Completion of Occluded Surfaces
M.Sc. Dissertation

Freek Stulp

Supervisors:
Dr. J. Hallam
Dr. H.A K Mastebroek
Dr. R.B. Fisher

August 10, 2001

Acknowledgements

First of all, T would like to thank Craig Robertson, colleague and friend, for all his help and
comment. His advice has been invaluable to this dissertation.

Also a variety of thanks to all my colleagues in the Vision Lab: to Petko for letting me
use his code, to Helmut for the many walks through Scotland, and to Neil for correcting my
English.

Many thanks to Bob Fisher for hiring me as a Research Assistant at the Vision Lab.
There was a risk in hiring an under-grad for the CAMERA project, and I would like to
thank him for taking this risk, as well as Esther, Hans and Rineke for writing the letters
that convinced him to do so! The fellowship has allowed me to stay in Edinburgh twice as
long as expected, and has given me a good start in academic experience. In this context I
am much obliged to the EU and the CAMERA project for the financial support and many
(work related) trips abroad.

T am also grateful for the advice given to me by my supervisors, H.A.K. Mastebroek of
the Rijksuniversiteit Groningen, and J. Hallam of the University of Edinburgh. Working
together at a distance, or at altitudes of 28.000 feet is not always easy, but it has worked
out fine.

Last, but certainly not least, all my family & friends (a set of people certainly not
mutually exclusive with people previously mentioned) for all the support and fun, in and
outside of Scotland. The support of my parents throughout a variety of courses in Groningen
has been essential to the completion of this one. Thank you Sandra for the support and
many diversions in and around Edinburgh.

Thank you all!

Abstract

The CAMERA-project is an EC-funded international network that seeks to acquire three
dimensional models of industrial and historical buildings through analysis of digital images;
the main focus being on range images.

When taking digital images of scenes, it is hard to capture all the information contained
in the real-world scene into the image. Often objects are blocking other objects from the
sensors’ view. These occluded objects are not fully visible in the image, and data needed
for a complete 3D reconstruction is missing.

In this dissertation, a method is presented for using information from the surroundings
of an occlusion to hypothesize what would have been seen, had there not been an occlusion.
This process is called completion. Cognitive aspects of this completion are discussed. The
main part of this dissertation is devoted to a method of completing surfaces in range images,
and finding a correct way of projecting texture onto these surfaces.

Abstract (Dutch)

Het CAMERA-project is een door de EG gefinancierd internationaal netwerk dat on-
derzoek doet naar het maken van drie dimensionale modellen van industri€le en historische
gebouwen. Hiertoe worden digital images, en met name de zogenaamde range images, ge-
analyseerd.

Het is moeilijk om alle informatie die besloten ligt in een bepaalde scene vast te leggen
in slechts enkele digital images. Vaak blokeren bepaalde objecten voor de sensor het zicht op
andere objecten. Omdat de verborgen objecten niet geheel zichtbaar zijn, is het erg moeilijk
om er een volledig drie dimensionaal model van te maken.

In dit afstudeerverslag wordt een methode gepresenteerd waarbij informatie uit de omgev-
ing van het verborgen object wordt gebruikt om een hypothese op te stellen over wat er te
zien zou zijn geweest als het verborgen object niet verborgen was geweest; een proces dat
completie heet. Een literatuurstudie plaatst dit onderzoek in een cognitief perspectief. Het
grootste gedeelte van dit verslag wordt gewijd aan het complementeren van vlakken in een
range image, alsmede het projecteren van licht-intensiteits patronen in de intensity image
op deze gereconstrueerde vlakken.

Contents

1 Introduction
1.1 The CAMERA network
1.2 The problem: incomplete information
1.3 Cognitive science L
1.4 .. andengineering
1.5 Anoverview e e e
2 Perceptual Completion
2.1 Imtroduction
2.2 Amodal perceptual completion Lo
2.3 Imagerepresentationo
2.4 Fillingin Lo e
2.5 ..versusfindingout
2.6 Thedebate
2.7 Conclusion L
3 Image Acquisition
3.1 Imtroduction e
3.2 Digital images e
3.3 Imtensity images
3.4 Rangeimages
3.5 Summary e e
4 Image Segmentation
4.1 Imtroduction L L e e
4.2 Noisereduction L L
4.3 Surface characteristics
4.4 Region growingo e e e
4.5 Surface fitting
4.6 SUmMMAry e e e e e
5 Surface Completion
5.1 Imtroduction e e
5.2 Locating possible occlusions L L oo
5.3 Making the surface hypothesis. L oL
5.4 Niche or real occlusion? o

11
11
12
13
14
16
17
19

21
21
21
22
23
28

29
29
30
32
38
40
45

5.5 Results.
5.6 Summary e e e e e e e e

6 Texture Completion
6.1 Introduction L L
6.2 Extracting a regularly sampled textureimage
6.3 Hypothesizing the unobserved texture
6.4 Warping the completion onto the original image
6.5 Results. e
6.6 Proposed improvements Lo
6.7 Summary e e e e

7 Conclusions and Future Work
7.1 Conclusive SUMMATY vt vt v bt e e e e e e e e
7.2 Future work e e

Derivative estimation

Direct curvature computation

Q w >

The extended Euclidean distance transform
D Publications, presentations, applications
E Further reading

Bibliography

61
61
62
65
68
69
69
70

71
71
72

75

77

78

80

82

84

List of Figures

1.1
1.2

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

Merging data from the Bornholm church 7
The problem of missing data, 9
The Kanizsa triangle o o 11
Completion of gray rings L 12
Incomplete people. L 13
Representing an image L oo 14
Interpreting digital images oL 22
A time-of-flight laser scanner 24
Orthogonal and spherical scanning 25
2.5D and 3D images 26
Orthogonal and spherical scanning geometry 27
The processing chain oL L 29
Noise caused by cylindrical laser 31
Locating neighbours Lo 33
Points without neighbours oL oo 34
Surface derivatives 35
The principal curvatures ot i it i e e e e e e e e e 36
The HK surface classification 37
Detecting surface discontinuities 39
A result of the region growing algorithm 39
Two examples of Euclidean and algebraic distance 42
A result of the region growing algorithm (2.5D) 44
A result of the region growing algorithm (3D) 44
The processing chain of completion, 46
A classification of occlusions of single surfaces 48
Zero-transection occlusions oL Lo 49
Locating zero-transection occlusions 50
Single-transection occlusionso 51
Multi-transection occlusions oL oL oL 51
Determining the area between two surface patches 53
Computing intersections and interpolating between them 55
The area in which the hypothesisis allowed 57
A true occlusion and aniche. o oo 58

5.11 Some results of the surface completion algorithm 99

6.1 An overview: One step further. 61
6.2 Warping surfaces onto a 2D continuous texture space 62
6.3 Finding an appropriate bounding box, 63
6.4 Rotating and translating the data in the bounding box 64
6.5 Theresult of warping 64
6.6 Determining a likely value for unknown pixels 66
6.7 The completed digital image Lo 67
6.8 A result of both completions oo 69
7.1 Next-best viewplanning oL 73
C.1 Distance transform L Lo 78

List of Tables

2.5D range image and 3D range image 27
(Geometrical) Surface, Region (or patch), and Surface patch 32
(Geometrical) Surface, Region (or patch), and Surface patch 45
Hypothesized point/surface and Completed point/surface 47
3D Distance and 2D Distance Lo oL 49

Chapter 1

Introduction

1.1 The CAMERA network

This research is part of, and has been funded by the CAMERA network. CAMERA, or
CAD Modelling of Built Environments from Range Analysis, is a European research network
whose seven participating institutions are located in six EU countries. The coordinator of
the project is Bob Fisher. The CAMERA-project provides post-doctoral researchers with
experience in a large international project, and aims to develop cross disciplinary skills in
computer vision, computer graphics and computer-aided design (CAD). I have done nine
months of research for the CAMERA group at the University of Edinburgh in Scotland, as
part of the MSc. course Cognitive Sciences and Engineering (now Artificial Intelligence), at
the Rijksuniversiteit Groningen in the Netherlands.

The research objectives of the network are described as follows: “The project will un-
dertake research into the technology for constructing CAD models of existing industrial and
historical buildings [12].” In this section, I will briefly explain exactly what this research is,
in which way the research is done, and what the practical use of the results of this research
may be.

The goal is to construct models of existing buildings, varying from industrial plants to
ancient churches. This process is often called reverse engineering. It is like deriving the
original blueprint of a building from the building itself, instead of constructing the building
from the blueprint. For this reason, reverse engineering is also known as reconstruction.
Because buildings are objects in three-dimensional (3D) space, an accurate model should
also be reconstructed in 3D. A good reconstruction will allow the model to be viewed from
any angle and any position.

A simple model can be seen on the right-hand side of figure 1.1. Unfortunately, paper,
through its 2D nature, does not lend itself well for rendering 3D images. The CAMERA
partner at the Joint Research Centre in Ispra, Italy, is doing research on visualisation of, and
navigation through such 3D models. To get a better idea of the 3D models discussed here,
visit their web-site at http://mortimer.jrc.it/sba/. There are some beautiful demos in
the 3D reconstruction section.

The way these 3D models are constructed is by collecting and analysing data describing
the building. These are usually in the form of intensity images (digital black-and-white
pictures), range images (which will be discussed later on) or video-streams. To acquire a

Intensity data

3D model

Range data

Figure 1.1: Merging different datasets to acquire a 3D model. This is part of a 12th century
church on Bornholm Island in Denmark. The model was reconstructed with use of intensity
images (texture) and range images (3D geometry).

good model, this data has to be interpreted, and often different data sources have to be
merged. Some issues and research topics are:

e Registration: Merging different datasets. Figure 1.1 shows how two types of data can
be merged to acquire a textured model in three dimensions.

o Extracting 3D information from 2D data: Video-streams and intensity images do not
directly encode 3D information. It is possible to indirectly extract 3D information
from them through various methods. One of them is that constantly used by humans:
stereopsis.

e Coping with missing data: Often the measured data does not fully describe the real-
world scene: information is lacking. This poses serious problems when reconstructing.
Methods have to be found to fill in the missing data. This dissertation addresses this
specific problem.

The industrial sector has many uses for these 3D models. A good example is modification
planning. Often industrial sites have a multitude of pipes, wires and switches running
through and alongside walls. Keeping a good record of the locations and dimensions of all
these structures is often difficult. Extensive re-measuring and many man-hours are needed
to figure out where to fit new pipes or wires. With a 3D model of the site the computer
could compute the most efficient way in which the new structure could be inserted. Of
course this is not limited to tubes and wires only. Expanding a building or adding a new
room could be treated in much the same way. Note that a 2D-model would be of little use
for this task, because the 3D lay-out (continuation of tubes through walls for instance) can
not be represented in 2 dimensions.

The tourism industry could also enhance its tours and web-sites to a great extent if they
had virtual models of some of their main features. Historic Scotland could add a model of
Edinburgh Castle to its web-site for instance, enabling you to walk through a virtual model
of the castle on-line. Some might comment that this negates the need to go to the castle
itself, but then again, most people seem to feel that actually seeing Rembrandts’ painting

the Nachtwacht is far more impressive than seeing its 2D-models (pictures) rendered on
postcards.

Archaeology might also benefit from these techniques. Those investigating archaeological
excavation sites could make regular scans and construct 3D models of the site to keep track
of progress and make a 3D map of the locations of certain findings. When the excavation
is finished a final enhanced 3D model could be reconstructed to give an impression of what
the site might have looked like in the past when it was still functional. This would give
the public (and the funders) a better feel for the work done, and could be used to enliven
archaeological displays in museums.

1.2 The problem: incomplete information

One of the issues in trying to achieve the goals mentioned in the previous section is that
real-world objects or scenes can only be realistically modelled if there is enough information
about the object or scene. The reason this is an issue, is that information is often not
complete.

Let me explain the problem of incomplete data using the next example. Suppose I were
to take 50 photographs of the Vision Lab in Edinburgh, roughly describing most of the room.
From these pictures someone could get a good idea of what the Vision Lab looks like, even
if they had never been there. A CAD-designer, someone specialised in reconstruction, could
probably make a pretty realistic model from these pictures as well.

Suppose I were then to throw away 25 of the pictures describing the southern part of
the room. On the basis of these 25 pictures, another subject will get a good idea of what
the northern part of the Vision lab looks like. A good guess could be made as to what the
southern part looks like, based on the northern part: more wall, more lights, maybe more
computers. Important information will always be lacking though. It would be unlikely that
the subject guesses that there is a REVERSA laser-scanner, a bookshelf, a stereo, and a
television. A CAD-designer would have the same problem. How could the CAD-designer
make a model of something that is unknown? Building a complete and accurate model® is
impossible if the data on which the model is based is not complete.

Losing pictures is not the main cause of incomplete datasets?. Another more important
reason is that objects can occlude each other. Object A is occluded by object B for a certain
sensor, if, in this particular configuration of objects and sensor, object B is blocking object
A, or a part of it, from the sensor’s view. In other words: if I (object B) stand in front of
the TV (object A), you (the sensor) will not be able to see what is on it.

How does occlusion lead to missing data, and how does this affect reconstruction? An
example can be seen in figure 1.2. Here, a chair is standing in front of a wall. This means
that part of the wall is blocked from the sensors’ view, so it is occluded. When the image is
shown from another angle, a part of the wall is clearly missing. For the moment it does not
really matter what a range image is, or how it can be rotated in three dimensions; what does
matter is that it is apparent that occlusions are a serious problem for reconstruction. If a
3D model were to be reconstructed of this small scene, there would be a chair-shaped hole in

1By modelled complete and accurate model T mean complete and accurate enough to satisfy the human
eye. Describing the Vision Lab as a box is not accurate enough to fool the human eye. Describing it on a
molecular level would create a very accurate model, but this level of detail is not necessary for our purposes.
2«Helmut, where are the K2T factory scenes?”

Missing data

Figure 1.2: A range image (left) and the same image seen from another angle (right).

the wall. The human eye would spot this immediately: the 3D model would be unrealistic.
There is an obvious need to fill in the missing data.

1.3 Cognitive science ...

Of course humans suffer from the problem of incomplete information as well. The wall is
just as hidden from us as from the sensor. Humans however seem to know intuitively that
the wall most likely continues behind the chair. In a literature study, I have tried to discover
what this intuition is based on, and if it can be reworked into a functional application.

The term cognitive scientists use for the intuition mentioned above is perceptual comple-
tion, and it can be demonstrated beautifully using some well-known illusory images shown in
chapter 2. In chapter 2 I will elaborate on perceptual completion, and discuss some different
explanations for how it emerges. Whether these cognitive processes can be used to create a
model on which the program can be based, will be discussed in the conclusion.

1.4 ... and engineering

An obvious way of filling in the missing data is simply collecting more data. If the sensor
were placed behind the chair, the wall could certainly be scanned, allowing the missing data
to be filled in by merging the two images. This is a simple registration problem. This is
not always feasible, as the number of scans needed for a complete description of even very
simple scenes can exceed hundreds [43].

If collecting more data is not an option, a guess has to be made as to what the missing
data would have looked like if it had been visible. Preferably it will not be a guess, but
a well contemplated and useful hypothesis. To do this, information from the known data
surrounding the occluded region in the range image will be used. Summarising:

The main goal of this dissertation will be:
to hypothesise data that is not visible due to occlusion;
the hypothesis being based on the surroundings of the occluded data.

This process can be divided into two main subprocesses. First of all, the shape of the
occluded area will have to be recovered. In figure 1.2 the occluded object is a planar wall. In

some way or the other, a planar surface will have to be completed behind the chair, keeping
in mind that this completed surface should be consistent with the existing wall.

Secondly, a hypothesis will have to be formulated as to what the texture on the recon-
structed surface would have looked like. Was it a white or a black wall? Was it homogeneous,
or did it have lines, flowers, or Marilyn Monroes on it? A model or template of the known
texture will be made, and projected onto the completed, but texture-less surface.

1.5 An overview

In this first chapter a brief overview of the CAMERA project and its goals has been given.
The specific research goal of this dissertation has been presented, as well as a short descrip-
tion of possible solutions. The rest of this dissertation will be devoted to elaborate on these
solutions, explain the implementation, and show some results of this implementation.

Chapter 2 (Perceptual Completion) will describe some of the research done on per-
ceptual completion. Humans use perceptual completion to cope with partially occluded
objects. It will be consider which parts, if any, of cognitive perceptual completion can be
used to aid the engineering of an algorithm for 3D completion in range and intensity images.

Chapter 3 (Image Acquisition) describes what intensity and range images (the two
types of data used) are, as well as some methods for acquiring them.

Chapter 4 (Image Segmentation) will discuss how the range and intensity images are
segmented. The segmentation of these images is very important, because the quality of
completion depends on the quality of the segmentation. The segmentation algorithm is kept
distinct from the completion algorithm in both theory and implementation. Image segmen-
tation is a relatively mature field in computer vision, whereas the completion algorithm is
unprecedented and will contain many new ideas. This chapter therefore allows us to give
a more theoretical background of some interesting problems that are encountered in image
segmentation and computer vision in general.

Chapter 5 (Surface Completion) will show how the occluded data is completed in three
dimensional space, using a description of the scene in terms of simple geometric surfaces.
The completion is based on taking the surroundings of the occlusion as a representative of the
occluded data itself. After a short introduction, the processing chain of the implementation
is presented, and some results are shown.

Chapter 6 (Texture Completion) discusses the process of projecting texture on the
completed surfaces. Again, the method used is presented, followed by some results, similarly
to chapter 5.

Chapter 7 (Conclusions and Future Work) will draw some conclusions concerning
the methods and results of this work. The research has also raised some new questions, and
opened possibilities for new areas of research. These will also be discussed in this chapter.

10

Chapter 2

Perceptual Completion

2.1 Introduction

The cognitive term for reconstructive completion is perceptual completion. Perceptual com-
pletion implies that something seems to be present in a particular region of visual space
when it is actually absent from that region, but present in the surrounding area: You see it,
even though it’s not there. Illusory figures are a good illustration of this phenomenon. A
famous example is the Kanizsa triangle shown in figure 2.1. In the Kanizsa triangle, illusory
contours are perceived of a triangle located between the three black circles. Furthermore,
this triangle seems brighter than its surroundings. Both perceptions are illusory, because
the paper is homogeneous in luminance.

We are seeing things that are not apparent in the retinal image. This gives a hint as to
why research on illusory figures is relevant to our research: we require a program that can
‘see’ things that, due to occlusion, aren’t apparent in the image. It will have to ‘see’ the wall
behind the chair. The relevance will become more apparent in the next section, in which I
will also abandon the somewhat undefined terminology of this paragraph.

¢ 9

Figure 2.1: The Kanizsa triangle. A bright triangle is perceived, even though it is not
present in the stimulus.

11

2.2 Amodal perceptual completion

For this research it is useful to make the distinction between modal and amodal perceptual
completion. In modal perceptual completion, the completed parts display the same types
of attributes (or modes) as the rest of the figure. Perceptual completion in the Kanizsa
illusion is therefore modal. It is caused and expressed as a difference in the same modality:
brightness.

Amodal completion is completion of a spatial structure that is not associated with any
one modality. To quote Kanizsa himself [29]:

“Amodal completion refers to the completion of an object that is
not entirely visible because it is covered or occluded by something else.”

Amodal perceptual reconstruction can best be explained using the example shown in
diagram 2.2, taken from Kanizsa and Gerbino [29]. Figure A shows a complete gray ring. In
figure B, two halves of two circular rings are shown; or are they two parts of the same gray
ring? In experimental studies, subjects report the former: there are two distinct objects in
the scene. However, one could imagine that the two rings belong to one and the ring lacking
the two central regions. These regions can mentally be interpolated between the two semi-
circles. This requires active mental effort, and the interpolation is only a representation, it
has no perceptual clarity. One doesn’t see something that isn’t there, one thinks it.

