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1 System Overview

The AGILO RoboCup team is the primary platform for our research on the semi-
automatic acquisition of visuo-motoric plans. It is realized using inexpensive, off the
shelf, easily extendible hardware components and a standard software environment.

The control system of an autonomous soccer robot consists of a probabilistic game
state estimator and a situated action selection module [2, 4]. The game state estimator
computes the robot’s belief state with respect to the current game situation [16, 15]. The
action selection module selects actions according to specified goals as well as learned
experiences. Automatic learning techniques made it possible to develop fast and skillful
routines for approaching the ball, assigning roles, and performing coordinated plays
[10, 3].

The control program and the software development environment of the AGILO
RoboCuppers 2004 advance the computational mechanisms of the earlier versions of
the system in several important ways:

1. For the first time our probabilistic state estimation routines will employ learned
observation and environment models and active state estimation routines.

2. The action selection is rationally reconstructed and completely re-implemented us-
ing ROLL (RObot Learning Language). Using ROLL, learning and control tasks
are stated explicitly as part of the code.

3. The control system employs model-based transformational learning and planning
mechanisms in order to improve the system performance.

4. Finally, we have substantially extended the development environment for program-
ming the control system. These extensions include a system for recording ground
truth data and a software workbench for empirically analyzing robot behavior and
perception.

2 Hardware Platform

The AGILO RoboCup team is realized using inexpensive, off-the-shelf, easily ex-
tendible hardware components and a standard software environment. The team consists
of four customized Pioneer I robots (1); one of which is depicted in figure 1. The robot
uses the original Pioneer I controller-board (2) and differential drive (3). For ball han-
dling the robot has a passive ball guide rail (4) and a spring-based kicking device (5).



The only sensor apart from the odometry is a fixed, forward-facing color CCD Firewire
camera with a lens opening angle of of 90

�

(6). All computation is done on a standard
900 Mhz laptop with Linux operating system (7). The robot uses a wireless Wireless
LAN device (8) for communication with teammates.
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Fig. 1. An AGILO soccer robot

Our hardware is somewhat Spartanic. Our off-the-shelf forward facing camera with
90

�

field of view has a very restricted view as compared to the omni-directional vision
system and laser range finders that most RoboCup mid-size teams use. We also use a
differential drive instead of the much more dextrous holonomous drives. Whereas this
hardware gives us a substantial disadvantage against teams which use one or more of the
above-mentioned components, it also confronts us with challenging research problems.

3 Vision-based, Cooperative Game State Estimation

The game state estimators of the AGILO robots maintain a belief state that contains
the respective robot’s belief about the current game situation. The belief state includes
the estimated positions and orientations of the robot itself, its team mates, the ball,
and the opponent robots and provides the information that is necessary for selecting
the appropriate actions. Employing sophisticated probabilistic reasoning techniques and
exploiting the cooperation between team mates, the robot can estimate complex game
states reliably and accurately despite incomplete and inaccurate state information.

The state estimation system [16, 15] consists of the perception subsystem, the state
estimator itself, and the belief state. The perception subsystem itself consists of a cam-
era system with several feature detectors and a communication link that enables the



robot to receive information from other robots. The belief state contains a position esti-
mate for each dynamic task-relevant object. The estimated positions are also associated
with a measure of accuracy, a covariance matrix. The state estimation subsystem con-
sists of three interacting estimators: (1) the self localization system [11], (2) the ball es-
timator [12, 13], and (3) the opponents estimator. State estimation is an iterative process
where each iteration is triggered by the arrival of a new piece of evidence, a captured
image or a state estimate broadcasted by another robot. Detailed information about the
computer vision and probabilistic state estimation techniques can be found in [15].

The game state estimator that will be employed by the AGILO RoboCuppers 2004
control systems features several substantial improvements and novel capabilities. For
the first time we employ probabilistic observation models that are learned from ground
truth data. Second, the robots will be more cognizant about the properties of the be-
lief state, whether their self-localization is inaccurate or ambiguous, whether distinctive
landmarks are in view, etc. Inferring these properties of belief states will result in more
useful information for robot control and better performance of cooperative state esti-
mation. The third extension will be novel methods for active state estimation. Here, the
information about the belief states are used for selecting actions that reduce the entropy
of the belief state along different dimensions. For example, if the situation allows for
the localization of a lost robot by looking at this robot, the state estimation proposes
that the other two robots face the lost robot in order to reinitialize the lost robot’s self
localization. Other active state estimation routines will intelligently search for the ball,
etc.

Our medium term goals in state estimation that we will tackle after this year’s com-
petition are methods for perceiving and estimating game situations rather than belief
states with accurate robot positions. An example of such a situation is an opponent
robot in ball possession directly threatening our goal or an open area in front of the op-
ponents’ goal that is appropriate for goal shots. We believe that the perception of such
system will provide better information to the action selection and will be more robust
to compute because lower data accuracy is required.

