking, pages 32–43. ACM Press, 2000.

10. Patrick Riley and Manuela Veloso. Recognizing probabilistic opponent movement
models. In RoboCup-2001: Robot Soccer World Cup V, 2002.

11. T. Schmitt and M. Beetz. Designing probabilistic state estimators for autonomous
robot control. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
2003.

12. Chunmiao Wang, Hui Wang, William Y. C. Soh, and Han Wang. A real time
vision system for robotic soccer. In Proc. 4th Asian Conference on Robotics and
its Applications (ACRA2001), 2001.

13. A. Ward, A. Jones, and A. Hopper. A new location technique for the active office.
IEEE Personnel Communications, 4(5):42–47, October 1997.