Figure C is quite different from figure B. Most subjects do not even consider that there
are two gray semi-circles. They report a gray ring occluded by a white rectangle. Joining
the two semi-circles into one gray ring no longer requires an active mental process. Their
presence possesses a reality independent of the observer. Kanizsa and Gerbino call the
presence of the central parts in A modally present, those in B represented, and those in
C encountered. Amodal completion is reserved for the encountered presence of parts not
directly visible.

A A

Figure 2.2: The gray rings are: modally present (A), represented (B), or encountered (C).

To clarify what is meant by encountered presence I will give another example, shown in
diagram 2.3. In figure A a piece of a person can be seen. It is not hard to make a mental
representation of the lower body and legs of this person, but it is not apparent perceptually:
the missing part is represented, not encountered. Figure B shows the exact same partial
person sitting behind a desk. This time, the upper body is not seen as a separate piece,
but as the visible part of a whole, but partially occluded, person. The lower body does not
need representation, because it is encountered. The difference becomes apparent when the
following question is asked: “Is the person wearing trousers?” Given figure A, the answer to

this question would likely be something like: “What a strange question! The person has no
legs.”. Given figure B a more probable answer would be: “I don’t know, because I cannot
see the legs.” The presence of the legs is not evident in A, but assumed (encountered) in B.

A B

Figure 2.3: A piece of a person (A) and the visible part of a whole person (B).

The relevance of this phenomenon to our research is apparent. Reconstructive comple-
tion of data such as seen in figure 1.2 (chair in front of wall) resembles amodal perceptual
completion: we see the wall, and just know it’s behind the chair as well. It would be con-
venient if the cognitive process that causes the brain to encounter objects, such as the gray
ring or the person behind the desk, could be used to encounter the wall behind the chair (as
seen in figure 1.2) and complete it accordingly.

In the next three sections, two different theories concerning perceptual completion will be
discussed. In section 2.6, several arguments for and against both theories will be presented.
Section 2.7 will draw some conclusions: can these theories be used to construct a model on
which our program can be based? Before I elaborate on the two theories, a brief section on
image representation follows. The concepts introduced here will help to explain the theories
in sections to come.

2.3 Image representation

Suppose you have drawn figure A of diagram 2.4 in some graphics program on your computer.
This picture is taken directly from Dennett’s wonderful book Consciousness explained [16].
You are so convinced by its beauty (as apparently Dennett once was) that you want to store
it on some medium.

The first way you could do this is to simply print the figure (note that figure A is exactly
this printed version). Dennett calls this way of storing color-by-color, because color on the
paper is used to represent color on the screen!.

Another way is to save it is as a bit-map (a type of digital image), in which each pixel
is encoded by a number. This bit-map representation, which is sensibly called color-by-
bit-map, can be seen in figure B. Although it is a roughly continuous representation of the
image, interpretation of this data from bit to colour is needed before the original image can
be visualised on for instance the screen.

Yet another way of storing the image is by using a compression algorithm, which divides
the image into regions of the same color, and stores the bounds and color numbers of all

My apologies to those of you who do not own a color printer.

13

the regions in an archive file. This color-by-number representation could be visualized by
an image such as figure C.

It is important to note that color-by-color is the only directly visible image. The other
two will need further interpretation by a computer before a true color image can be shown
on for instance a screen. The concepts described in this section will be used throughout the

following chapters on the different theories explaining perceptual completion.

color-by-color color-by-bit-map color-by-number

IS

L5

5
B
o
iy

%
v
::
S
u
%
5
%
§
K
E

1 v
11110101115558 15 9315101 ETIARE G 11 11 70w
11 1SS BR Y At an s aa =5 dS5S 11 1128211 3
1111 8281115558939000304 18890 Bidasege 1111 11122
13732211 11388833812 30a3380355 44 4453 511
T1E5ES3RIRgIAI 0TS e a0 5455011111711
3115555 3093390033038 644 1455812111111
1915555903906 389,9)550 304088 | 12237 F7
£1111858500300303008965 555551 | 2400107
IR 3
i

4
1223101 10 4383
$1711 01 195A8ARERENE 1446 35E4 14 G4 45585555511 1211115
CEREGISGS1 11 =4

1

i

i
11 riEs2E e I14141E2EgEsEEE 1
Mgz v) S sag e
EEG V1 B Brsesesaaaaon |
EmEE A EIEre 1| 4111 1R LI 111 77
FEET MR 100 6100 1 BRETRR 2R 2800 T M 1

Figure 2.4: Representing an image

2.4 Filling in ...

There are two main theories that try to explain perceptual completion: the brain either fills
in or finds out the missing data?. In the next three sections I will explain the two theories.

Dennett has tried to brand ‘filling in’ the ‘F-word’ in cognitive science according to Pes-
soa, Thompson and Noé [32]. Apart from some strong arguments, Dennett makes the simple
but convincing observation that even those who defend the theory dare not use the word
‘filling in’ without scare-brackets. Therefore I will abandon the catch-phrase and call the
theory by its correct name: perceptual isomorphism or, more general, Gestalt isomorphism.
A brief overview of Gestalt theory will be given to place this last term in the right context.

Gestalt theory is founded on the philosophy of epistemological dualism. Theories of
visual perception can be separated into two classes: epistemological monism (naive realism),
or epistemological dualism (two-worlds hypothesis). Naive realism assumes that the world
we see is the objective external world itself. This is the intuitive understanding of vision
we accept from the earliest days of childhood. The problem with this view is that the only
visual input we have of the objective world is through our eyes. If the brain is the organ
of consciousness, then it can never see the world directly, but only indirectly through the
two-dimensional images sent to the brain by the eyes. Seeing the world indirectly implies
that we see a subjective version of the world instead of the objective world itself.

This is exactly the reasoning of the epistemological dualists such as Kant [30]. Their
theory states that we can not experience the world as it actually is, but only an internal
perceptual replica of the world. There are therefore two worlds: the external objective

2The slogan “Finding out versus filling in” was suggested by Marcel Kinsbourne at the ZiF conference
on the Phenomenal mind, May, 1990, Bielefeld.

14

world (the nominal world) and the internal perceptual world (the phenomenal world). The
phenomenal world is a virtual copy of the external world, constructed in our brain on the
basis of images received from the retina. These images are of course caused by light emitting
from objects in the nominal world. Therefore, there is certainly a causal relationship between
objects in the nominal and phenomenal world, allowing us to manipulate objects in the
nominal world through the phenomenal world.

Back to Gestalt theory. The German word ‘Gestalt’ literally means ‘shape’. ‘Gestalt
annehmen’ means ‘to take shape’. Gestalt theory states that organisms instinctively perceive
whole patterns and not bits and pieces. Whole patterns have characteristics that cannot be
perceived by analysing parts. Furthermore, this Gestalt may be perceived before the parts
comprising it. The encountering in section 2.2 is a good example of this. The entire gray
ring (or more accurately: its Gestalt) is encountered, instead of seeing the two semi-circles:
the parts comprising it.

The most important concept of Gestalt theory to our research is Gestalt isomorphism,
a subtle variation on Miiller’s psychophysical axiom [37] which states that the subjective
experience of perception can never be of a higher dimensionality than the neurophysiological
state by which that experience is encoded. More generally, this concept expresses the mate-
rialistic view that consciousness is dependent upon electro-chemical interactions within the
physical brain. Gestalt isomorphism is a subtle variation on this axiom, in that it demands
that the organisation of experience (the neural configuration) and the underlying psycholog-
ical facts (the perception) have the same structure [31]; the neural and the perceptual state
must have the same Gestalt.

Section 2.3 on image representations can be used to illustrate this. The image projected
on the retina is somehow represented in the brain as color-bit-map. Every pixel value® must
be represented in the brain. Gestalt isomorphism does not specify exactly how this should
be done though. It could be through neural firing frequencies, specific locations in a neural
structure, or any other physical variation possible in the brain. An added constraint is that
the structure must also be similar. Somehow the relative spatial locations of the pixels in
the image must be encoded in an equivalent structure in the brain. Neighbouring pixels
in the image (retina) should therefore also be relatively close to each other in the neural
structure.

How can this theory be applied to the perceptual illusions observed in images such as
the Kanizsa triangle or the gray ring? According to Gestalt isomorphism, the relationship
between the perceptual experience of the image and its representation in the neural substrate
must be structurally equivalent: the image is represented as color-by-bit-map. A pixel in the
bit-map that is not represented in the neural substrate cannot be perceptually experienced.
Reversing the argument: if a pixel is perceived, it must be encoded in the neural substrate.
Therefore, if a bright triangle is perceived, the bright pixels must be represented in the neural
matrix representing the image, by for instance firing frequencies. This is what is meant with
‘filling in’: the brain actively fills in (through neural activation) the bright triangle that is
not present in the stimulus. According to the isomorphists this simply is the only means by
which the brain can influence the perception.

A quick summary. According to Gestalt isomorphism, a perceptual experience (which
is phenomenal) must be encoded in the neural substrate (which is physical) of equivalent

3The word pixel is used for convenience, but receptor cell in the retina would be more accurate

15

structure and dimension. This is similar to the color-by-bit-map representation discussed
in the previous section. This is always true, independent of whether the information in the
percept was actually registered by the retina or not.

2.5 ... versus finding out

Dennett gives a different explanation for perceptual completion [17]. He tries to find analo-
gies between all the different ways in which an image can be stored in the computer and in
the brain, evaluating each on its plausibility.

The color-by-color (image A in diagram 2.4) is the most contrived, as it assumes that
the brain can somehow use real color to represent the image. Is there some location in the
brain that produces red, green, blue, or any other type of pigment? If so, where would
this pigment be used? Would it be sent to the retina to fill in certain parts of the retina?
Dennett does not think this is likely, and I think most of us will agree with him. A slightly
less graphic version could also be proposed. Maybe the brain doesn’t make true colored
pigment, but a not yet discovered substance (some chemical) that can cause color sensation
in the brain. Dennett brilliantly calls this figment. Figment doesn’t necessarily have to be
blue, although it does cause the experience of blue. Bright figment could be used to fill in
the brighter triangle in the Kanizsa triangle causing the illusion. Dennett also discards this
not very plausible figment as a figment of his imagination: “Down with figment!”

Color-by-bit-map seems to be a better contender to be the brain representation of a
color image. Like color-by-color, it still requires that the image is represented completely,
but does not specify how. Remember that this is exactly how the filling-in proponents see
it. The problem with this, Dennett says, is that all these encodings have to be ‘decoded’
somewhere, converting the representation back to ‘color’. And once the bits are decoded,
who would look at the actual color image? For whom are all the firing frequencies (to name
a possible encoding mechanism) decoded into actual color perception?

Over the last decade Dennett has become very good at answering these questions [16].
His response would certainly be: “There is nobody!” The data does not have to be neurally
represented in a continuous form, structurally equivalent to the image itself. Why would
the data have to be represented as a whole? There is no audience in the head that requires
a filled in and well edited movie. He calls this metaphor the Cartesian theatre, referring
to Descartes [19], who thought consciousness (the audience) and the physical brain (the
theatre) to be two different entities, living in different worlds altogether. The problem of
Descartes’ dualism is that, to stick with the metaphor, it is impossible for an audience to
watch a movie when it is playing in another world.

Therefore Dennett thinks that color-by-number is the most likely method by which the
brain represents images. He gives Marilyn-Monroe-covered wallpaper as an example. Once
you’ve seen one Marilyn, you simply know the other Marilyn-like blobs that aren’t as clear
must be Marilyns as well. You do not have represent them all in focus to perceive them
all. Dennett explains perceptual completion with this theory as follows: There is no need
to actively ‘fill in’ the missing data, since it is already labeled (blue, brighter, feathery,
Marilyn Monroe). The missing data simply acquires the same label as the surroundings.
Color-by-label might be a more accurate description. Once it has received this label there
is no need to make it explicit for the audience in the Cartesian theatre.

16

Dennett’s main argument against filling in is that it suggests that the brain is providing
something to the Self, whereas Dennett poses that the brain is not providing, but ignoring
the missing data; simply labeling it as its surroundings. In his own words: “Filling in theory

mistakes the omission of a representation of absence for the representation of presence.”

2.6 The debate

The two theories have been presented. It is obvious that they are quite different. One
assumes the brain represents retinal percepts as color-by-bit-map, the other as color-by-
label. Completion either takes place through actively changing bits in the bit-map, or
ignoring missing data and simply labeling it. Of course proponents of both theories have
read their opponents’ work and commented on it. In this section I will discuss some of the
arguments for and against both theories, including my own opinions throughout the debate.

Verification and falsification

In Pessoa and Neumans’ article, Why does the brain fill-in? [38], analysis of three cases
of filling-in are presented (brightness-, texture- and signal-filling-in). They discuss three
clinical investigations into the matter, all of which conclude that filling in takes place at an
early stage in vision. This of course is bad news for Dennett, as he supports a theory which
places perceptual completion on a higher level of vision (symbolic labeling). In a response
to this article three of the researchers whose research Pessoa and Neuman quote (Maddess,
Srinivasan and Davey) put some serious question marks behind this conclusion [46]. They
mention other more ‘Dennettian’ theories which could also explain the phenomena. More
importantly though, they think that Pessoa and Neuman try to explain all the three different
completion phenomena with the same filling-in theory: ‘We feel that more experimentation
is necessary before one can be sure that the same process underpins all of them.”

The previous paragraph is not really intended to prove who is wrong and who is right.
However, it does show that the filling-in theory is a theory which can tested. Actual neural
research can be done to verify or falsify the theory explaining the phenomena. Maybe the
intricacies of the different types of completion are not yet known, but at least they are
falsifiable within the filling in theory paradigm. Dennett seems to have posed a theory that
is hard to overthrow, but this is mainly because it does not make any positive or falsifiable
statements. Most of the conclusions Dennett draws are negative: There is NO outside
viewer, Marilyn Monroe does NOT have to be made explicit, the missing data is NOT filled
in. Even if this is true, it is hard to prove. Dennett does not provide us with a theory that
is firmly based on neural or cognitive research, as is the case with Pessoa and Neuman.

Single cell recordings

As stated, the filling in theory is a theory that can be tested; and tested it is! A variety of
researchers is doing a variety of researches that focus on trying to find neural proof for the
filling in theory. There is research on “Illusory contours and cortical cell responses”, on “ The
blind spot and receptive field dynamics”, on “Scotomata and receptive field dynamics”, on
“Texture filling-in and cortical cell responses”, and many more. Summaries of and references
to them all can be found in [32].

17

The main methodology of the research discussed above is based on single cell recordings.
Brains of subjects (usually macaque monkeys) are probed such that the activity of one
or several neurons can be displayed on an oscilloscope. Researchers can then compare the
activation of these neurons under different circumstances. The interesting test for perceptual
completion is to compare differences and similarities between neural activity in certain areas
of the visual cortex when the subjects are presented with either real edges, or illusory edges.
If the neural substrate is the same for both, this would support the filling-in theory. The
researchers do these tests and draw conclusions such as: “The cells respond as if the illusory
contours were formed by real edges or lines, and they respond to variations in the figure in a
way that resembles human psychophysical responses to the same variations.” This conclusion
is drawn by Pessoa et al. in [32], basing it on research done on single cell recordings in
the V2 area of monkeys. The V2 area is located in the extrastriate visual cortex and it
processes all submodalities of vision (motion, orientation, color and depth). I think this
conclusion is permissible, as it is an objective account of the observations. They continue
with: “Although making a link between single cell activities and perceptual phenomena is
problematic, the evidence here seems to suggest that the perceptual completion of boundaries
inwolves the neural completion of a presence, rather than ignoring an absence.” In my
opinion this link is too problematic. Single cell recordings can surely be used to explain low-
level phenomena such as retinal activity. Deriving a complex mechanism such as perceptual
completion from single cell recordings however is not valid, especially since the experience
of perceptual completion by macaque monkeys can not easily be determined objectively.

Even if it were possible to measure a perfect correlation between neural activity and
perceptual completion, it can still not be verified that the neural activity is the cause of the
completion. A similar case occurs in color perception. Although certain areas in V1 (another
area in the visual cortex) respond to different wavelengths of light, it is often assumed that
the actual perception of color happens in V4. To quote Ben Best [4]: “If V1 neurons respond
to wavelength and V/j neurons respond to color, V4 neurons would seem more likely to be
‘experiential’, since we experience color rather than wavelength.” Suppose that measuring
the edge detections of real and illusory edges in V2 was like measuring the wavelength of
light in V1, in which a response, but not a percept is being measured. The measurement in
V2 can certainly be interpreted as edge detection, but it is by no means certain if the edges
registered here are the actual perceptual content. The real perception of these edges, like
the perception of actual color, might very well be in V4 (although V3 is more likely in this
case). Without further investigation, it cannot be known whether the perceptual completion
in V4 is based on filling in or finding out. Therefore I think the correlation between neural
activity in V1 and the experience of perceptual completion (which, as mentioned, cannot be
determined that well) does not necessarily imply that the activity in V1 is the perceptual
completion.

The researchers themselves appear to acknowledge these problems, because, as Dennett
had noticed, scare-brackets are often used, and phrases as ‘seems to suggest’, ‘suggestive
evidence’, and ‘seems to depend’ are in abundance. Again, filling in theory can be considered
a good theory, because it has been frequently tested, yet not been falsified. On the other
hand, the researchers claim verification of the theory beyond the actual ‘verifiable potential’
of the research done.

18

Incorrect unification of modal and amodal completion

There is also one aspect of this research that I feel is overlooked by both parties: amodal
completion is very different from modal completion. This has also been noticed by Pessoa
et al. [32]. Whereas modal completion seems to really fool the perceiver (“I know the paper
isn’t brighter. But it sure does look like it. How strange!”), amodal completion seems to
have a more symbolic, representational character. Even though the gray ring and the legs of
the person are encountered, it still requires active mental processes to imagine the entire ring
or the trousers of the person. This brings us back to active representation, not perceptual
completion. The bright triangle does not require active mental processes. Even if we set our
mind to mnot seeing the triangle, we just can’t ignore it. This difference is so distinct that I
do not think it likely that the same type of filling-in or finding-out theory will explain both
in the same way. This is a shame, as all research seems to be aimed at modal completion;
amodal completion is simply neglected, maybe because it does not lend itself well to single
cell research.

Collaboration

I would like to end this section with a quote with another conclusion drawn by Pessoa et
al. [32], in which they justly state that collaboration between the different disciplines of
research is necessary to solve the problem.

“Without such collaboration, visual scientists run the risk of producing isolated facts that
do not contribute to an integrated understanding of perceptual completion, while
philosophers run the risk of ignoring important experimental and theoretical
studies that bear on the fundamental conceptual issues.”

2.7 Conclusion

The relevance of the cognitive research on completion, and more specifically amodal comple-
tion is clear. Let’s compare Kanizsa’s description of amodal completion with our research
goal, both repeated below.

Research goal (computer vision) versus Amodal completion (cognitive science)

The main goal of this dissertation will be:
Amodal completion refers
to hypothesize data
to the completion of an object
that is not visible due to occlusion;
that is not entirely visible because it is covered or occluded by something else.
the hypothesis being based on the surroundings of the occluded data.
based on filling in? finding out? other?

In this conclusion it will be argued whether the cognitive research can be useful in
implementing a completion algorithm.

It is apparent that the cognitive scientists and philosophers have not yet reached an
agreement as to how perceptual completion should be explained, although in my opinion

19

the fillers-in are on the winning hand. Unfortunately there is much left unexplained even
within their paradigm. Many fillers-in disagree on how the filling in process should be
explained. One theory for all phenomena? A different theory for different phenomena?
Active debate is interesting, but poses a problem for our research: it is hard to model a
system if it is not fully understood how the system works itself. Claiming that such a model
uses the underlying principles of the system would be futile. How could one prove that the
model is correct?