Another direction of further research is to add capabilities for partial state estima-
tion. Instead of relying on global position estimates, the robot system should be capable
of acting based on partial state estimation such as only the ball is seen directly in front
of me, etc. How to switch from action selection based on global state information to the
one based on partial information and how to exploit partial state estimates as evidence
for a global estimate are open questions on our research agenda.

4 The Robot Learning Language (ROLL)

Although learning techniques have become powerful and successful tools for the devel-
opment and adaptation of robot control programs, a control task such as “win a soccer
game in mid-size robot soccer” is far too complex to be solved as a monolithic learning
task. Therefore the action selection component of the AGILO RoboCuppers employs
a variety of smaller and diverse learned routines that solve, among other ones, the fol-
lowing reasoning tasks: 1. What happens if the voltage of the left motor is set to 2 volt?
2. Which control signal must be issued to reach the position (-2.0, 1.0) with an orienta-



tion of 96
�

? 3. How long will it take to get to the ball? 4. How promising is an attempt
to dribble the ball into the goal in the current situation?

The action selection module of the AGILO RoboCuppers 2004 is a rational recon-
struction and complete re-implementation of the action selection module used in earlier
versions (see [9, 1, 10]). In the earlier versions of the action selection subsystem the
learning tasks were solved in isolation and only the shared object files of the learned
routines became part of the system. This yielded a number of severe drawbacks that
made the development and improvement of the system very tedious and fragile.

Thus in the hot phases of preparation for RoboCup competitions, the learning pro-
cesses were not properly documented. So afterwards it was impossible to find out the
parameterization of the learning algorithms or which experiences had been employed.
Thus, the solutions of a learning problem was irreproducible. This caused tremendous
waste of resources when hardware components in the robots were replaced. The previ-
ously learned routine could not be used any more, a new one had to be learned from
scratch and the same difficulties had to be solved anew.

To avoid these problems, in the new version of the action selection module the con-
trol tasks and learning problems are stated explicitly and declaratively. This is possible
because we have added new execution mechanisms to the interpreter of our robot con-
trol system that make learning problems executable. Providing declarative and explicit
specifications of learning problems and making these specifications operational sup-
ports the rigorous design of learning mechanisms and their transparent integration into
the robot control systems.

Let us introduce the key concepts of ROLL using our second task from above as an
example, that is the task of reaching a given position and orientation as fast as possible.
A vital concept in our system is the notion of “experience”. Experiences are represented
as first class objects and form the basis of a learning process. The first thing a robot has
to do is to make “raw experiences”. He achieves this by following certain guidelines
provided by a “problem generator”, how to explore the field. These raw experiences
are then transformed into abstract experiences to make them suitable for learning. Fur-
thermore the experiences are filtered in order to eliminate contradictory or undesired
experiences.

In our example the raw experiences are composed of the x- and y-coordinates and
the orientation angle with respect to the x-axis. As this representation is not suitable
for learning. Therefore we chose an abstract experience representation containing the
distance of the start and goal points and the turning angle of the robot with respect to
the connection line of the two points. When two similar experiences exist, only the one
is maintained where the robot reaches its goal faster.

The abstract experiences are now given to a learning algorithm that generates an
executable function which can be integrated into the control system of the robot.

For the implementation of our learning constructs we extended the robot control
language RPL. The whole system is constructed in an object oriented style, so that
certain parts of a learning problem specification can be reused for other problems by
exploiting inheritance mechanisms. Our approach has been described in more detail in
[6] and [3].



Because of the complexity of our problems we learn them in simulation. For this
purpose we have a simulator [8] that models the dynamic of the environment very ac-
curately. Soon we are going to extend its functionality by adding models of our state
estimation module (see section 3).

5 Using Models of Skills to Optimize Plans

The core of the action selection module is a set of skills common to the RoboCup
domain. In our previous system, these skills were selected based on a hand-coded rule-
based policy. We are converting these skill selection rules into more generic goal se-
lection rules. Based on the current belief state (“ball in own goal area”, “free path to
goal”), a goal is chosen (“get ball out of own goal area”, “score goal”). The robot
then selects the appropriate skill(s) to achieve this goal. In order to do this we now use
more complex models of our skills. They consist of procedural knowledge, declarative
knowledge, and projection functions.

The procedural knowledge specifies how the skill should be executed. It can be
hand-coded, a set of if-the-else rules, a state chart, learned through Reinforcement
Learning, or any other method, as long as it provides a primitive action for each be-
lief state. It is also known as the policy. In many approaches, a skill consists only of this
component.

Declarative knowledge about skills consist of pre- and postconditions. In the action
selection module we do not specify high-level goals such as “win the game”, or “de-
fend”, but intermediate goals such as “get ball out of own goal area”, “score goal”. A
skill that has this goal as its postcondition will be selected, as it can achieve this goal.
If there is no such skill, a light-weight planning module constructs a plan that com-
bines skills to achieve this goal (“go to ball”, then “dribble ball into goal”), using the
pre- and postconditions specified in the declaritive component of the skills. The plan is
executed as long as the preconditions for the plan still hold.