For the sake of argument let us suppose that Dennett is right. This would require
symbolic modelling of the images. Our program would have to be able to recognize walls,
chairs, houses etc. Even more knowledge about the world would be needed to give the
program a sense of continuity of objects: it should know that walls do usually not contain
chair-shaped holes. This level of symbolic reasoning in computer vision is still an idyll,
making the implementation of this symbolic reconstruction infeasible.

The main reason however, for not being to able to implement Dennett’s theory is due
to the requirements of the program. We are not looking for a brilliant computer that uses
symbolic reasoning to come to the conclusion that: “Yes, occlusion is taking place! There’s
probably a wall behind that chair.” We need a program that can explicitly visualize this
wall. Even if ‘finding out’ is the cognitive solution to occlusion, we will have to make the
missing data explicit in the image; we will have to fill in.

This brings us to the isomorphisists. They claim that encountered objects are actually
structurally encoded in the neural substrate. This sounds more promising, as it must be
theoretically possible to write a neural network of some sort that models our vision, including
the structural encoding of encountered objects. Then all we have to do is take the neural
encoding, decode it, and make it explicit in the image. I think theoretically is the key-word
here. Although the cognitive and neuro-scientists have some interesting theories, not many
explain the phenomenon on a neural level. Those that do are too basic to be applicable to
the reconstruction of an indoor scene in which occlusion is taking place. If it were known
the question still remains as to how we would implement this artificial neural network, let
alone decode its neurons into pixels in the image.

We can conclude that neither cognitive science, nor computer vision is ready for the
intricate task of application based modelling of perceptual completion. = Some low-level
modeling might be possible, but certainly not at a higher level that makes it usable for
a functional program that fits within the goals of the CAMERA project. Not all hope is
lost though; we will only need to shift our priorities to the results of the program, not
the underlying cognitive theory. This means that the program neither tries to model the
cognitive processes causing perceptual amodal completion, nor does it try to explain it. To
acquire a program that can hypothesize missing data I will therefore use more traditional
methods in computer vision. However, I will allow myself to use the cognitive aspects of
the problem as a source of inspiration. As we shall see, one of the main ideas in our research
is formulated very well by a philosopher (Lehar), not a computer scientist [34]: “This spatial
completion mechanism can be formulated on the assumption that the visible portion is taken
as a representative sample of the object as a whole. Non-visible portions (occluded areas)
are encountered by the principle of good continuation.”

20

Chapter 3

Image Acquisition

3.1 Introduction

As explained in section 2.7, the program will not be based on a cognitive model. In the
next three chapters the methods that have been used for completing occluded surfaces will
be presented. Before this can be done, a little more needs to be known about the types of
data that are being used, as well as the ways in which they are acquired.

First the general format of a digital image will be explained. Then the two types of
digital images used in this research will be discussed: range images and intensity images.
One of the benefits of working in an international research network is that different partners
can specialise in different areas. One of the partners, UK Robotics in Manchester, has some
high-tech sensors for measuring range and intensity data. All the images of the Bornholm
church have been provided this company. They use a K2T laser range scanner. Other
images have been acquired using a REVERSA laser range scanner at the Vision Lab at the
University of Edinburgh. Both scanners will be discussed in greater detail in section 3.4.

3.2 Digital images

Computer vision methods use two- or three-dimensional signals to interpret the spatial con-
figuration of the environment in which the signals were acquired. This multidimensionality
needs a multidimensional way of representing the data. 2D visual information is usually en-
coded in digital images. Digital images are 2D matrices in which every matrix-element (also
called a cell or a pizel, which is short for picture element), has a row and column orientation.
The location of a pixel can be specified by two integer coordinates ¢ and j indicating row
and column. This is called the ij-domain. Every pixel has a certain value which represents a
sensed physical quantity. A large matrix of this type is called a digital surface, because it is
the quantised version (in z,y and z direction) of an analogue surface z = f(z,y). In machine
vision digital surfaces are more commonly known as digital images. In the following section
two types of digital images will be described: intensity images and range images.

21

Digital image

205 195 223 223 235 245 250 255 255 230
127 191 223 239 247 253 254 255 255 205
185 185 185 160 159 169 174 175 160 140
16 46 46 56 146 146 156 166 153 135
43 53 53 63 153 153 163 173 153 150
40 46 55 60 150 150 160 166 150 15
25 25 53 54 55 55 62 61 60 49
13 23 23 23 23 43 43 43 53 53
15 16 16 16 16 45 45 45 55 55
0 5 65 5 15 45 35 25 25 25

Intensity image Range image (xyz-form)

Figure 3.1: A very small digital image, interpreted as an intensity image or as a range image.

3.3 Intensity images

In intensity images, the z-value of the digital image is interpreted as light intensity. Intensity
images are typically acquired by cameras, although other photosensitive devices can be used.
The incoming light, after being directed through an arrangement of lenses, hits the image
plane, which is a rectangular grid of photo-sensors, each measuring the light intensity. All
these intensities are stored, resulting in the intensity image.

Intensity images look like, and basically are, black-and-white photographs, the big dif-
ference being the digital format. Indeed, modern cameras are often digital, and the process
explained above applies to them, with the additional feature that they record the intensities
of the light at different wavelengths and so acquire colour images.

The great benefit of intensity images is the low price at which they can be made. Digital
cameras can be bought in most hardware stores at affordable and still rapidly decreasing
prices. Although extracting 3D information from intensity images is not an easy task, their
cheap price certainly makes the research worth while.

3.3.1 3D information in intensity images

In computer vision, knowledge about the three-dimensional arrangements of objects in the
scene is often vital. Intensity images are not very good at encoding 3D information. Each
pixel represents a light intensity. Although the direction in which this intensity was measured
is known, the distance at which it was measured isn’t. For a single pixel it is therefore
impossible to determine where in 3D space a certain intensity was measured.

Although 3D information is not encoded directly in the intensity image, it is possible to
derive it using some computer vision methods. One method to infer 3D configuration from

22

intensity images is to analyse texture on surfaces, as done in [13]. Texture is distorted in 2D
representations of 3D scenes. It compresses towards the vanishing point. For instance, if a
chess-board is tilted, the squares at the front appear larger than those at the back. This can
be used to determine the original 3D configuration. The benefit of this method is that it
requires only one intensity image. Unfortunately, the accuracy is quite low. This is because
the original pattern is often unknown, and assumed to be repetitive. These assumptions
might not always be justified.

More often, multiple images are used. Stereo vision takes two or more images of the same
object or scene, but taken from a different angle. After spatial correspondence between pixels
is established, differences between their location in the images provide information about
their location in 3D space [47]. Another method is based on depth from motion, using an
image sequence. This technique uses the principle that closer objects appear to move faster
than objects that are further away. This technique has been used in for instance [10].

Although the hardware of these methods is easily configured (1 or 2 cameras is basically
enough), they invariably entail solving the complex problem of establishing correspondence
of pixels or features between images. This makes applied visual processing more difficult and
also less accurate, because pixel and feature correspondence is sometimes hard to determine.
Inaccuracies in determining this correspondence also leads to inaccuracies in determining the
3D configuration.

3.4 Range images

Range images are much better at encoding three-dimensional properties than intensity im-
ages. In range images, each pixel encodes a measurement of the distance from the sensor to
the object measured at that pixel. For this reason they are also known as depth images or
surface profiles. Because the exact direction in which the measurement was made is known,
as well as the distance to the object in this direction, the location of the object (at that
pixel) in 3D space can easily computed. Because range images are 2D digital images con-
taining information about positions of points in 3D space, they are also referred to as as
2.5-dimensional images.

Range images are extensively used by the CAMERA group (and computer vision in
general) because of their efficiency in encoding 3D properties. In this research the accurate
range images will be used to analyse 3D configurations of shapes in the image, whereas the
intensity images will be used to analyse the texture on these surfaces.

In the next three paragraphs some issues concerning range images are discussed. In
section 3.4.1, two different classes of sensor are discussed. Section 3.4.2 discusses two different
methods of scanning a scene. The last issue, the way in which the range data is represented,
is discussed in section 3.4.3. The goal of these sections is to provide the reader with a better
understanding of our data, as well as motivating the choice for writing a new segmentation
algorithm.

3.4.1 Methods of acquisition: triangulation or time-of-flight

Acquiring range images is possible using a whole array of different sensors, for instance
ultrasound (e.g. fetal images) or laser projection. The most common and reliable methods

23

of acquiring depth images with laser projection are using time-of-flight or triangulation. The
images in this research have been acquired by these methods, so both will be presented.

The laser-scanner in the Vision Lab in Edinburgh uses structured light and triangulation
to calculate the distance measures. In the structured light method patterns (grids, stripes,
elliptical patterns etc.) are projected onto an object. The image of the pattern on the
surface is recorded at a different angle by a camera. Surface shapes can then be deduced
from the distortions of the patterns that are produced on an object’s surface. Knowing rele-
vant camera and projector geometry, depth can be inferred by triangulation. Triangulation
uses the fact that the displacement of the projected line from the mid position is linearly
proportional to the object depth [49].

The images provided by UK Robotics were acquired with a laser scanner using the time-
of-flight method. The laser scanner consists of three functional components: a transmitter,
a scanning mirror and a receiver, shown in figure 3.2. The basic idea is to transmit a laser,
aim it at an object with the mirror, and measure how long it takes for the laser-beam reflect
back to a receiver. The time this takes is converted to a measurement for the distance from
the object to the sensor.

Object
Scanning
mirror unit
\\ Amplitude output
(intensity)
Transmitter Receiver
Reference beam Phase output

(range)

Figure 3.2: The main components of a time-of-flight laser scanner.

The transmitter emits two laser beams to the receiver. One directly as a reference, and
another towards the scanning mirror. To aim the beam at different locations in the scene,
the sensor is either mobile, or uses mirrors that can rotate, reflecting the beam in different
directions. In the latter case there are often two mirrors, one for horizontal and one for the
vertical orientation. The UK Robotics scanner uses the latter technique.

The laser-beam emitted by the sensor will reflect off some object in the scene. Through
diffraction the laser beam reflects in many directions, one of them being back towards the
mirror. This beam is projected towards the receiver. There are two ways of measuring the
difference in time-of-flight between the reference and the reflected laser beam. One is to
compare two very short pulses, the other is to use a continuous laser beam whose amplitude
or frequency is modulated and to measure the phase difference or beat frequency. The phase
difference between the received beam and the reference beam gives a direct measurement
of the time-of-flight. Because the speed of light (3 * 108m/s) is known, the distance to
the object can be computed once the time-of-flight is known. The use of a phase-sensitive
detector can give a more accurate indication of time-of-flight, and hence distance, than a

24

pulsed system, in which a direct time measurement is made on an intermittent burst of laser
energy. The accuracy of these systems is of the order of Imm. An extra benefit is that the
amplitude of the received waveform is proportional to the intensity of the received light.
This means that this laser scanner can make range and intensity images at the same time,
with perfect spatial correspondence between range and intensity at each pixel!

Scanner specifications

‘ Scanner ‘ sensor method scanning method | accuracy
K2T time-of-flight spherical 1mm
REVERSA | structured light and triangulation orthogonal 0.01lmm

3.4.2 Methods of scanning: orthogonal or spherical

A feature of laser range sensors is that they are usually fixed structures. They can only
measure the distance in one direction. This is because the actual transmitter can emit the
light (the laser) only in one direction, giving us one measurement in 0D space. In order to
acquire the desired 2D digital image the sensor will be have to moved around in the x and
y directions in able to measure multiple distances in a 2D image plane. There are two ways
of doing this.

The first is by using a flat-bed scanner. This type of scanner is fixed on a structure that
can move the sensor to any point in a given zy-plane. The direction in which the distance (2)
is measured is orthogonal to this plane. This ensures that all distances are measured along
parallel beams. If these beams are placed at consistent intervals in the z and y direction
(sampling at positions (i, 7)), a digital range image is acquired. This is shown on the left-
hand-side of figure 3.3. Note that the sensor movement is only shown in the z-direction for
clarity.

Sensor Sensor

movement

&
&
@O

o

Object Object

Figure 3.3: Orthogonal (left) and spherical (right) scanning. Only view from top is shown
for clarity.

As mentioned earlier, the hardware involved in acquiring intensity images can be very
simple. The flat-bed scanner on the other hand is a large machine that needs meticulous
calibration and fine-tuning before the increments in z and y direction can be assumed to

25

be constant. Furthermore, its cost is over 100 times that of normal cameras. Although it
gives range images of very high quality, the laborious nature and cost of the technique is a
draw-back.

The other scanning method is spherical scanning. The 7 and j positions of the range
image do not correspond to increments in the x and y plane, but to angular increments in
the vertical and horizontal directions. This means that the sensor stands at a fixed point in
the scene. It now changes its pan and tilt to scan the environment (see figure 3.3). The UK
Robotics scanner scans a full 360° in horizontal direction (pan), and 63° in vertical direction
(tilt), with increments of 0.045 degrees in both directions. This results digital range images
of 1400 rows x 8000 columns.

Because orthogonal scanning can only scan in a predetermined plane they are not well
equipped to scan rooms in buildings. Spherical scanners allow a full turn of the camera,
giving the entire 360° view. For this reason UK Robotics has used spherical scanning to
scan the inside of buildings.

3.4.3 Methods of representation: 2.5D or 3D images

Range images can be represented in two formats, the r;;-form which is 2.5D, or the zyz-form
which is in 3D. The r;;-form is the digital image version of the distance measures. It is the
2D matrix which has been discussed in the previous section.

Because the sensor location is known (or a relative position in space is specified), the
range information can easily be warped into 3D space (see the next section for more in-
formation). The z and y coordinates have a relationship with the ¢ and j position in the
matrix, while the z coordinate is related to the value of the pixel at position (4,7) in the
range image. The 3D-form (or zyz-form) of the data is a list of 3D points. Every point has
a z,y and z coordinate indicating its position in a 3D coordinate space. This form is more
general, since the list does not have to be ordered, as is the case with the r;; form. For
this reason, any range image in r;;-form can be converted directly into the zyz-form (given
the sensors’ location and parameters), while the opposite is not necessarily true [2]. Given
this description and the definitions below, the difference between the left and right image in
figure 1.2, repeated here in figure 3.4, can be fully understood.

Missing data

Figure 3.4: A range image in 2.5D (left) and the same image in 3D (right).

26

Terminology

2.5D range image: A range image represented by an ordered 2D ma-
trix containing unscaled range values. Also called r;; range image,

or range image in r;;-form

3D range image: A transformed 2.5D range image represented by a
cloud of unordered points in real 3D space. Also called zyz range

image, or range image in zyz-form

The way in which the r;; image is converted into a cloud of points in 3D space depends
on whether the scene has been scanned orthogonally or spherically. The formulae for both
cases are given.

Because the sensor of an orthogonal scanner moves in the zy-plane (also see figure 3.5),
and measures the distances with orthogonal beams, the position of the sensor in the plane
is an exact measure for the x and y coordinates of every point in the 3D. Because x and y
are sampled at consistent intervals (at positions (i,), they are linearly dependent on ¢ and
7. The z coordinate will only depend on the distance measure. This allows us to use very
simple linear formulae for converting the r;;-form into the zyz-form [2]:

T =az+ Sz
Y =ay + syl (3.1)
Z =0z + 8T
Here, the a-values are offsets, and the s-values distance increments (scale factors); both
are scanner parameters. Without these parameters a correct conversion from 2.5D to 3D
cannot take place.

Point (x,y,z)
e
Point (.2 Y @
! . X
! Tilt angle
X //"ax\g | J
071 ‘
Wy
| Pan angle

Figure 3.5: Orthogonal (left) and spherical (right) scanning geometry

In the case of a spherical scanner, the relationship between (i, j) and (z,y) is not linear.
For this reason, the spherical sampling method is known as 'non-uniform’ [7]. Using figure
3.5 as an illustration, formulae 3.2 can be derived, referring to [2] for a complete explanation
of this derivation. For the conversion of a spherically scanned range image from r;;- to zyz-
form the formulae in equation 3.2 are used. Again the a-values are distance offsets. s, is a
scale factor, and sg, and s, are respectively elevation (tilt) and azimuth (pan) increments.

27

T = ag + s,1; tan(jsg)//1 + tan®(isg) + tan?(jsg)
y = ay + s,7ij tan(isg) //1 + tan?(isg) + tan?(js,) (3.2)
2 =a, + s,;1i;/\/tan>(isg + tan®(jsy)

3.5 Summary

In this chapter, some basic image formats have been presented. A digital image is a 2D
matrix in which all the cells (also called pixels) have a certain value. Intensity images are
digital images in which this value represents a certain light intensity. They are basically
black-and-white digital photographs, which can be acquired using a standard digital camer-
a. In range images, the values in the digital image represent a certain depth measurement.
Range images are therefore also known as depth images. They can be acquired by triangula-
tion or time-of-flight sensors. The method of scanning, which in this research has been either
orthogonal or spherical, influences the geometrical properties of the range image, especially
on the visualisation of a range image in 3D. Because the direction in which a measurement
was made is known, as well as the distance from the sensor to the object measured along
this direction, every pixel in a 2D range image can be represented as a point in 3D space.
In general, this method of representation is preferred, as it eliminates the geometrical dis-
tortions that are found in its 2D counterpart. The 2D range image is often referred to as a
2.5D range image, as it encodes 3D information in a 2D format.

28

Chapter 4

Image Segmentation

4.1 Introduction

An overview of the completion algorithm

The (incomplete) data has been acquired. It is time for processing! This section will give
a brief overview of the processing chain which will be discussed in more detail next three
chapters.

Diagram 4.1 shows the three steps that have been implemented to complete missing data
in images in which occlusion is taking place. The up most image in the diagram shows a
cloud of 3D points, seen from above. The sensor measured the data from the top of the
image. Although this data has (obviously) been made up, it will help to think of it again as
a chair standing in front of a wall, seen from above. The part of the wall that is missing is
labeled ‘occlusion’.

Original data o o o

e o o o ¢ (Occlusion ©® © o o o

Segmentation \\KM/

Occlusion *—*—o—o—

Completion w

o0 0 0 -0-0-0--0-0-0 0 0o o o

Hypothesized data

Figure 4.1: The processing chain

The first step towards hypothesizing the entire wall is to segment the image: find simple
geometric surfaces that describe the data well. The reason this is done this is that occlusion
is an unknown part surrounded by known parts. The goal is to extrapolate the known
parts into the unknown parts. Segmentation will provide the completion algorithm with the

29

generalizations of the data points, needed to extrapolate into the unknown occluded area.
For the data in the diagram this leads to a segmentation of the data into two planes and a
cylinder (all seen from above).

The next step is to complete the 3D configuration of the occluded surfaces. This is
discussed in chapter 5. The algorithm locates coinciding surfaces (e.g. coplanar planes, as
the two parts of the wall are). The main idea is that these coinciding surfaces might be
instances of the same surface: the two visible parts of the wall actually belong to the same
walll Using the known parts of the wall, the occluded part of the wall is then completed by
extrapolating the plane into the occlusion, and placing data points on this plane, as can be
seen in the bottom image in diagram 4.1.

The last step is to complete the intensity texture on the texture-less completed surface,
which is discussed in chapter 6, but has not been depicted in diagram 4.1 for reasons of
clarity.

4.2 Noise reduction

The first step in image segmentation is to reduce the level of noise in the image. In digital
images many types of noise can arise, and the best type of noise removal depends on the
type of noise. Therefore we will first discuss the characteristics of the noise in the images
used. The appropriate method for removing the noise will be presented afterwards.

4.2.1 Noise characteristics

First of all our images suffer from noise that is inherent to digital sampling of an analogue
signal: quantisation noise. Because the continuous signal is stored as one of a finite number
of digital values, information is lost. The 16 bit/pixel format in which the image is stored is
more than sufficient to store the ranges and accuracy of our data, so the quantisation noise
is negligible.

Of much greater influence is noise that arises through imperfections in the sensor’s cal-
ibration and measurements. The measured value I(i,) at pixel (i,j) is assumed to be a
combination of the true pixel value I(7,j) and a certain noise signal n(i, j).

1(i,§) = 1(i,§) +n(i,) (4.1)

One major cause of noise in our range images is that the laser beam is not a perfect
line, but a cylinder with a small, but noticeable diameter. At depth discontinuities, part of
the laser beam might hit the further object, while the other part hits a closer object. This
side-effect is shown in figure 4.2. It is called the “mixed point problem” [50].

Experience has shown that the measurement will usually be somewhere between the two
distances, but sometimes the values are completely unpredictable. This causes impulsive
noise, but only around depth discontinuities. The impulsive noise can be modelled by a salt-
and-pepper model, shown in equation 4.2, in which [is a parameter controlling how much
of the image is corrupted, and 7, and 1,4, determine how severe the noise is. = and y
are random variables, ranging from 0 to 1. This model predicts % of the measured data is
equal to the actual value, whereas 1 — 1% is distorted by a noise signal. The strength of this
noise signal ranges between n,,,;, and 7,,,,. The actual value of the noise is determined by

30

Figure 4.2: Noise can be caused by the fact that the laser is not a perfect line, but a cylinder.

the random variable z. The fact that the specific location of this impulsive noise is known
(around depth discontinuities) will be very useful in its removal.

i { 1, 4) <l e (4.2)

Isp(zaj) Nmin + y(nmaz - nmin) z>1
In areas where there are no depth discontinuities the noise is assumed to be Gaussian
[49]. This means that n(i,j) is modelled by a white Gaussian zero-mean stochastic process.
This model is shown in equation 4.3, in which N(0,¢) is a normal Gaussian distribution with
mean 0 and standard deviation o. This time, every pixel is distorted with a noise signal.
The values of the noise signal are distributed symmetrically around zero with standard
deviation o. Closer inspection of equation 4.3 shows that the actual pixel values will then
be distributed symmetrically around their real values. This is what can be expected from
high-quality sensors.

Iys (i, 5) = 1(i) + N(0,0) (4.3)

4.2.2 Choice of filter

After analysing the features for the noise, the right methods have to be found for removing
it. There are a multitude of ways for removing noise. The trick is to find the one that
maximises noise reduction, while still retaining the useful content of the original image.
This is hard, because noise-removal often leads to image blurring, and thus information loss.
The more you smooth, the more information gets lost.

Because the method for removing the impulsive noise depends on techniques that have
not been discussed yet, it is postponed until section 4.3.1. It must however be mentioned
that this noise removal only takes place around depth discontinuities. This is perfect, as
this is the only place where impulsive noise is to be expected!

As to the Gaussian noise: In [27], Hurt and Rosenfeld compare five methods for removing
Gaussian noise in three-dimensional images. They find that, although computationally
attractive, median and mean filtering do not retain the image content very well due to
image blurring. Selective averaging performs better, but nearest neighbour smoothing and
maximum likelihood smoothing provide the best noise removal /information retention trade-
off. Because the images can be quite large the most efficient one is chosen: nearest neighbour
smoothing.

Nearest neighbour smoothing is a combination of median and mean filtering. In both

cases a window is used. A window is an area of a certain size (often square, e.g. 3x3 pixels) in

31

the image. It is centred around the pixel of interest. The intensity or range at all the pixels
in the window (the central pixel’s neighbours) is measured. In the case of mean filtering
the central pixel’s intensity or range is set to the mean value of all its neighbours. Median
filtering uses the median value instead of the mean. Nearest neighbour smoothing combines
these two by taking the k neighbours whose values are closest to that of the central pixel.
It then sets the value of the central pixel to the mean of those k pixels.

Of course k should be a fixed number throughout the smoothing procedure. A good
choice is to predetermine k as the number of neighbours who would be on the same side
of the neighbourhood as the central pixel if a straight edge ran through the neighbourhood
[27]. For our window of 3 x 3 pixels this yields a value of k=5.

4.3 Surface characteristics

The final goal of the next few processing steps is to obtain surface patches: clusters of
points (pixels) that can all be described by the same concise function (see the terminology
box). Fitting surfaces to arbitrary patches of points would not be efficient or accurate, so
we will have to find ways to describe each individual point, and cluster points that have
approximately the same characteristics. These are called surface characteristics, because
they give us an idea to what kind of surface the point might belong. Sections 4.3 and 4.4 are
dedicated to clustering pixels with similar shape characteristics. All the information gained
in this process will be compressed into a simple surface description in section 4.5.

I think Besl summarises it very well in Chapter 3 of [3]: Computing surface characteristics
for pizel grouping purposes is the first step toward the final goals of object recognition and
image understanding.

Terminology

(Geometrical) Surface: A parametric description of a continuous
function in 3D space. This research is limited to simple special
cases of implicit second order polynomials (see section 4.5) such as
planes, cylinders and spheres.

Region (or patch): A group of pixels in the 7;; image. In our algo-
rithm, these groups are acquired through region growing (section
4.4) and surface growing (section 4.5.3).

Surface patch: A region in the r;; image of which all the pixels are
represented by the same surface.

4.3.1 Neighbours

A very useful concept in pixel grouping is being neighbours. Usually, two pixels are considered
to be neighbours if they are close to each other in the ij-domain. Often a window of certain
size is specified (3x3, 5x5, 7x7, etc.); all the pixels within the window are defined to be
neighbours of the pixel in the centre of this window. Hence the odd number x odd number
window-size.

32

When working with orthogonal scanned data, this is a justified assumption since there
is a linear relationship between 7,j and z,y. This means that if point C is twice as far
from point A in the ij-domain as B is, the same relationship will hold in the zy-domain.
Neighbours could be defined as being n cells apart from each other in the ij-domain. The
same definition could be obtained in the zy-domain by scaling n with the scaling factors
mentioned in 3.4.2.

Unfortunately, in spherical scanned data there is no linear relationship between i, j and
z,y. Defining neighbourhood relationships in the ij-domain is not justified anymore, because
a distance of n cells in the ij-domain represents different distances in the zy-domain, not
linearly dependent of n. Also see formulae 3.2, they are clearly non-linear. Not being able
to define being neighbours in the ij-domain is an inconvenience, but does not introduce any
serious theoretical problems.

In this research, the neighbourhood relationship is determined using only the zyz-form
of the range data. Doing this alleviates having to deal with any geometric distortions the
r;j-image might introduce. Surprisingly, most research seems to ignore this problem com-
pletely, probably because working in the xyz-domain is conceptually and computationally
harder. One of the motivations for writing this segmentation algorithm was the lack of any
available pure 3D (instead of 2.5D) segmentation algorithms.Another advantage is that the
z component is also included in our distance measure, allowing us to determine the real
geometric distance between two points, not only in the zy-domain.

The algorithm takes one parameter: the mean number of neighbours per point. 8.0 has
proven to be a good value (and also nicely resembles the number of neighbours in a standard
3x3 window). This means that, although the number of neighbours may vary per point, the
overall number will average out to 8.0 neighbours per point.

Given this parameter, a distance threshold is computed. Points that are less than this
distance threshold apart from each other are classified as neighbours. See figure 4.3 for
clarification. This figure shows a 2D case, in which the circle is the distance threshold. This
idea can easily be extrapolated into 3D, using a sphere in stead of a circle. The threshold is
computed such that the total number of neighbours divided by the total number of points is
approximately 8.0. Every point keeps a list of all its neighbours, so they have to be collected

only once.

o Pointofinterest ©

Neighbour L
o .
; Not neighbour O
L ‘ o Distance
S threshold
\\\\v /»//, O
o O
O

Figure 4.3: Determining neighbours using the distance threshold

33

Section 4.2 on noise removal is now briefly revisited. Points that have no neighbours are
not close to any other point and are obviously floating around somewhere in mid-air. This
is typically the kind of point that arises from measuring the range at a depth discontinuity
with a cylindrical laser-beam. For this reason these points are discarded as noise. They are
not used in any further computation. Image 4.4 shows exactly which points in the image
have no neighbour, and are therefore discarded as noise. This takes care of almost all the
impulsive noise! Note that this technique can only applied in the xzyz-domain (instead of ij
or zy), because the z-component is causing the trouble.

20 R
40+
60 - S

a0 - ™ 4

200 -‘, " " \ "

50 100 150 200 2350 300

Figure 4.4: Points without neighbours

4.3.2 Surface derivatives

The neighbourhood relationship is useful for defining proximity, but it gives us no indication
of the shape the area around a certain point may have. Because surfaces should only be
fitted to sets of points of the same shape, shape descriptors such as surface normal and
surface curvature will also be used. These will be discussed in sections 4.3.3 and 4.3.4
respectively. Before they can be derived the surface derivatives will need to be computed, a
process explained in this section.

To give an explanation of surface derivatives the description of a digital surface is rewrit-
ten into the parametric form.

x d(u,v)
S=LZuv)eR®: | y | =] e(w,v) |,(u,v) eDCR? (4.4)
z f(u,v)

This formula is basically a formal rewrite of formulae 3.1 and 3.2. This formula states
that the Z function is a point in continuous 3D space, consisting of components z,y and z
(the zyz-domain). These are in turn described by three continuous functions d(u,v), e(u,v)
and f(u,v). These functions are exactly those given in formulae 3.1 and 3.2. u and v are
elements of a certain continuous domain in 2D space. This has been called the zy-domain
up till now.

If S is a smooth surface, and the functions d(u,v), e(u,v) and f(u,v) all have continuous
first and second order derivatives the following can be defined:

34

. oF . oF

Ty (u,v) = Pu Ty (u,v) = 0 (4.5)
. 0%z . . 0%z . 0%z
Ty (u,v) = 92 Zuw (U, V) = Byy(u,v) = 5udn Ty (u,v) = 902 (4.6)

Think of the first order derivatives as representing the rate of change of the surface
in either the z and y direction. In figure 4.5 a smooth surface in 3D space is shown.
The mapping on a 2D plane (z,y or u,v domain) shows us in which directions the partial
derivatives are taken. In figure 4.5, ¥, is zero, and &, is some negative vector. Along the
v-axis, the surface approaches the ground plane. In other words, the function of the surface
is decreasing in the direction of v. This is why tangent x, in the direction of v at point z is
negative. Because the function in the direction of u at point z is not changing, derivative z,,
is zero. The second order derivatives are harder to visualise, but they are the rate of change
of the rate of change of the surface: how fast is the surface changing. In the figure, &, is
zero (there is no change in the derivative in the u direction), and #,, is some negative value

(the derivative is becoming even more negative in the v direction).

Figure 4.5: Surface derivatives

Computing these derivatives in real digital range images is tricky business, because they
are very sensitive to noise. A small deviation in measuring the range can lead to very large
deviations in the derivatives. Therefore a technique has been used that smoothes the data
to estimate the derivatives at each of the points.

The basic idea is to first compute a continuous differentiable function that represents
the given points well. This function is then differentiated and its derivative at the point
of interest is determined and considered to be a representative of the actual derivative
at that point. The method that has been used for this is based on a local least squares
surface model using discrete orthogonal polynomials. It follows exactly the process of fitting
(by least-squares) a continuous surface (consisting of discrete orthogonal polynomials) to
the points and computing the derivatives of this surface as a representative of the actual
derivative. A mathematical summary of this method is given in Appendix A.

35

Interesting practical features of this method include the possibility of implementing it
using convolution. Convolution is very efficient: it has no real impact on the overall com-
putation time of the program. The method also smoothes the data a little to cope with the
large influence noise has on the derivatives.

4.3.3 Surface normals

The surface normal (or Unit Normal Vector) is a unit vector that is orthogonal to both first
partial derivatives (the tangents to the surface in z and y direction), and can therefore simply
be computed by normalising the cross-product between the two derivatives. As depicted in
equation 4.7. The surface normal is also depicted in figure 4.5.

= ﬁ (4.7)

4.3.4 Gaussian and Mean curvature

To cluster points that are of the same shape, methods will have to be found with which
the local shape of the surface at that point can be determined. That is, given a point P on
the surface, determine how the surface normal vector 7 changes as on some tangent curve
passing through P.

The normal curvature k, is the directional derivative of 7. Think of it as rotating a
plane around the surface normal. A continuous surface will intersect the plane at each
angle. k, can then be computed by taking the derivative of the function in this plane (on
the intersection). Note that k, can have infinitely many values, depending on the orientation
of the plane. k; and ky are the maximum and minimum of all these values. They are called
the principal curvatures, and are always perpendicular (except for umbilici when k;=k«>).

Surface normal

Tangent 2
Tangent 1

Figure 4.6: The principal curvatures

A small example is given in figure 4.6. Here a cylinder can be seen. At a certain point,
the surface normal is drawn, as well as two tangents to the cylinder at that point. Here the
tangents projected onto a plane that is rotated around the surface normal can be seen. The
normal curvature k, can be computed by taking the rate of change of the tangent. The two
tangents in the figure have not been chosen randomly: Tangent 1 represents the direction
in which the rate of change of the normal has the highest value (zero), whereas Tangent 2

36

represents the lowest rate of change (some negative value). Their values are k1 and kg, the
principal curvatures.

Although the principal curvatures are useful descriptors of surfaces, they lack one im-
portant feature: view-point invariance. The values of the descriptor change when the image
is viewed from another location and angle. Gaussian and Mean curvature do incorporate
this feature, and can be computed as follows':

Gaussian curvature: K = K1 * K2 Mean curvature: H = (k1 + Kk2)/2 (4.8)

It is customary to threshold and combine K and H such that different classes of surface
shapes arise [11]. Two thresholds are defined, 7x and 7. Usually, 75 is predefined; a
sensible threshold for K can be computed from from 7g using formula 4.9, discussed in [9].
The signed values of K and H are then computed using the two formulae in 4.10.

Tk = T * (TH + 2 *x maz||H (z)||) = € Image (4.9)
>0 if K>71x >0 if H>r71h

sign(K) =< =0 ifrx <K <7g sign(H)=<¢ =0 ifrg <H<rTH (4.10)
<0 ifK <71k <0 ifH<TH

The signed curvatures are then combined to define the nine surface classes shown below. If
a pixel has a negative signed mean curvature, and a signed Gaussian curvature of zero for
instance, it is likely that this pixel belongs to a convex cylinder.

H ¢) 0 ’
Saddle ridge Ridge Peak
Minimal surface Flat None

0
Saddle valley Valley Pit

+

Figure 4.7: The HK surface classification

1 Although this computation gives a better feel for the Gaussian and Mean curvature, they are actually
computed in a slightly different way, bypassing the principal curvatures. Computing the curvatures directly
from the derivatives is less intuitive but more efficient. A mathematical summary is given in Appendix B

37

Summarising the whole method of surface classification.
1. Compute derivatives, section 4.3.2.
2. Compute principal curvatures k1 and k2, see Appendix B.

Compute Gaussian (K) and Mean (H) curvature, equation 4.8.

- w

Define threshold 7y and compute 7k accordingly, equation 4.9.
5. Compute the signed curvatures using 7y and 7x, equation 4.10.

6. Combine the signed curvatures to define the 9 surface classes, table 4.7.

4.4 Region growing

Now that some of the features of each of the points in the image have been determined, it is
time to merge them into patches of points that all have the same characteristics. This will
hopefully provide us with large homogeneous patches to which surface fitting can be applied
well.

The region growing algorithm is based on a very simple breadth-first-search queue. It
starts off with a certain point and pushes it on the stack. All its neighbours are tested
for equality based on requirements that will be discussed in the next three sections. If a
neighbour meets all these requirements, it is considered to belong to the same region and
pushed on the stack as well. This means that when it is popped from the stack, its neighbours
will be tested for equality as well. Of course a record is kept of all the points that have been
in the stack, because they all belong to the same homogeneous region. When the stack is
empty the region growing (for this region) is finished and a new point (that does not already
belong to a certain other region) is pushed on the stack. This goes on until all the points
belong to a certain region. After the entire region growing process is finished, regions that
are considered too small (< 50 pixels) are merged into surrounding larger regions.

4.4.1 Neighbours

As has just been explained, points will only be added to a region if they are close enough to
this region, that is, one of their neighbours must be part of this region. This allows us to spot
depth discontinuities, a process usually done by edge-detection algorithms. This method is
far superior, because it works in the 3D domain, not in the geometrically distorted 2.5D
range image. A simple example of detecting a depth discontinuity can be seen in figure 4.8

4.4.2 Difference in normals

Another feature that is useful is the similarity in normal. If the angle between the surface
normals of two neighbouring points is large, it is not likely that the two points belong to the
same continuous surface. This happens at corners and roofs, which are called fold-edges.
Therefore they are not considered to belong to the same region. A reasonable threshold is
7.5 degrees, which is larger than the threshold used in similar methods such as described
in [40]. This large threshold had to be chosen to cope with the amount of noise in the
Bornholm church dataset. A simple fold-edge detection can be seen in figure 4.8. In this
image, the normals are depicted by arrows.

38

4.4.3 Curvature

A very basic demand is that the surfaces are roughly of the same shape. Cylinders might
smoothly meet a plane with tangent continuity (their normals are the same at the intersection
of the two surfaces). Neither the segmentation on neighbours or difference in normals will
detect this. Therefore they must also have the same curvature sign. Because the cylinder is
of a different shape (and thus curvature sign) than the plane the points will be appointed
to different regions. The simple cylinder/plane example can be seen in figure 4.8.

XXX Y > MM M-/ wessesaiss

Depthdiscontinuity —_ B / & e,
\ Foldedge [— / \\\§§\\

| —— . &

st e oo e . Different shape ‘sl
'\Q;!’. ee 7./"1 \ =

Figure 4.8: Locating depth discontinuities, fold-edges and differences in shape. The ellipses

and curves enclose points belonging to the same region.

4.4.4 Intermediate results of the region growing algorithm

100

120

140+

160

- - - 50 100 150 200 250 300

150 200 250 a0

50 100 150 200 250 Joo

Figure 4.9: Result of the region growing algorithm

39

Diagram 4.9 shows the result of applying the segmentation algorithm on a range image.
Image A is the original range image. Image B shows the different regions that are acquired
after region growing on the basis of neighbours (section 4.4.1). The edges between two
regions represent a depth discontinuity. Image C shows the regions after region growing
on the basis of the difference in normals, as discussed in section 4.4.2. Computing normals
around edges is prone to noise. Many points around the edges is therefore lost. Most of
these pixels will be regained in the surface growing process discussed in section 4.5.3. Image
D is the final segmented image through region growing. These regions are acquired by region
growing on the basis of equality in curvature, as discussed in section 4.4.3.

4.5 Surface fitting

As mentioned earlier, clusters of points in the image will be modeled by a simple geometrical
description. This representation should make comparison between the different clusters
much easier. The goal of the segmentation algorithm so far has been to find continuous
surface regions of roughly the same shape. Finding a good representative or generalisation
(of low complexity) of a continuous surface region is much easier than finding one for an
arbitrary gathering. Because comparing and computing models of low complexity is much
easier, our fitter is very lazy, and only tries to fit simple models. This laziness means that
the fitter has to be provided with convenient pre-segmented data. The curvature sign also
allows us to give the fitter hints as to what kind of model it should fit (planar, cylindrical,
spherical). Although the segmentation has been a laborious and intricate process, it has
merely been an aid to the surface fitter.