Projection functions allow us to make predictions about what will happen if we
execute a skill. For instance, how long it will take to execute the task given a initial and
goal-state? What is the chance of succeeding? This kind of knowledge is acquired by
extensively executing the skill in a simulator, and recording the results. Neural networks
are used to learn the mapping from �����������
	�����������������

������� ������� . We have used this
approach before [9], and it has been very successful in coordinating our robots, by
letting every robot predict how long it will take it to get the ball. ROLL, described in
section 4, automates this learning process.

This approach combines the benefits of planning and learning. Pre- and postcondi-
tions allows the programmer to express action selection constraints in a declarative and
transparent way. A light-weight planner then generates a plan using these conditions.
As valid plans must not always be optimal, we use learned projection functions of skills
to optimize them. Combining planning and projection functions has been researched in
the context of Reinforcement Learning [14], and hall-way navigation [7], but as far as
we know, not in the RoboCup domain.



6 Empirical Evaluation

Realizing an autonomous robot control system is a very peculiar programming task
that differs enormously from programming tasks in other application domains. While
in most programming tasks we aim at programs that compute the correct results or do
the right thing, in robot control we aim at programs that produce the optimal perception
driven behavior. This difference is so big because the behavior does not only depend
on the control program but also on the perception capabilities, the physical dynamics
of the robot, system parameterization and the assignment of computational resources to
computational tasks. Thus the very same programs may exhibit very different behaviors
even if the influencing conditions are varied slightly.

For example, in the AGILO RoboCuppers control system the behavior of the robots
critically depends on how computational resources are assigned to state estimation tasks
and the remaining tasks. Or a variation of the camera model might cause inaccuracies
in self localization and thereby cause problems in the role assignment within the team.
Such interactions cannot be found and understood by looking at the program code.
Rather, we have to identify the control parameters of our system and the context con-
ditions that system performance depends, build a causal model of system behavior, and
then learn the parameters of the causal model from empirical studies.

For this year’s competition we have extended the software development environ-
ment for the AGILO RoboCuppers in two important ways. First, we have developed a
camera system consisting of two cameras mounted at the ceiling, a visual marker sys-
tem that allows us to recognize the individual robots on the field, and a global state
estimation routine for tracking the positions and orientations of the ball and each robot
on the field. This system provides us with ground truth data about the physical behavior
of each robot where the expected accuracy of position data is about two centimeter in
the center and about 4-5 centimeters at the boarders of the playing field. In addition, we
have substantially extended our on-board logging mechanisms that give use very de-
tailed information about the beliefs of the robot and the evidence the beliefs are based
on at any time instance during the game. This setup is a huge source of data for the
empirical study of our system.

The second extension is new workbench for the empirical study of system and agent
behavior in simulated robot soccer, mid-size robot soccer, and human soccer [5] This
workbench consists of a relational database system that stores the empirical data, an
interpreter for recognizing and classifying behaviors based on observable features, and
for data mining and visualization of empirical findings.

7 Sharing Belief within a Mixed Team

Due to scientific as well as pragmatic reasons, there is a growing interest in the robotics
field to join the efforts of different labs to form mixed teams of autonomous mobile
robots. As most robots in the F2000 league are custom built, or at least customized
commercial research platforms with unique configurations of actuator and sensor con-
figurations, mixed teams from different laboratories are extremely heterogeneous. This
makes the unification of the software of the different robots of a potential mixed team
almost impossible without substantial rewriting of at least one of the team’s software.



Together with the teams of the University of Ulm (Ulm Sparrows) and the Technical
University of Graz (Mostly Harmless) we have designed and implemented a commu-
nication framework for sharing information within a team of extremely heterogeneous
autonomous robots, allowing us to play interchangeably with the different robot plat-
forms in a mixed team [18].

The communication framework is hardware and software independent, and can ex-
tend existing software architectures in a transparent way. Major code rewrites are not
necessary to use this framework. The team communication uses a message-based, type
safe high-level communications protocol that is transfered by IP-multicast. The im-
plementation uses the notify multicast module (NMC) of the Middleware for Robots
(MIRO) framework [17]. MIRO is a CORBA based middleware architecture for au-
tonomous mobile robots.

For cooperation between robots, the sharing of information about beliefs concerning
the state estimation is initially sufficient for successful cooperation. At the moment we
therefore communicate only an expressive belief state using this framework; explicit
role assignment or coordination is not part of the communication.

8 Summary

In this paper we have given an overview of the AGILO RoboCuppers team. After hav-
ing discussed the main research directions in section 1, the hardware platform was pre-
sented in section 2. In the next three sections on vision-based, cooperative game state
estimation (3), the robot learning language (4), and using models of skills to optimize
plans (5), we have explained how we aim to implement semi-autonomous acquisition
of visuo-motoric skills. In section 6 we have briefly discussed our ground-truth system,
and our workbench for the empirical study of system and agent behavior in simulated
robot soccer, mid-size robot soccer, and human soccer. Our cooperation with two other
universities to design and implement a communication framework that allows platform
independent exchange of belief states, and therefore mixed team coordination, was pre-
sented in section 7.
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