Implicit polynomial curves and surfaces have proven to be good descriptors of 2D and 3D
data [22]. They are very compact descriptions and they are good at smoothing noisy data
and interpolating through sparse or missing data [33], which is exactly what the completion
algorithm needs. Equation 4.11 depicts a general implicit polynomial of degree d in 3
dimensions. Because the power of interpolation through missing data diminishes with the
height of the degree, it is restricted to surfaces of degree 2, which are called quadrics. In
section 4.5.1 examples will be given to clarify matters.

fa(z) = Z aijr -yl 2F =0 (4.11)

(i+i+k)<d
{65,k 50

The goal in fitting a surface to a set of points is to choose the parameters of the sur-
face such that the surface is a good representation of the points. A common criterion for
this goodness of fit is the total of the (squared) distances of all the points to the surface.
Minimising this total will yield the best possible fit.

Computing the real distance between a smooth function f and a certain point #; can be
described formally as computing the distance between point Z; and the closest point % for
which f(Z;) = 0 holds. Since f(#;) = 0, &; lies on the function. The set of points for which
f = 0 (also called the zero-set for f) is defined as Z(f). The point #; in this set that is
closest to Z; will have to be found. The distance between Z; and f is then equivalent to the

distance between #; and #;. Equation 4.12 summarises this reasoning.

dist(Zi, Z(f))) = min{||Z; — &| : f(Z:) = 0} (4.12)

40

Fitting a function f to a finite set of data points {z;..z,} is usually done by minimising
the mean square distance between the data points and the function:

1 n
m > dist(;, Z(f))> — Minimum (4.13)
i=1

4.5.1 Euclidean vs. Algebraic distance

A method of fitting a general function to a set of data points has been defined. What has
been neglected is an exact explanation of how the minimum distance in equation 4.12 is
supposed to be computed. The reason for this is that this is a complicated process.

A first simplification that can be made is to limit the domain of f. Since only implicit
polynomials of degree 2 are fitted, only methods for computing the distance between a point
and these specific functions will have to be determined.

The matter is still far from trivial though. There is no closed form expression for com-
puting the real or Fuclidean distance from a point to a general quadric. Computationally
expensive iterative methods are always needed to solve this problem. For this reason the
efficient, but inaccurate, algebraic distance is often used. It can simply be computed with:

dist(Zi, Z(f))) = f(w:) (4.14)

To show its inaccuracy two examples will be given. To simplify matters the examples
will be given in two dimensions, but the idea is easily extrapolated to three dimensions.
In the following equations a quadric in 2D is defined, as well as two special cases of these

quadrics: a line and a circle.

fQ(x) = Z Qjj - IL'i . yj =0 (415)
(i+3)<2
{i,53>0
Line: ajoz 4+ ag1y + ago =0 (4.16)
Circle: 020332 + a02y2 + a0 + ap1y + ago =0 (417)

Figure 4.10 shows a line and a (unit) circle in 2D graphs. The values for a;; are also
depicted in the figure. The Euclidean distances are shown in both graphs. For the line, the
closest point on the line () to point (3,2) is (1, 3), so the real distance between the line
and point (3,2) is v/5 = 2.236. Computing the algebraic distance to the line yields:

Algebraic distance from line 2z —y + 1 = 0 to point (3, 3)
(4.18)
dist([33],Z2(f)) =f2([32]) =2%3—2+1=5 (real value is 2.236)

It is also depicted in the graph. In other words, the algebraic distance is more than
twice the real Euclidean distance. For the circle, the distance of point (2,1) to the circle is
(without further proof) —1 4+ /5 = 1.236. Again, computing the algebraic distance yields a
completely different value.

Algebraic distance from circle 22 + y? — 1 = 0 to point (2, 1)
(4.19)
dist(2 1, Z(f) = fo(2 1)) =22 + 12+ —1 =4 (real value is 1.236)

41

This value is especially absurd, as there is not one point z; on the circle that has a
distance of 4 to point (2,1). It can not sensibly be depicted in the graph.

2x-y+1=0 x2+y2-1=0

21

AL

3.2)

AL??

1 2 3 4

o v W A 1 Oy

Figure 4.10: Two examples of Euclidean and algebraic distance

It must be said that the difference between algebraic and Euclidean distance can some-
times easily be resolved. Equation 4.16 that describes a line contains an arbitrary scale
factor for instance. If the coefficients are chosen such that agi? 4+ a19% = 1, the algebraic and
Fuclidean distance are the same. The example of a line was chosen because it is a simple
introduction. The polynomial for a circle also contains an arbitrary scale factor, but it can
never be set to a value such that the algebraic and Euclidean distances are always equivalent.
Although the line might have been a bad example, the problem is already unavoidable at
other simple functions such as circles. These examples are not the worst case scenario, and
it does not take long to find other misjudgements in distance. When using the algebraic
distance for surface fitting, the results are often unsatisfactory. This is actually one of the
motivations for writing a new segmentation algorithm. All the segmentation algorithms
available used the algebraic distance. The fitting was too poor to use for the completion
algorithm.

Then why not simply use the real Euclidean distance in surface fitting? The reason for
this has been mentioned briefly before: there is no straight-forward method for computing
the Euclidean distance from a point to a general quadric. Fortunately, research is never
done alone. Petko Faber, also a Research Fellow with the Vision Lab in Edinburgh, has
done extensive research on computing the distance between a point and a multitude of
shapes and surfaces. He has allowed me to use his code in my program, for which I am
very grateful. The rest of this section (as well as section 4.5.2) gives a brief overview of the
theoretical background of Petko Faber’s algorithm, which is fully described in [22].

The most convenient way of computing the geometric distance is using the closed-form
solution. This means that the function dist(Z;, Z(f))) can be solved simple and directly,
without iteration. It will return the ezact Euclidean distance. In cases when this was
theoretically possible, Petko has derived a closed-form solution for the shape or surface.

Most shapes and surface can not be described in such simple terms, and a closed-form
solution is not readily available. In these cases, a first estimate is computed and then

42

iteratively improved to yield an accurate approximation of the real geometric distance.
Although it is always an approximation, it is a far better estimate than the algebraic distance.

The first estimation of the distance is computed using a method developed by Taubin
[48]. The idea is to approximate the distance from the point to the surface by approximating
the surface by a first order approximation and computing the distance between it and the
point. The general idea is much like the computation of the derivatives discussed in 4.3.2.

The Taubin estimation is biased to points close to the surface, and is not very accurate
in these cases. For this reason this first estimate will have to be improved. The estimate is
updated using the Levenberg-Marquardt algorithm [35, 36] and the resulting new estimation
is evaluated. This goes on until the new estimation is not an improvement over the previous
one. This does not yield the exact Euclidean distance, but a very good approximation of it.

This approximation of the distance has been used in formula 4.13 to fit the different
quadrics to the different sets of points acquired in region growing.

4.5.2 Choosing the right surface

The goal in surface fitting is to find a simple description of the data, that represents the data
well. This means there will always be a trade-off between the complexity of the function
that has been chosen to represent the data and the goodness-of-fit of this function.

Man-made objects such as buildings often consist of simple surfaces such as planes,
cylinders and spheres. This is simply because these shapes are much easy to manufacture.
Therefore, only these simple surfaces are fitted to the data. The surface with the best fit is
the surface chosen. Because any plane can be described by a cylinder or sphere with infinite
radius, a restriction is put on the size of the radius. It is then more likely that a plane is
fitted to flat structures.

4.5.3 Surface growing

A surface has been fitted to the original segment acquired through the region growing algo-
rithm. It is often the case that points that are close to the surface patch, and have not been
included in the original segment might very well fit into the surface. Although these points
have not been involved in determining the parameters of the surface, the surface might very
well be a good representative of these points as well.

Therefore the surface is expanded, allowing it to incorporate neighbouring points that
fit the surface well (a process some call slurping). Points that are adjacent to the original
segment, and fall within the noise-level of the surface are simply incorporated into the region.
The information content of the surface patch is growing, as it incorporates more and more
points, while the goodness of fit of the surface does not deteriorate.

4.5.4 Results

In figure 4.11, the segmented image from figure 4.9 is repeated on the left hand side. The
right hand image (the same segmentation after surface fitting and growing) clearly shows
that many more points have been incorporated into the surface patches. The 3D points that
can be seen in figure 4.12 are a visualisation of the surfaces in 3D. The colors match those
of image 4.9. In this image, the missing data is again apparent.

43

Figure 4.11: A result of the region growing algorithm (left) and the same segmentation after
surface fitting and surface growing (right)

3200%:.
3000-f
2600-{. .. %
~ 2600 ..
24005..._.._,5

2z00-4.. .

2000-f. .

Figure 4.12: A result of the region growing algorithm (3D)

4.5.5 Output format of the segmentation algorithm

As has been mentioned at the beginning of this chapter, the goal of segmentation was to
cluster related points in the image, and fit a surface to them. This goal is reflected in the
simple output format of the segmentation algorithm, which are surface patches. The surface
completion algorithm that will be discussed in the next chapter will only get these surface
patches as input. The definition of surface patches is repeated in the box below.

It is important to note that it is very easy to use completely different segmentation
algorithms, as long as the data format is the same. The motivation for writing a new
segmentation algorithm has been given in sections 4.3.1 and 4.5.1.

44

Terminology

(Geometrical) Surface: A parametric description of a continuous
function in 3D space. This research is limited to simple special
cases of implicit second order polynomials (see section 4.5) such as
planes, cylinders and spheres.

Region (or patch): A group of pixels in the 7;; image. In our algo-
rithm, these groups are acquired through region growing (section
4.4) and surface growing (section 4.5.3).

Surface patch: A region in the r;; image of which all the pixels are
represented by the same surface.

4.6 Summary

In this chapter the methods for segmenting a range image were presented. First of all
the image is smoothed using nearest neighbourhood filtering. The neighbours of all the
points are computed, as well as some surface characteristics: the surface normal and local
curvature. Neighbouring points with the same surface characteristics are then merged into
regions using a region growing algorithm. Planes, cylinders and spheres are then fitted to
the points in these regions, and the surfaces are grown to incorporate all the points that are
represented well by this surface. The final result is a group of surface patches: regions in
the image described by a simple geometrical surface.

45

Chapter 5

Surface Completion

5.1 Introduction

This chapter will discuss the method with which a hypothesis for the entire 3D configuration
of partially occluded objects is constructed. The algorithm takes the output of the segmen-
tation algorithm (surface patches) as its input. The main idea is that most objects, and
certainly those encountered in buildings, usually do not contain surfaces that stop abruptly
in mid-air. This is why it is not expected that walls contain chair-shaped holes for instance.
This is Lehar’s previously mentioned “principle of good continuation” [34]. The goal now is
to actively fill in data in areas where, on the basis of good continuation, it is more likely

that there is a non-visible surface than no surface at all.

Incompl ete data Surface completion Texture completion

Dueto occlusion 3D configuration of Projection of pattern
entire object on new surface

Figure 5.1: The processing chain of completion

An overview of the completion algorithm is shown in diagram 5.1. The input is segmented
data as shown in the first image. The two parts of the cylinder are two different surface
patches acquired in the segmentation algorithm discussed previously. The two parts of
the cylinder appear to be two parts of the same cylinder: intermediate data is missing.
The surface completion algorithm first hypothesizes the configuration of the entire cylinder,
shown in the second image. The texture completion algorithm is then applied to acquire
the final completed cylinder shown in the last image of diagram 5.1.

The rest of this chapter is devoted to the surface completion algorithm, and is divided
into the following sections.

Locating possible occlusion (section 5.2): This section discusses how occluded areas
are located for different classes of occlusions.

46

Making the surface hypothesis (section 5.3) This section presents how the 3D config-
uration of the entire surface is hypothesized in the areas that might contain occlusions.

Niche or real occlusion? (section 5.4): The surface has been hypothesized. One last
check has to made before the data can be added to the original image, yielding the
completed surface. This check is whether the possibly occluded area represents a niche
or a real occlusion. A niche is a recess in a smooth surface. They are often found in
churches, in which a statue is placed in a recess in the wall. Hypothesized data should
not be added to niches, as this would cause the recess to be sealed shut; a statue would
no longer be visible.

Terminology

Hypothesized point/surface: Once the possibly occluded region is
determined, a hypothesis is constructed for each point in the re-
gion; what would have been seen at that point if occlusion had
not taken place? All these points together make a hypothesized
surface.

Completed point/surface: If the possible occlusion turns out to be a
niche, the hypothesized points are simply discarded. If it is a real
occlusion, the hypothesized points are added to the image. These
points complete the image, and so are called completed points.
Similar terminology holds for surfaces.

The difference between a hypothesized and a completed point/surface
is purely temporal: before the niche-check it is hypothesized, after the
niche-check it is either discarded or added to the image, which is called
completed.

5.2 Locating possible occlusions

This section is distinct from the other sections discussing segmentation and completion for
two reasons. The first distinction is that occlusions are classified, and different methods
are applied to different classes. This is distinct, because it is the only section in which
generalization is lost. After this section, the classification is abandoned, all occlusions are
treated the same, and generalization is regained. The second distinction is that the methods
are applied to the 2.5D image, not the 3D image that has been used so far. After this
section all computations will be made in the 3D domain again. These choices will briefly
be motivated, after which the different methods used for locating possible occlusion in each
class of occlusion are described.

5.2.1 Classification of occlusions

In the design of the program I have tried to abide by Ockham’s razor: The simplest expla-
nation is usually the best. This means the program should be adaptive, and should be able
to cope with a diverse set of examples in one uniform way. During the research it became
apparent that there are many types of occlusion. Determining where these occlusions are

47

located has proven to be too hard to generalize over all these different types. A classification
was needed.

One useful classification is shown in figure 5.2. It is based on how many times the
occluding object transects a boundary of the occluded surface in the 2.5D range image: 0,
1 or >1. The description of the three classes below will clarify matters.

zero transections one transection two transections
2.5D I 1 2
£ P—
2
/;/
_ Visible part of — Occluding «" _ Occluded part of

" occluded surface object . surface (no data)
Figure 5.2: A classification of occlusions of single surfaces

In the first class, the occluding object is completely contained within the occluding
surface patch, as seen in the 2.5D range image. The occluding object does not transect
the boundary of the occluded surface once. An example of this type of occlusion is the top
view of a book lying in the middle of a table: in the range image the region describing the
(planar) table surface completely surrounds the region describing the (planar) book surface.

The second class describes objects that transect the boundary of the occluded surface
once. Suppose the book were pushed to the edge of the table, so that part of the book
was hanging over the table’s edge (one transection of the boundary). The single-transection
occlusion is shown in the center column of the table in diagram 5.2. In the 3D image, the
arrow points out the transection.

The last class describes occlusion in which the occluding object transects the boundary
of the surface patch at two or more locations. In this case, multiple instances of the same
surface can be seen in the range image, depicted in the right column of diagram 5.2 with
1 and 2. An example of this is a long ruler lying on the table. If the ruler is longer than
the table, the ruler could be placed such that both ends are hanging over the tables’ edge.
Because the ruler transects the table into two parts, the range image now contains two
regions, both instances of the same table.

48

5.2.2 Back to 2.5 dimensions

This section will briefly motivate why possible occlusions are located in the 2.5D-form of
the range image, and not in the 3D-form as has been the case so far. The main reason is
that it ensures that points are only hypothesized at locations that could actually have been
registered by the sensor. This seems like an intuitive domain to restrict the methods to.

Because the sensors’ movements are not incremented continuous but by evenly spaced
increments (digital), there is a limited number of possible locations where the measurement
takes place. These measurements are of course exactly those registered in the pixels of the
2.5D range image. It is therefore valid to locate the occluded 3D points pixel by pixel in
the 2.5D range image.

Usually, whole areas are occluded, instead of single pixels. This occluded area will
manifest itself as one continuous region in the 2.5D range image. The two great benefits of
applying the methods to the 2.5D domain are efficiency (because the points are ordered) and
the multitude of well known 2D methods (computing the distance transform, flood-filling)
that can be used on this form of the data. Briefly returning to the 2.5D will change the
concept of distance that has been used so far. This change is explained below.

Terminology

3D Distance: The real or Euclidean distance between two points in 3D

space.

2D Distance: The distance (in pixels!) between two pixels in a 2D

digital image.

Up till now the word distance has been used to indicate the 3D distance.
From now on it will refer to the 2D distance; reference to the 3D distance

will be made explicitly.

Now that the classification has been made, and motivation has been given why compu-
tations are made in the 2.5D, the next three sections (5.2.3 through 5.2.5) will discuss how
possibly occluded regions are located for zero-, single-, and multi-transection occlusions.

5.2.3 Locating zero-transection occlusions

25D 3D

Figure 5.3: Zero-transection occlusions

This type of occlusion is the ’book on the table’ example as shown in diagram 5.3.
Because the region of the occluding object is completely contained within the region of the

49

occluded surface, only one region in the image represents the surface. This means that only
one surface is needed to complete the hidden data.

The goal now is to find regions (possibly representing occluding objects) completely
contained within other regions (possibly representing occluded surfaces). Because these
occlusions can take place in any kind of surface patch, they all have to be checked for
possible occlusions. The method used employs a simple flood-fill algorithm.

Image 5.4 describes the method. In this image, a plate and a book can be seen lying
on a table, the image being taken from above. Note that both objects do not transect the
boundary of the table, and are therefore zero transection occlusions. The way to extract
these two regions from the image is done as follows. First of all, the area of the table, as
well the area around the table is excluded by flood-filling the image from the boundary
with a NOT-AN-OCCLUSION label. The result of this process can be seen in image B of
diagram 5.4. The two remaining regions are those that need to be extracted. This is done
by flood-filling both separately, for instance with labels OCCLUSION-1, OCCLUSION-2,
etc. The final result is shown in image C.

book
/
table | Plate
a eﬁs_czrgplitﬁy two areas that are
: contained within - :

L possibly occluding
;L?fag'ggh surface patch the surface patch
area surrounding the

floor surface patch
A B C

Figure 5.4: Locating zero-transection occlusions

5.2.4 Locating single-transection occlusions

This class of occlusion (an example is repeated in diagram 5.5) is by far the most difficult
class to locate. This is because the occluding object partially overlaps the boundary of
the occluded surface. Because the boundary of the occluded surface cannot be seen, it is
not clear within which bounds the surface should be completed. Simply hypothesizing data
behind the entire occluding object might lead to strange artifacts, as completion might be
taking place in areas where there is no occlusion.

An example. Suppose a book is placed on a table, such that part of the book extends
beyond the table. An image from above would show that the book is occluding the table,
so completion is necessary. This is shown in the left image of diagram 5.5. Note that

50

completion is only necessary behind part of the book (the blue region in diagram 5.5), not
all of it. Because the book is covering the boundary of the table (arrow in diagram 5.5), it
is not immediately clear where the boundary of the table lies, so it is also not clear behind
which part of the book completion should take place. Completing behind the entire book
is not valid, as more table would be completed then is actually present in the real world.
Imagine the protruding part above the blue region in the right image of diagram 5.5 to be
completed as well. This would lead to a book-shaped piece of table protruding from the
table; an undesirable artifact.

2.5D

Figure 5.5: Single-transection occlusions

The boundary of the table is apparent to humans, because they are good at interpolating
between the two visible parts of the boundary of the table. Computer vision techniques would
depend on fitting lines and other functions to the boundaries, and check if interpolation
between them is valid. Although such techniques have been used before in for instance
[23], they are quite intricate, and cause many difficulties. Unfortunately, implementing
the methods needed to locate these occlusions (line and curve fitting and matching and
interpolating between them) was not feasible given the duration of the research. In the
future, the problem is sure to be solved however, as discussed in section 7.2.1.

5.2.5 Locating multi-transection occlusions

25D

Figure 5.6: Multi-transection occlusions

The main issue in multi-transection occlusions is that the occluding object divides the
occluded surface into one or more regions (see diagram 5.6). The goal is therefore to find
groups of surfaces patches that are instances of the same (occluded) surface, e.g. find two
parts of a wall that actually belong to the same wall. The areas between these regions are

51

then determined.

Coinciding surface patches

The way this is done is by comparing the geometrical surfaces of the surface patches to locate
coinciding surface patches. Remember that a surface patch is the combination of a region in
the image and a geometrical surface representing the points in this region. Here we see the
strength of the surface fitting: comparing the individual points in the region of the surface
patch would be infeasible. The generalization of the geometrical surface allows a meaningful
comparison. Coinciding surface patches are defined as surface patches that roughly have the
same geometrical surface describing the points they contain. To see if two surface patches
coincide, their geometrical surfaces are compared. First of all, two surface patches can only
coincide if they are represented by the same class of geometrical surface (plane, sphere or
cylinder). If this is the case, they must also meet the following requirements for each class.

Planes: The first requirement for planes to be coinciding (also called coplanar) is that
the angle between their surface normals is less than 5 degrees. Furthermore, the
displacement between the two planes may not be too large. The planes may not lie
too far apart from each other. The issue now is where, and in which direction the
distance between the two planes should be measured. The location will be the center
of mass of all the points in the two planes. The direction will be the summation of the
two surface normals. The line through this location and with that directional vector
has an intersection with both planes. The distance between these two intersections is
taken as measure for the distance between the two planes.

Spheres: First of all, the radii of the spheres must not differ by more than 10%. Further-
more, the centers of the two spheres may not be too far apart from each other in 3D
space. The threshold used for this is 10% of the mean of the radii.

Cylinders: A first requirement is again that the radii of the cylinders must not differ by

more than 10%. Furthermore, the angle between the vectors representing the direction
of the axis must not be more than 5 degrees. The last requirement is that the axes
of the cylinder must be collinear. This is done by determining the point on each axis
nearest to the center of mass of both cylinders. The vector through these two points
must also meet the 5 degrees requirement with both vectors describing the axes of the
cylinders.
This last requirement has a bias towards accepting long cylinders. This is because
the center of masses of two long cylinders will be further apart than those of short
cylinders. The vector between these two points is then more likely to be collinear with
the two axes. A new method that removes this bias could easily be implemented. In
stead of taking the points roughly in the middle of the cylinders, the points on the
most extreme sides of the cylinders (on the axis and within the boundaries of the
cylinder), closest to the other cylinder could be used. This introduces a bias towards
cylinders that are far apart. This bias is not as influential, as distance constraints are
placed elsewhere (section 5.3.3). Furthermore, interpolation between cylinders that
are far apart will cause less apparent discontinuities than between cylinders that are
close to on another.

52

After the coinciding pairs of surfaces have determined, an algorithm that clusters these
pairs into groups is applied. Groups of coinciding surfaces are defined such that every
surface in the group must coincide with every other surface in that group. Coincidence
relationships within a group are therefore always transitive. The reason this is done is that
when the surface hypothesis is made, it is necessary to take into account all the instances of
the same occluded surface.

Area between coinciding surface patches

The area between a set of surface patches is simply the summation of all the areas between
every pair of surface patches in the set. The idea behind computing the area between a
pair of surface patches is to find perimeter points of one area that ‘face’ perimeter points of
the other area. ‘Facing’ perimeter points are points that can be connected with a line that
does not cross any part of any of the two areas of the surface patches itself. A consequence
of this requirement is that this line usually only crosses pixels that lie between the two
surface patches. Because completing between two surface patches that are very far apart is
undesirable, another requirement is that the distance between two facing perimeter points
may not be too large. How the threshold for this measure is computed is described in section
5.3.3. In image A of diagram 5.7, two areas and their perimeter points are shown. In image
B, the perimeter points facing each other are drawn in black. Apparently, it is not possible
to connect the gray (non-facing) perimeter points in image B with any of the perimeter
points of the other area without either being to far apart, or the line between them crossing
one of the two areas!.

All the points that are facing each other according to the definitions given above are
connected by lines. The pixels on these lines are then considered to lie between the two
surface patches. Which pixels are on the line is determined using the Bresenham algorithm
[8]. In image B, the gray area represents the pixels that have labeled using the this algorithm.
Connecting facing perimeter points is not sufficient though. As can be seen in image B, some
holes between the two patches remain. These are simply filled in using a flood-fill algorithm.
The final result can be seen in image C.

A B C

60 %‘%BL &

L
gl US/O/V

160

Figure 5.7: Determining the area between two surface patches

I The requirement of the line between two perimeter points not crossing any of the surface patches was
not as strict as described above. In reality, it was specified that no more than 10% of the pixels in the image
that are crossed by the line were allowed to be pixels that belonged to one of the surface patches.

53

5.3 Making the surface hypothesis

Now that some areas that are possibly occluded have been found, it is time to hypothesize
what would have been seen in these areas had occlusion not taken place. Note that, although
locating the possibly occluded area had to be done with different methods for each class of
occlusion, the next method will be the same for all of them. This is reflected in the universal
data-type, which contains:

The possibly occluded area This is the area that has been located in the previous chap-
ter. It will be completed using information from the surrounding surface patches.

A list of surface patches These are the surfaces and the regions in the image they rep-
resent. The list can be of length one (zero-transection occlusions) or larger (multi-

transection occlusions).

5.3.1 Interpolation between intersections

As mentioned before, points should only be hypothesized at locations that could actually
have been measured by the sensor. Because the points in the possibly occluded area have
been actually measured, the replacing completed point must lie be on a line through the
sensor and the measured point. As this line overlaps the optical ray of the sensor, the
hypothesized pixel is placed in a position that could actually have been sensed by the sensor.

Now it needs to be hypothesized what would have been seen, had the surface, and not
the point actually measured been seen. This is simply done by intersecting the line through
the sensor and the measured point (optical ray of the sensor) with the surface of the surface
patch. This ensures that the acquired 3D point could have actually been measured, and
lies on the surface. These intersections are computed for all points in the possibly occluded
area.

This method alone would work for occlusions causing only one occluded surface patch,
but when more surface patches are involved it fails. Due to noise, the surface fitting is never
perfect, and the surfaces fitted to the points in the regions will never coincide perfectly.
When extrapolating the surfaces into the occluded area, they will never perfectly coincide,
so computing the intersection with one of them is not enough, as this can lead to strange
depth discontinuities when going from one surface patch to the other. For this reason the
ray is intersected with all of the surfaces of the surface patches. Interpolation between the
different intersections yields the final point.

The whole process of intersecting the ray of the sensor with the surfaces followed by the
interpolation can be seen in figure 5.8. It must be noted that this is not an actual case; the
dimensions have been distorted for clarity.

The chosen interpolation is a weighted averaging between all the intersections. It is
weighted, because the influence of certain surface patches should be more than that of
others. This all depends on the distance between the point to be hypothesized and the
different surface patches. If a pixel is very close to one surface patch but very far from
another, the hypothesized pixel should be more like the closer surface patch. This ensures
continuity around the edges between the completed area and the patches itself. Therefore the
weights of the averaging depend on the proximity of the point to the different surface patches.
In other words, given a pixel to be hypothesized, two or more intersections are computed as

54

Spherical range sensor

Occluding surface

/ Ray of sensor

Extrapolated surface

\\\\\
yyyyy

\\\\\

,,,

Coinciding surfaces

Intersection between ray of
sensor and fitted surface Interpolated reconstructed surface

Figure 5.8: Computing intersections and interpolating between them

explained above, one per each candidate surface. The position of the hypothesized pixel is
computed as follows:

(5.1)

F(@) = (dmaz — d)? (5.2)

The summation in equation 5.1 (which is a simple weighted averaging function) takes place
over all the surfaces patches involved in the hypothesis; that is, all the transitively matching
surfaces combined in a group. #; is the intersection with the s-th surface, d; is the distance
to the closest actually observed point in surface s, and f(ds) a weighting function. dy,az
is the maximum of all the distances of all the pixels to be hypothesized to all the surface
patches. Note that d; will therefore never exceed d,,q..- It is also important to note that
f(ds) expresses exactly that the influence of a surface patch on the hypothesized point is
greater if it is closer.

Some explanation needs to be given on how d, is computed. Computing the smallest
distance from a point (the pixel at Z5) to a set of points (the points in the surface patch)
is no trivial task, as might be recalled from section 4.5.1 on Euclidean fitting. To avoid
serious computational problems, the distance transform of all the surface patches involved
is computed. The distance transform contains information about the shortest distance of
every pixel in the image to a certain set of object pixels, in this case the points of the
surface patch. More information about distance transforms can be found in Appendix C.
Another useful interactive source on distance transforms is [39]. The distance transform of
the surface patch therefore specifies for each pixel what its distance is to the surface patch
(in pixels). Determining dy is therefore a simple table-lookup: It is the value of pixel at %,
in the distance transform.

%)

5.3.2 Incorporating observed data for continuity

Interpolating between the intersections with the different surfaces has proven to be insuffi-
cient, because discontinuities around the edges arise when the surface is not a perfect fit of
the points in the region at these edges. The problem is again solved by interpolating, but
this time only between the closest perimeter point of the closest surface patch and the point
found through interpolation of the intersections. Remember that every pixel in the extended
distance transform not only contains information about the distance to the closest point in
the surface patch, but also exactly which point in the surface patch this is (Appendix C).
This allows us to easily find the perimeter point that should be used for interpolation.

This interpolation is based on a logarithmic decay function. The influence of the perime-
ter point on the hypothesized point decays as the point to be hypothesized lies further away
from the known data. The decay function can be seen in equation 5.4. At the transition
from measured data to hypothesized data the perimeter point completely overrides the in-
fluence of the intersection, guaranteeing a smooth transition into the measured data. Given
equations 5.3 and 5.4 the influence of the perimeter point at distances 0, 5, 10 and 20 pixels
is 100%, 53%, 29% and 8% respectively.

Thyp = 9(ds) Tperim + (1 — g(ds)) Tinter (5.3)

g(dy) = e==/% (5.4)

Zhyp is the final hypothesised point. Zperim is the closest perimeter point of the closest
surface. Finter is the point found in equation 5.1. g(ds) is the weighting function discussed
in the previous paragraph.

5.3.3 Limiting the area in which the hypothesis is allowed

The further the distance to a surface patch, the less certain the surface patch can be extrap-
olated “on the basis of good continuation”. Therefore, the hypothesis is only allowed in a
limited area surrounding the surface patch. Suppose the light gray area in the left figure in
diagram 5.9 represents the surface patch. An area could be defined in which the hypothesis
is allowed: the darker gray area in the same figure. If a surface patch contains many points,
completion is allowed further away from the patch than would be the case with smaller
patches. There is simply more evidence for this surface being correct, so the surface can be
extrapolated further on the basis of good continuation.

The area in which the hypothesis is allowed is computed as in three steps, using diagram
5.9 as a visualisation:

1. Compute relative area of surface patch. First of all, the area of the surface patch
relative to the total area of the image is computed. Simply N/(rows % columns), in
which NV is number of pixels in the surface patch.

2. Use function to compute relative area in which the hypothesis is allowed.
Using the function shown in diagram 5.9 (right) the desired (relative) area in which
the hypothesis is allowed is then computed. An exponential function has been chosen
because it puts a limit on the area in which completion can take place. In the function
in figure 5.9 this limit is 100% of the image, which seems sensible.

56

rows

image_area=rowsx cols

hypothesize;eq

f(x) = 1-exp(-8(x+0.02))

hypothesizerg aive

0.8 1

o 0.2 0.4

cols surfacepatch g 4ive

Figure 5.9: The area in which the hypothesis is allowed

3. Compute real area in which the hypothesis is allowed. The relative area
acquired from this function is then multiplied with the number of pixels in the image
to compute the real area N (in pixels) in which completion is allowed. The N pixels

nearest to the observed patch are then completed.

5.4 Niche or real occlusion?

A surface hypothesis has been made! Before this hypothesized data can be added to the
original image to fill in the missing data, one final test is needed. Adding the data is a severe
change to the image, so we want to be very careful in applying it.

One issue that has not been dealt with so far is that the possibly occluded area for which
the hypothesis has been made is not a real occlusion, but a niche. The difference between
them can be seen in image 5.10. Real-life examples of niches in buildings are windows and
doors. Adding the hypothesized data to these would certainly not make the 3D model look
more realistic: it would cause all doors and windows to be removed, or cemented shut, so
to speak.

The intuitive way to determine if a possible occlusion is actually a niche is to compare
the measured data with the hypothesized data. As can be seen in image 5.10, a niche causes
the hypothesized data to lie in front of the measured data, whereas in a true occlusion the
hypothesized data lies behind the measured data.

The data are compared pixel-by-pixel. For each pixel, it is determined if it is further
away from the sensor than the original range measured at that pixel. If this is the case it is
worth completing; if it is not the case, it belongs to a niche and should not be completed.
Considering completion of pixels individually is of course not very robust. For this reason a
voting system is introduced.

Basically, a pixel votes for or against completion, depending on the issues described
above. The area between the surfaces itself might contain several other surfaces, which do

57

Occluded line

More distant surface

Occluding surface

A
° °
Sensor Sensor

Figure 5.10: A true occlusion (left) and a niche (right)

not belong to the group of surfaces taking part in its completion. The votes of the pixels
are polled per surface. If enough pixels are in favour of this completion, it is completed,
otherwise it isn’t. A high percentage of 90% was chosen to ensure that completion was
justified.

5.5 Results

The algorithm has been tested on a database of 22 images. 17 of these were acquired using
the K2T time-of-flight laser-scanner. Another 5 images were acquired using the REVERSA
laser-striper in the Vision Lab. The images contained a total of 35 occlusions, taking human
judgement as ground truth.

The first key result is that no incorrect completion occurs. Four regions that had been
deemed possibly occluded were rejected for completion as they were correctly classified as
niches. This is an important result, as completing data when this is not valid can introduce
strange artifacts into the image. Adding data where it shouldn’t be added will make the
image look even more unrealistic than the original with its missing data!

Furthermore, 31 true occlusions were completed correctly, of which three are shown in
the diagram below. In this diagram, the original zyz-images are in the left column, whereas
the right column shows the same data with the hypothesized data added. More complicated
images were also completed correctly, but these are not shown, as the results is not clearly
visible on paper.

The first row shows a chair in front of a wall, the sensor having measured the image from
the right. The surface completion algorithm fills in the missing wall, and yields the data
shown on the second columns. In the next rows an image acquired by the REVERSA scanner
(scanning from top of image) can be seen. The two cylinders are completed correctly. In the
last row, a disc and a cylinder lying on top of a plane, can be seen from above. Completion
takes place under both the disk and the cylinder. These are two examples of single region
surface completion.

Four occlusions were completely missed. This was largely due to two connected planes
being incorrectly classified as not coplanar (three cases). The segmentation algorithm did
not segment the data well enough to allow a good plane-fit, so a better segmentation should
solve this problem. One case involved two small coinciding surface patches that were quite

58

Original image Completed image

it

i
i
"

N
Y -
. G

Figure 5.11: Some results of the surface completion algorithm

far apart, between which occlusion was taking place. Because the patches were small, the
area in which the hypothesis was allowed was not very large. Because the regions were far
apart, these small areas could not bridge the gap.

The completion took between 1 and 14 seconds on a 400MHz Sun workstation. The
images were between 20000 and 250000 pixels in size. The time is roughly linear with image
size.

5.6 Summary

The output of the segmentation algorithm (surface patches) is used by the surface completion
algorithm to complete occluded surfaces. The first step was to locate areas in which occlusion
might be taking place. Because there are different classes of occlusion, different methods were
used to locate them. For each area that is deemed to be possibly occluded, a hypothesis

59

as to what would have been seen if occlusion had not been taken place is made. The
method is based on intersecting the optical ray of the sensor with the geometrical surface
of the surface patch. If multiple surface patches are involved, interpolation between the
intersections is necessary. The hypothesized data is compared with the observed data. If
the possible occlusion turns out to be a real occlusion instead of a niche, the data is added
to the original incomplete data, yielding a surface-completed image.

60

Chapter 6

Texture Completion

6.1 Introduction

Although completing the occluded surfaces makes the 3D models more realistic (no more
chair-shaped holes as in figure 1.2), they still lack intensity texture. For the moment the
completed surfaces are merely points in 3D space without any information about the light
intensity or color at that point as seen in the center image of diagram 6.1. This section
presents a method to hypothesise what the intensity on the surface would have been if it
had been visible, the last step in the diagram below.

Incompl ete data Surface completion Texture completion

“Warp ontol
digital image

Hypothesize .}
texture .

Figure 6.1: An overview: One step further.

The main idea is to warp the observed and completed points of the surface from 3D
continuous space onto a 2D digital texture space (section 6.2). In this incomplete digital
intensity image the intensity of the surface-completed points with unknown texture is hy-
pothesized (section 6.3). The hypothesized intensity is then warped from the 2D digital
image back onto the original 3D surface, as discussed in section 6.4.

61

6.2 Extracting a regularly sampled texture image

In this section the process of warping the 3D continuous surface onto a 2D digital image
is presented. The reason this is done is that textures on planes, cylinders and spheres are
usually flat textures projected onto the surface. Warping them back onto a 2D plane will
recover this original structure. The digital image also allows for easier and more efficient
processing than the unordered points in 3D space do. First the points of the original and
completed surface patch are warped onto a 2D continuous texture space as described in
section 6.2.1. Then the points in this space are aligned using a genetic algorithm (section
6.2.2). The last step is to sample the points on the 2D continuous space to acquire a 2D
digital intensity image (section 6.2.3).

6.2.1 Warping the 3D surfaces onto the 2D texture space

Because the number of classes of surfaces is restricted to planes, cylinders and spheres, there
will only be a need to warp these specific surfaces on the 2D texture space.

For planes this is relatively easy. The plane in 3D space can be transformed and rotated
such that it lies in a flat 2D plane on the x and y axis. The points in the plane will
then also approximately lie in this x,y plane. Simply removing the z component from the
transformed and rotated points truly converts them into a 2-dimensional space. The first
image of diagram 6.2 depicts this homographic warping.

Plane Cylinder Sphere
z z

Trénsform

theta
phi

X h theta

Figure 6.2: Warping surfaces onto a 2D continuous texture space

For the cylinders a h-0 surface parameterization is applied. A certain vector whose offset
lies in a point on the axis of the cylinder is set as a reference. See the second image of
diagram 6.2 for clarification. For each point on the cylinder, a vector through this point
to a point on the axis can be constructed, with the requirement that the vector must be
perpendicular to the axis. The distance between the reference point on the axis and the

62

current point on the axis is h, the angle between the reference vector and the current vector
along the axis is 6.

For spheres, a similar §-¢ parameterization can be made. This time h is replaced by
another angle. Both 8 and ¢ are the angles between the vector from the center of the sphere
to a point on the sphere, and a certain reference vector. The last image in diagram 6.2

shows this parameterization.

6.2.2 Aligning the 2D texture space using a bounding box

The warping from 3D to the 2D continuous texture space causes some practical problems:
as the sampled 3D data points do not have a regular mapping to 2D, the data is usually not
well aligned or evenly spaced in the continuous texture space. To recover a regularly sampled
texture image, we first find a bounding box that incorporates most of the points. Points
inside this box will quantized and incorporated in the regularly sampled texture image.

W

1\,\6_9\'\

xoffset

yoffst Tilt

Figure 6.3: Finding an appropriate bounding box using a genetic algorithm

The search space of the problem of finding a bounding box that incorporates a repre-
sentative number of points is sufficiently complex that a closed form solution is not readily
available. For this reason a genetic algorithm was used. For those with no experience in
genetic algorithms, tutorial [28] provides a lucid explanation.

The genetic algorithm optimises five parameters, all shown in diagram 6.3. Every gene is
a continuous variable which represents one of these five parameters. A chromosome therefore
has five genes. The number of chromosomes in each population is 10, and the maximum
number of generations is 200. The mutation rate is 15%, and the crossing-over rate is 30%.
During each generation the chromosome that is the fittest is automatically placed in the
next generation.

A penalty function determines the fitness of a chromosome by computing the distance
from each point to the circumference of the bounding box. It is also determined if this
point is inside the box or outside of it. The penalty function is then computed as shown
in equation (6.1). In this equation, Y dist(p;,) is the total of all the distances from points
inside the box. Similar for points outside of the box p,,;. The goal is to minimize the value
of this penalty function.

penalty = 1.0 * Z dist(pin) + 5.0 * Z dist(Pout) (6.1)

63

This penalty function causes the bounding box to be configured in such a way that the
total sum of the distances from the points to the box is minimalized, with a strong bias
against points lying outside the box. The box will try to incorporate many points, without
becoming too large. This bounding box is then taken to be the perimeter of the regularly
sampled texture image. All the points are translated and rotated accordingly into this new
box, as shown in diagram 6.4. This gives a rectangular, axis aligned, surface texture space,
although the observed intensity points are not uniformly spaced.

Rotate Trandate New image
Bounding box

[X N N N J

[X N N N J

o000 00O 0000 0OGOOGOO

e e

L X J

L X J

[N N N J

Figure 6.4: Rotating and translating the data in the bounding box

6.2.3 Sampling the 2D texture space

The texture completion algorithm used below requires a uniform grid, so we estimate the
regular grid points based on the observed points. The points in the regularly sampled tex-
ture image are estimated using the following algorithm. In the x and y direction, different
sampling rates are tried (ranging from 10 to 200, with 0.5% increments). For all the inter-
mediate sampling rates, the points are histogrammed into the different rows and columns.
The sampling rates in x and y direction with the lowest standard deviation for points per
row/column is chosen to be the sampling rate that will be used. This ensures an even
distribution of the points over the rows and columns.

The final result of warping the 3D continuous space onto the digital intensity image can
be seen in diagram 6.5.

Figure 6.5: The result of warping

64

6.3 Hypothesizing the unobserved texture

The intensity of the unobserved surface-completed pixels is hypothesised in the digital in-
tensity image using a template matching method!. The texture in the image is modeled
as a Markov Random Field, which assumes that the probability distribution of brightness
values for a pixel given the brightness values of its spatial neighbourhood is independent of
the rest of the image [21]. The neighbourhood of the pixel is specified by an MxN window.

6.3.1 Completing a single pixel

The main idea is to compare the surroundings of a pixel with unknown intensity (one that
has been surface-completed) with those of pixels who are known (actually observed pixels).
It can be expected that an unknown pixel will have approximately the same value as a
known pixel with the same surroundings, given the independence assumption of the Markov
Random Field.

Suppose one pixel p,, in image [is in need of completion. To achieve completion, first of
all the MxN window surrounding this pixel is determined. This window will be called w(py,).
The main question now is what the most likely value for pixel p, is, given its surroundings
w(py). In other words

maximize P (py|w(py))

In order to do this, a conditional probability distribution for P(p,|w(p,)) is approximated.
If this distribution is available, the maximum value can easily be found by computing the
mode. To acquire this distribution, all likely values of p,, are accumulated. This is done by
comparing the surroundings of the unknown pixel w(p,,) with those of observed pixels w(pg)
in the set of MxN windows surrounding the known pixels. The set of windows of which the
center pixel is known is defined by

Wi = {w(px) € I, with value of py known}

The next step is to compare the unknown window w(p,) with all known windows in set Wy,
which of course are of similar MxN size. If the difference between w(p,) and w(py) (from
Wy) is zero (d(w(py),w(pr)) = 0), pr is a likely value for p,. Therefore, the value of py is
added to the set of likely values of p,, called L(p,). The set L(p,) is therefore defined as

L(pu) = {px, with d(w(pu),w(p)) =0, and w(py) € Wi}

Because it rarely occurs that the difference between all the pixels in two windows is zero,
a threshold is implemented, allowing all values for which d(w(py), w(pr)) < € holds to be
included in the set of likely values of p,. The difference measure between two windows
d(w1,ws) is simply the normalized sum of squared differences between all the values of the
pixels which are known in both windows.

L,,, the set of all likely values for the unknown pixel, has been computed. The conditional
probability distribution of p, can now be estimated with a histogram of all values in set
L(p,). In this estimated probability distribution the x-axis represents the value of p,,

L After having implemented the method in Edinburgh and presenting this work in Lisbon, Jos¢ Santos-
Victor pointed out an article which uses a very similar method [21]. Although the implementation was my
own, I have used the theory discussed in the article to give it a better theoretical foundation.

65

and the y-axis represents P(py|w(p,)). Determining the mode of this histogram yields the
maximum value for P(p,|w(py)). So, given surroundings w(p,), p, is most likely to be the
value of this mode. Therefore, the value of this unknown pixel is simply set to the value of
the mode. In the example graph shown in diagram 6.6 this value would be 155.

max P(Py |w(R,))

}
=~ N histogram acquired
g on basis of values
= inset L(p,)
o
jang

: ' .

0 155 255

u —_—=

(light intensity)

Figure 6.6: Determining maz(P(p,|w(p.))), the most likely value for p,,, given w(p,)

6.3.2 Completing all pixels in a region

Being able to complete one pixel is not sufficient to complete entire regions in an image. If
a region is large, most pixels will have no known pixels in their surrounding window, so the
method does not apply as the difference measure cannot be evaluated. To cope with this
problem the order in which unknown pixels are completed will have to be specified: first
those that have sufficient information in their surroundings, the others at a later time.
Because there is not one unknown pixel, but a whole set, a new set W, is defined, which

contains MxN windows in which the center pixel is unknown
W, = {w(p,) € I, with value of p, unknown}

Initially, this set will be the complement of set W}, which contains all windows whose center
pixel is known. Of course, the goal is to somehow convert all unknown pixels into known
pixels, essentially removing all the windows from W,,. This will be done pixel by pixel, using
the method to complete a single pixel described in the previous section.

The question now is which unknown center pixels of windows in the unknown set W,
should be completed first. First of all, it is obvious that pixels that have no known pixels in
their surrounding window (w(py) = @) cannot be completed. How should their surroundings
be compared with the known windows in set W37 It makes more sense to first complete
unknown pixels p,, that have a lot of information in their surroundings: many pixels in w(py,)
should be known. Suppose a threshold of 75% is chosen. This means that an unknown pixel
can only be completed if 75% of the pixels in its window are known.

This threshold will determine the order in which the unknown pixels are completed. First
of all, all windows in the unknown set W,, that meet the 75% requirement are removed from

66

W, and completed immediately. The center pixels of these windows are simply completed
using the single-pixel-completion algorithm discussed in the previous section. Note that
the completion of these pixels yields new information, because the value of some previously
unknown pixels has been completed. All the windows in W,, are updated with this new in-
formation. Pixels that were previously unknown in the windows of W,, might now have been
completed. This means that other windows in W,, might now meet the 756% requirement, so
the process is repeated. This loop continues until even the last pixel has enough information
in its surrounding window to be completed. The process proceeds until the set of windows
with unknown center pixels is empty.

This algorithm basically starts completing the texture at the perimeter, where it is
likely that pixels will have many neighbouring pixels that are known. The perimeter of the
unknown area is ever changing because more information becomes available. It becomes
smaller and smaller as the algorithm progresses. Essentially, the texture grows into he
unknown region until it is entirely filled with completed texture.

Figure 6.7: The completed digital image

6.3.3 Dynamic thresholding

In the previous section, the threshold on how many pixels must be known in a pixels’
surroundings before it can be completed was fixed at 75%. The actual implementation is
more sophisticated, as it varies in time. Initially, the threshold is set such that all the pixels
in the surrounding window must be known. This is MxN-1, which is a very high threshold!
If none of the unknown pixels have enough information in their surrounding window to meet
the threshold, the loop will never terminate. Therefore, if this happens, the threshold is
simply lowered by one pixel. Some windows in W,, will surely lie above the new threshold
(or at least after the threshold has been lowered several times consecutively), so more pixels
are completed, again yielding more information for the completion of other pixels: The loop

continues!

6.3.4 Pseudo-code

To show all the procedures described in this section, as well as to demonstrate the interac-
tions between them, the entire algorithm is presented in pseudo-code on the next page.

67

function complete_intensity(image I, int M, int N)
// Initialize sets of windows with known and unknown center pixels.
for all pixels p in image [
if (p is unknown) add w(p) to W,
if (p is known) add w(p) to W
end
// Initialize threshold and start the completion loop.
threshold = MxN-1
while (W, #0)
for all windows w, in W,
if (#pixels known in w, >= threshold)
// Enough information in surroundings. Complete one pixel.
determine p, such that maz(P(p,|w(p,))) given Wi
update W, with p,
end
end
if (no new pixels completed)
// No window met the requirement, so make it more lenient.
threshold = threshold - 1
end
end

end

6.4 Warping the completion onto the original image

The points that had been hypothesized in the surface completion algorithm have now re-
ceived an intensity value. Unfortunately, this value is stored in the 2D digital texture space,
not in the original continuous 3D space. Warping from one to the other is trivial in this
case, as the point data-structure (see pseudo-code below) which has been used throughout
processing contains information about the location in all the different spaces the point has
been warped to and from. The corresponding intensity can therefore easily be warped to
any of the spaces, including the original 3D space.

// Multi-point datatype

structure multi_point {
// Locations in different spaces
double x3,y3,z3; // Original location of point in 3D space
double x2,y2; // Location of point in 2D plane

double 1i,j; // Pixel location in digital image

// Observed or hypothesized intensity value

double intensity;

68

6.5 Results

In diagram 6.8 the result of applying both the surface and texture completion algorithms
is shown. The left image in this diagram shows the original data (measured from above):
a plane, occluded by two cylinders. The center image shows the (texture-less) result of
surface completion (the original cylinders have been removed for clarity). Applying the
texture completion yields the final results shown on the right.

400

Figure 6.8: A result of both completions

6.6 Proposed improvements

The surface completion algorithm has gone through a number of revisions, guided by advice
and comment from colleagues, reviewers and fellow students. It appears to be quite robust
and efficient, and not much will be changed in the future.

The texture completion algorithm is far from perfect though. The idea of warping the 3D
continuous data onto a digital image seems to be a good approach, but the actual algorithm
for completing the texture in this digital image must be improved. The biggest objection is
that human intervention is needed to specify the size of the window. If not the results can
be poor for repetitive textures. In this section some new methods are proposed to improve
the algorithm. Future work will be aimed at implementing and evaluating these methods to
make the program usable for the CAMERA-group.

69

6.6.1 Automatic window selection

A problem that was also encountered by Efros and Leung [21] is that the results are very
realistic if the size of the MxN window is chosen correctly. If not, the results are reasonable or
poor, at least for images with repetitive patterns. The unit of the repeated texture element
(or texel) seems to be an important factor. If the image of Marilyn Monroe is the unit texel,
the best results are acquired if the MxN window incorporates exactly one Marilyn Monroe
texel. The window can now be set manually to allow this, but automatic window selection
would of course be much better: an autonomous algorithm is required.

One method of doing this is by computing the autocorrelation of the image in both x
and y directions. This might yield the period of the a repetitive pattern. The values of this
periods (in x and y) are likely to be good estimators for the size of the texels. M and N can
therefore be set to the period in x and y direction respectively to yield the same results as
are now acquired manually. This method will be implemented and evaluated.

6.6.2 Proximity weighting on the set of known windows

The algorithm described above puts equal weights on all windows in the set Wj. Results
might be better if a positive bias is placed on windows in W}, that are close to the pixel that
is currently being completed. If there is a overall change in the texture across the digital
image (e.g. due to shading), it is better to use samples that are close to the area of interest.
This method is easily implemented, and will be soon.

6.6.3 Proximity weighting in the comparison of windows

The same principles described in section 6.6.2 also apply on a more local scale. When
comparing two MxN windows, a positive bias could be placed on pixels in the window that
are close to the center pixel, the one currently being completed. A straight-forward method
of doing this, as is done in [21], is by multiplying the sum of squared differences with a

two-dimensional Gaussian kernel.

6.7 Summary

In the previous chapter methods with which occluded surfaces could be completed was
presented. Because texture is still lacking on these newly completed surfaces, the texture
completion algorithm described in this chapter is employed. The continuous 3D data on the
surface patch is warped onto a 2D plane using geometrical translations. A genetic algorithm
is then employed to find a suitable bounding box. After acquiring the new plane in the
bounding box, the point in the plane are sampled to acquire a digital image. The texture in
this digital image is completed by comparing the surroundings of known pixels with those of
unknown pixels, and completing accordingly. The texture-completed digital image is then
warped onto the original 3D data to acquire the final surface-and-texture-completed image.

70

Chapter 7

Conclusions and Future Work

7.1 Conclusive summary

Reconstructing 3D models of buildings from 2D and 2.5D data, such as the CAMERA-
project does, is problematic for several reasons, one of them being occlusion. Occlusion can
lead to missing data, which make a 3D model look unrealistic. There is a need to fill in the
missing data.

Humans do not have these problems, as they employ perceptual completion. There is
much debate amongst the cognitive scientists, visual scientists, and philosophers as to how
perceptual completion should be explained. Visual scientists assume the missing data is
actively filled in through neural activation, whereas the philosophers believe in a more sym-
bolic principle in which missing data is ignored and simply labeled. How exactly perceptual
completion works is not yet well enough understood to be used as a model for our program,
unfortunately.

Therefore more traditional computer vision methods are used. Range and intensity
images are acquired by range sensors, after which the data is segmented. Points with similar
characteristics are clusters in a region growing algorithm. Surfaces are fitted to the points
in these clusters, after which the surface is grown. The results is a group of surface patches:
continuous regions in the image represented by a geometrical surface.

The segmented data is used by the surface completion algorithm, which locates different
classes of possible occlusions and hypothesizes data at these locations: What would have
been seen if occlusion had not been taken place? If the possible occlusion turns out to be a
real occlusion (instead of a niche), the data is added to the original incomplete data, yielding
a surface-completed image.

Because texture is still lacking on our newly completed surfaces, a texture completion
algorithm is employed. The data on the surface patch is warped onto a digital image
using geometrical translations and a genetic algorithm. The texture in this digital image
is completed by comparing the surroundings of known pixels with those of unknown pixels,
and completing accordingly. The texture-completed digital image is then warped onto the
original 3D data to acquire the final surface-and-texture-completed image.

71

7.2 Future work

This section will discuss some of the future work that shall be done on this research topic.
Section 6.6 has already discussed some improvements on the texture algorithm. These will
not be repeated here. Finally, appendix D gives a list of all the publications, presentations
and applications that have resulted from this research.

7.2.1 The single-transection occlusion

As mentioned in section 5.2.4, the single-transection class of occlusions can not yet be
detected. This was due to lack of time. Research on this issue will continue, as Bob Fisher
has employed a PhD student, Umberto Castellini, to investigate single-transection occlusions
for four months.

7.2.2 More general surfaces

A first improvement over the current segmentation algorithm would be to fit more surfaces
than just planes, cylinders, and spheres. Whereas this simplification has caused no real
problems in the data-set used, it can be expected that for instance modern buildings, with
modern design and construction techniques, will incorporate more exotic surfaces, maybe
even free-form quadrics. Cones and elliptical cylinders are also encountered in industrial
sites, so incorporating them would be a first useful step.

Incorporating new surfaces is no problem for the segmentation algorithm. Petko’s code
actually already allows the fitting of general quadrics. A slightly larger technical problem
arises in the surface completion algorithm. For each type of surface, it should be specified
when they coincide, which is very difficult for quadrics for instance. Computing the inter-
section between a ray and the new surface should also be provided for the surface hypothesis
method. This should not pose any theoretical problems. A more serious problem occurs in
texture completion. It can be expected that mapping all these different surfaces onto a 2D
plane might not lead to very regularly spaced data, necessary for a dense digital image. The
texture completion should be altered to cope with this problem.

As mentioned however, the three surfaces used cover most of the possible surfaces used in
past and present architecture. Only extreme and very modern designs will pose a problem.
A cynic might respond that it is to be expected that buildings of the future will have a
virtual 3D model made before the construction starts anyway.

7.2.3 Knowledge of the world

The whole completion program would, like most computer vision programs, probably im-
prove greatly if more knowledge of the world could be incorporated. Hypothesizing a wall
behind a chair is much easier if one known what a chair is, what a wall is, and that walls do
not usually contain chair-shaped holes. Writing a program that can recognize chairs, walls,
floors, and can distinguish between parts of people and partially visible people is hard work
though. It is more a goal of the entire vision community than that of an MSc. research.

72

7.2.4 Symbiosis with view-planning algorithms

As discussed briefly in section 1.4, a simple solution for retrieving occluded data is to make
more scans of the environment. This solution brings us into an area of research called view
planning. When acquiring 3D data it is unlikely that a sensor will collect all the necessary!
information contained in the real-world scene by one single scan, so usually more scans are
needed. View planning tries to find the position in space from which an imaging sensor can
inspect a scene or object optimally. The ultimate goal is to acquire as much data as possible
with a minimum number of scans. That is, to maximise the information/cost trade-off.

Miguel Sanchiz has done some excellent work on this topic [43]. His next-best-view
algorithm computes at which following location the information gain can be expected to be
highest, given what is already known and unknown. A simple example is shown in image 7.1.
From the original position, the camera with next-best view-planner registers what it knows,
and estimates what it doesn’t know. Given this known and unknown area, the camera then
tries to maximize the area that can become known in the next view. In the diagram, the
camera thinks it can gain the most information in the other corner, so it is placed there.
This goes on until the camera is satisfied it has sufficient knowledge about the scene.

Original view Next-best view Next-best view
Unknown
Unknown
c
3
BN Object c %
S % nown g
c o
X c
5 =
)
Known Known
* Unknown

Figure 7.1: Next-best viewplanning

For a simple scene as in diagram 7.1, 4 or 5 views might be enough to have viewed
the entire scene. When Miguel’s program was tested on more life-like scenes, hundreds of
scans were needed to acquire sufficient knowledge about the scene. I have personally spoken
to the brave men who have taken the Bornholm church images (CAMERA researchers in
Stockholm). The weather was very cold in Denmark at the time, the sensor was only just
working, and needed to be shipped to England for a demonstration within 4 hours. Other
CAMERA researchers at the Joint Research Centre in Ispra, Italy, had better weather when
scanning the Sala dello Scrutinio at Venice Doges’ Palace. The scanner worked as well, but
they were only allowed to scan this site for a very short time (I believe about 2 hours),
before it had to be opened to the public again. This goes to show that hundreds of scans
are not practical in daily research. Furthermore, todays scanners are high-tech and heavy
equipment, not designed for constant relocation even within one room. This has been one

! Again, by necessary we mean: necessary for making a complete and accurate (also see footnote to section
1.2) 3D model

73

of the motivations in writing the completion algorithm: if more scanning is too much work,
a good guess is a good alternative.

The guess is sometimes too hard to make though. If only one side of the Bornholm
church were scanned, the completion program cannot be expected to complete the other
side. There is simply not enough data to go on, so another scan would be needed. Miguel’s
program could compute from which location this next scan could best be taken.

This example shows how beautifully the two programs complement each other. The
completion algorithm could fill in bits and pieces, or maybe even larger areas if enough
information is available in the surroundings. This would relieve the scanner from having
to scan behind every chair in the room: a good guess has already been made as to what
is behind the chair. If the completion algorithm does not have enough data to go on, the
next-best-view algorithm could take over, and acquire some more scans.

A symbiosis between the two would probably result in an algorithm that works as follows.

function investigate_scene {

while (not enough known to make complete 3D model of scene) {

make scan with sensor // scanners’ task
complete as many occlusions as possible // Freek’s task
merge old data with new data // registration

compute next-best-view and place sensor there // Miguel’s task

X

return data (observed and completed alike)

With this algorithm, it might occur that the next-best-view algorithm places the sensor
in a position such that it measures data that has already been completed. In this case, the
completed data, which is merely a hypothesis, should of course be replaced by the known,
observed data. An interesting thought is that the completion algorithm could then compare
the completed data with the newly observed data. If a learning algorithm was implemented,
the completion algorithm could then learn from its mistakes; but this taking it very far into
the future indeed.

74

Appendix A

Derivative estimation

The goal is to fit a function to a set of points. The functions will be discrete orthogonal
polynomials, and the set of points is defined by a N x N window (N is odd). Each point in
the window is associated with a position (u,v) from the set U x U in which:
. N-1
UZ{_M,...7—170,1,...,M} Wlth MZT (Al)
The following discrete orthogonal polynomials provide local biquadratic surface fitting ca-
pability:
po(w) =1, G1(u)=u, ¢o(u) = (u* = M(M +1)/3) (A.2)
A corresponding set of functions b;(u) are the normalised versions of the orthogonal poly-

nomials ¢;(u).

i) = 0wt O = 36w (4.3)

The three normalisation constants are given by:

Po(M) =N
P (M) =2M3+ M?+ ;M (A.4)
Py (M) = EM°> + §M* + ZM3 — I M* + LM
A surface function estimate f(u,v) is obtained in the form

Fluw) = > aydi(w);(v) (A.5)

i+j<2

that minimises the total square error term

= Y (fluv) - flu,v)) (A.6)

(u,v)€U?

The solution for the unknown coefficients is given by

aij = f(uv)bi(u)b;(v) (A7)

(u,v)eU?

75

The first and second order partial derivative estimates for the centre point in the window
are then given by:

fu=a10 fo=ao1 fuw =011 fuu=2a20 [foo=2a02 (A.8)

These estimates are plugged directly into the equations described in Appendix B to obtain
the mean and Gaussian curvature

Note: This appendix is almost a literal transcription of pages 88-89 of Besl’s Surfaces in

Range Image Understanding [3]. Interested reader might want to look at [5] or [25] for a
more extensive explanation.

76

Appendix B

Direct curvature computation

Instead of computing the principal curvatures to derive the mean and Gaussian curvatures,
the latter have been computed directly using the first and second order derivatives. This

appendix explains exactly how.
First of all, the surface is described by:

Z(u,v) =[uwv f(u,v)] (B.1)

The derivatives can be defined as:

Tw = [10fu]
Z, = [Olfv]
:Z"vv = [Oofvv]
fuv = [Oofuv]

Note that computing the derivatives (Appendix A) yields exactly the f-terms in def-
initions B.2; the vector forms are never used. The mean and Gaussian curvature can be

computed directly from the f-terms using the following formulae:

K = Sl = L J 31’2 (B.3)
A+ f2+71)
_ 1(1+f3)fuu + (1+f3)fvv - 2fufvfuv
"o A+ f2+ 1) .

7

Appendix C

The extended Euclidean

distance transform

The distance transform (DT) is an image in which the value of each pixel is the distance to
the nearest pixel from a set of objects. Which pixels belong to the set of objects is defined
by a binary image, in which the ’ones’ represent pixels belonging to the set of objects.
There are many methods of representing this distance. Common and easily computed
measures are for instance the city-block (Manhattan) [42] and Chamfer metrics [6]. For
our purposes, these approximate distances are not accurate enough. The real or Euclidean
distance is needed. In figure C.1 a binary image and its Euclidean distance transform are

shown.

Figure C.1: A binary image and its distance transform

There are many methods for computing the Euclidean distance transform (EDT). An
older version is [51] while a very recent algorithm described in [14] is so efficient that it
approximates the theoretical optimum for such algorithms.

78

One of the more simple algorithms for computing distance transforms has been imple-
mented two reasons. First of all, our distance transform will not have to be computed for
all the pixels in the image (for reasons explained in section 5.3.3), so efficiency is not of the
highest importance. Because this dissertation is about reconstruction and not the intricacies
of computing distance transforms, the simple but slower algorithm was the sensible option.

Furthermore, current algorithms encode information about the distance to the nearest
object pixel (NOP), but not about the actual 2D location of this pixel. This information is
needed in later computations. For these reasons the algorithm also stores information about
the closest pixel in the area. The distance to the area can easily be computed using this
pixel, but for sake of efficiency it is computed once and stored as well. Because this version
of the distance transform contains more information than a standard EDT it will be referred
to as an extended Euclidean distance transform (EEDT).

The EEDT is computed using methods similar to those described in [51], and is based
on a simple growing algorithm. The main interest of the EEDT is what it is and how it
can be used, not how it is computed. For this reason (as well as not wanting to lose the
bigger picture) the exact computational methods are not discussed here. Interested readers
are advised to read [51], as the methods described there are very similar.

79

Appendix D

Publications, presentations,

applications

It might be interesting and relevant to mention that this MSc. research has led to some
publications, presentations and applications.

First of all the research has led tot the submission and publication of some articles
written together with Bob Fisher. Hopefully, these will not be the last, as I am currently
continuing this research for CAMERA with José Santos-Victor at the Instituto de Sistemas
e Robdtica in Lisbon, Portugal.

e Published: Reconstruction of surfaces behind occlusions in range images [45]
Conference on 3D digital imaging and modeling, 3DIM01, Quebec, Canada
The article has been published in the proceedings of the conference.

e Submitted: Shape and texture hypothesis of 3D occluded surfaces [44]
Conference on Computer Vision and Pattern Recognition, CVPR2001, Hawaii, US
If this paper has been accepted by the reviewers will be made known 10 August 2001.

e To submit: Completion of occluded surfaces
Transactions on Pattern Analysis and Machine Intelligence, PAMI, journal.
Hopefully, the new texture completion methods that have been proposed in section
6.6 can be incorporated in this paper. Maybe some material on perceptual completion
can also be added, as computer vision often seems to neglect the interesting cognitive

issues involved.
Furthermore, a list of all the presentations of this work is given:

e 25 January 2001 A presentation at a CAMERA meeting at the Joint Research
Center in Ispra, Italy.

e 2 June 2001 A poster presentation at the 3DIMO1 conference in Quebec, Canada.
My colleague Craig Robertson has been kind enough to represent me there.

e 4 June 2001 As part of the course Artificial Intelligence, I had to present and defend
my work at a so-called colloquium. This was done at the Rijksuniversiteit Groningen
in Groningen, the Netherlands.

80

e 25 June 2001 A presentation at a CAMERA meeting at Trinity College in Dublin,
Treland.

e 4 July 2001 A seminar in the Vislab Seminar series at the Instituto de Sistemas e
Robética in Lisbon, Portugal.

e 12 December 2001 If the article mentioned in the previous paragraph is accepted, I
will present it at the CVPR conference in Hawaii. One can imagine that my hope for
acceptance of the article is not purely professional.

Last, but not least: UK Robotics (now RTS Advanced Robotics) has shown interest in
using my code for their Light Form Modeller (LFM). RTS is a company in Manchester, and
the LFM is an application that provides a user interface for navigation through 3D models.
RTS mainly sells this LFM to industrial companies. One of the problems they are facing
is that industrial scenes contain many pipes running alongside walls, as well as each other.
This causes many occlusions. Pipes and walls appear to be split in several pieces due to the
missing data. To the average user, who cannot be expected to know about the problem of
occlusion, this looks quite unrealistic. This is exactly the problem I faced about a year ago!
It is satisfying to know that the research might eventually lead to a commercial product,
and not just publications, which are useful on a more theoretical level.

81

Appendix E

Further reading

For those interested in further reading some references to some interesting articles are given.

After finishing this research, many new texture synthesis algorithms were published:
three at SIGGRAPH2001 conference alone! This field of research is growing rapidly due
to it’s usefulness for the graphics industry. Anyone interested in texture synthesis should
certainly read these articles; some of the results are very impressive!

e AA. Efros and W.T. Freeman. Image quilting for texture synthesis. In Conference
Proceedings of SIGGRAPH(1, 2001. [20]
Efros presents a new method called image quilting. Basically the technique synthesizes
the texture patch by patch (as one would make a quilt), not pixel by pixel. Because
the patches never match perfectly, smoothing around the boundaries is necessary.
Although the technique is very fast, the results do not look as good as those based
on pixel-by-pixel, and for the moment can not be used to fill in missing textures.
Also, there is no real theoretical foundation. In my opinion, the algorithm is far less
elegant then their previous one [21]. The speed is simply necessary for the graphics
community, who care about speed of rendering, not elegance.

e LY. Wei and M. Levoy. Texture synthesis over arbitrary manifold surfaces. In
Conference Proceedings of SIGGRAPH(1, 2001. [52]
This work is basically an extension of Efros’ earlier pixel-by-pixel work (described in
[21], not to be confused with the work directly above), but a very good one at that!
They present a multi-level image representation. The texture is synthesized from the
coarsest level to the finest. This causes large-scale textures to be synthesized at higher
levels, whereas fine-scale details are filled in at lower levels. The algorithm is also
deterministic, making it far quicker. Further acceleration is achieved by ordering the
templates in a tree-structure, making the search for the closest matching template of
order O(log(n)), not O(n). Since there are usually many pixels (n is very large), the
benefit is huge.

e P. Harrison. A non-hierarchical procedure for re-synthesis of complex textures. In
Conference proceedings of WSCG2001, pages 190-197, 2001. [26]
Harrison takes a completely different approach to the problem. Although using the
pixel-by-pixel method, his method uses information theory to determine the order
in which pixels are to be synthesized. By ingeniously ordering the pixels, high-level

82

structures in the image are maintained, without having to rely on large windows. The
small window-size allows the technique to be much faster than the technique described
by Efros in 1999, but slower than that of Wei’s solution described above. The algorithm
can be downloaded as a GIMP plug-in at:

http://www.csse.monash.edu.au/ pfh/resynthesizer/.

e M. Ashikhmin. Synthesizing natural textures. In Symposium on Interactive 3D
graphics, 2001. [1]
A. Hertzmann, C.E. Jacobs, N. Oliver, B. Curless, and D.H. Salesin. Image analogies.
In Conference Proceedings of SIGGRAPH(1, 2001. [15]
Both are variations on Efros’ work of 1999 [21].

Some articles recommended to me by Henk Mastebroek on the subject of simulations of

filling in phenomena with neural networks:

e S. Grossberg. Cortical dynamics of three-dimensional form, colour and brightness
perception. In S. Grossberg, editor, Neural Networks and Natural Intelligence. The
MIT Press, Cambridge, 1988. [24]

e F. Heitger, R. Von der Heydt, E. Peterhans, L. Rosenthaler, and O. Kuebler. Simu-
lation of neural contour mechanisms: representing anomalous contour. In Image and
Vision Computing, volume 16, pages 407-421, 1998. [18§]

e R. Ritz. Pattern segmentation in an associative network of spiking neurons. In H A K
Mastebroek and J E Vos, editors, Plausible neural networks for biological modelling.
Kluwer Academic Press, 2001. [41]

83

Bibliography

[1]

[2]
[3]
[4]

[8]

[9]

[10]

[11]

[12]

[13]

M. Ashikhmin. Synthesizing natural textures. In Symposium on Interactive 8D graphics,
2001.

Paul J. Besl. Range imaging sensors. Technical report, General Motors, 1988.
Paul J. Besl. Surfaces in range image understanding. Springer-Verlag, 1988.

Ben Best. Basic cerebral cortex function with emphasis on vision.
http://www.benbest.com/science/anatmind/anatmd5.html

R.M. Bolle and D.B. Cooper. Bayesian recognition of local 3D shape by approximating
image intensity functions with quadric polynomials. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 6(4):418-429, 1984.

G. Borgefors. Distance transformations in arbitrary dimensions. In Computer Vision,
Graphics and Image Processing, pages 321-345, 1984.

Pierre Boulanger. Knowledge representation and analysis of range data. In Second
International Conference on Recent Advances in 3D Digital Imaging and Modeling,
1999.

J. Bresenham. Incremental line compaction. The Computer Journal, 1(25):116-120,
1982.

L.D. Cai. Scale-based surface understanding using diffusion smoothing. PhD, University
of Edinburgh, January 1990.

A. Calway. Estimating the structure of textured surfaces using local affine flow. In
B. Thomas and M. Mirmehdi, editors, British Machine Vision Conference 2000, pages
92-101, 2000.

H. Cantzler and R. Fisher. Comparison of HK and SC curvature description methods.
In Conference on 3D Digital Imaging and Modeling, 2001.

European Commision. Research Training Networks, 1997-2001. Office for Official Pub-
lications of the European Community, 2000.

A. Criminisi and A. Zisserman. Shape from texture: homogeneity revisited. In
B. Thomas and M. Mirmehdi, editors, British Machine Vision Conference 2000, pages
82-91, 2000.

84

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

O. Cuisenaire and B. Macq. Fast and exact signed Euclidean distance transforma-
tion with linear complexity. In IEEE Intl Conference on Acoustics, Speech and Signal
Processing, volume 6, pages 3293-3296, 1999.

A. Hertzmann, C.E. Jacobs, N. Oliver, B. Curless, and D.H. Salesin. Image analogies.
In Conference Proceedings of SIGGRAPH(1, 2001. To be published after the conference
(12-17 August 2001).

D.C. Dennett. Conciousness Ezrplained. Boston: Little Brown, 1991.

D.C. Dennett. Filling in versus finding out: A ubiquitous confusion in cognitive science.
Cognition, Conceptual, and Methodological Issues, 1992.

F. Heitger, R. Von der Heydt, E. Peterhans, L. Rosenthaler, and O. Kuebler. Simulation
of neural contour mechanisms: representing anomalous contour. In Image and Vision
Computing, volume 16, pages 407-421, 1998.

R. Descartes. Principia Philosophiae. Ludovicus Elzevirius, Amsterdam, 1644.

A.A. Efros and W.T. Freeman. Image quilting for texture synthesis. In Conference Pro-
ceedings of SIGGRAPH(1, 2001. To be published after the conference (12-17 August)
2001.

A A. Efros and K. Leung. Texture synthesis by non-parametric sampling. In B. Werner,
editor, International Conference on Computer Vision, pages 1033—-1038, 1999.

P. Faber and R.B. Fisher. Euclidian fitting revisited. In Proceedings of the 4th Inter-
national Workshop on Visual Form, 2001.

R.B. Fisher. From surfaces to objects. Wiley and Sons, 1987.

S. Grossberg. Cortical dynamics of three-dimensional form, colour and brightness per-
ception. In S. Grossberg, editor, Neural Networks and Natural Intelligence. The MIT
Press, Cambridge, 1988.

R.M. Haralick. Digital step edges from zero-crossings of second directional derivatives.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(1):58-68, 1984.

P. Harrison. A non-hierarchical procedure for re-synthesis of complex textures. In
Conference proceedings of WSCG2001, pages 190-197, 2001.
Also see http://www.csse.monash.edu.au/ pfh/resynthesizer/

S.L. Hurt and A. Rosenfeld. Noise reduction in three-dimensional digital images. Pat-
tern Recognition, 17(4):407-421, 1984.

N. Johnson. Nick’s ai tutorial. http://members.aol.com/DaemonBBS/ai/tut/

G. Kanizsa and W. Gerbino. Amodal completion: Seeing or thinking? In J. Beck,
editor, Organization and representation in perception, pages 167-190, 1982.

I. Kant. Critique of pure reason. 1781.
W. Kohler. Gestalt Psychology: An introduction to new concepts in modern psychology.
New York: Liveright Publishing Corporation, 1947.

85

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

E. Thompson, L. Pessoa, and A. Noé. Finding out about filling-in: A guide to perceptual
completion for visual science and the philosophy of perception. Behavioral and Brain
Sciences, Volume 21, December 1998.

Peter Lancaster and Kestutis Salkauskas. Curve and surface fitting. Office for Official
Publications of the European Community, 2000.

Steven Lehar. Gestalt isomorphism and the quantification of spatial perception. Gestalt
Theory, 21(2):122-139, 1999.

K. Levenberg. A method for the solution of certain non-linear problems in least squares.
Quarterly of Applied Mathematics, 2:164-168, 1944.

D.W. Marquardt. An algorithm for least squares estimation of non-linear parameters.
Journal of the Society of Industrial and Applied Mathematics, 11:431-441, 1963.

G.E. Miiller. Concerning the psychophysics of visual sensations. Zeitschrift fir die
Psychologie, 17:1-82, 1896.

L. Pessoa and H. Neumann. Why does the brain fill-in? Trends in Cognitive Sciences,
2(11):422-424, 1998.

A. Walker, R. Fisher, S. Perkins, and E. Wolfart. HIPR2: Distance transform.
http://www.dai.ed.ac.uk/HIPR2/distance.htm.

A.W. Fitzgibbon, R.B. Fisher, and D.W. Eggert. Extracting surface patches from
complete range descriptions. In 3DIM97, pages 6 — Geometric Processing, 1997.

R. Ritz. Pattern segmentation in an associative network of spiking neurons. In H.A K.
Mastebroek and J.E. Vos, editors, Plausible neural networks for biological modelling.
Kluwer Academic Press, 2001.

A. Rosenfeld and J.L. Pfaltz. Distance functions on digital images. Pattern Recognition,
1(1):33-61, 1968.

M. Sanchiz and R.B. Fisher. A next-best-view algorithm for 3D scene recovery with
5 degrees of freedom. In Proc. British Machine Vision Conference (BMVC99), pages
163-172, September 1999.

F. Stulp and R.B. Fisher. Hypothesized reconstruction of occluded surfaces. Submitted
to the conference on Computer Vision and Pattern Recognition (CVPR2001) Hawaii,
December 2001.

F. Stulp, F. Dell’Acqua, and R.B. Fisher. Reconstruction of surfaces behind occlusions
in range images. In Proc. of Int. Conf. on 3-D Digital Imaging and Modeling (3DIM01),
pages 232-239, 2001.

M.V. Srinivasa, T. Maddess, and M.P. Davey. Response to pessoa and neumann: Why
does the brain fill in?

http://people.mydesk.net.au/ "mdavey/papers/why £ill.html

86

[47]

[48]

[49]

[50]

[51]

[52]

L. van Gool and T. Tuytelaars. Wide baseline stereo matching based on local, affinely
invariant regions. In B. Thomas and M. Mirmehdi, editors, British Machine Vision
Conference 2000, pages 82-91, 2000.

G. Taubin. An improved algorithm for algebraic curve and surface fitting. In 4th
International Conference on Computer Vision, pages 658-665, 1997.

E. Trucco and A. Verri. Introductory techniques for 3D computer vision. Prentice Hall,
1998.

P. Dias, V. Sequeira, J.G.M. Gongalves, and F. Vaz. Combining intensity and range
images for 3D architectural modelling. In C. O’Sullivan, B. Fisher, and K. Dawson-
Howe, editors, Virtual and Augmented Architecture (VAA’01), pages 139-145, 2001.

L. Vincent. Exact Euclidian distance function by chain propagations. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 520-525, 1991.

L.Y. Wei and M. Levoy. Texture synthesis over arbitrary manifold surfaces. In Confer-
ence Proceedings of SIGGRAPH(1, 2001. To be published after the conference (12-17
August 2001).

87

