A knowledge-based algorithm for the Internet
protocol TCP

Freek Stulp and Rineke Verbrugge
Cognitive Science and Engineering, University of Groningen
Grote Kruisstraat 2/1, 9712 TS Groningen, The Netherlands
E-mail: {freeks,rineke}@tcw3.ppsw.rug.nl

Abstract

Using a knowledge-based approach, we derive a protocol for the se-
quence transmission problem, which provides a high-level model of the
Internet protocol TCP. The knowledge-based protocol is correct for com-
munication media where deletion and reordering errors may occur. Fur-
thermore, it is shown that both sender and receiver eventually attain
depth n knowledge about the values of the messages for any n, but that
common knowledge about the messages is not attainable.

1 Introduction

In their classical paper [5], Halpern and Zuck showed that epistemic logic enables
perspicuous specification and verification for a number of protocols (like the
alternating-bit protocol) that had been introduced for error-free transmission of
sequences of messages over a distributed network. In particular, they introduced
two knowledge-based protocols, A and B, that could solve the following problem.
Let two processors be given, called the sender S and the receiver R. The sender
has an input tape with an infinite sequence X of data elements. S reads these
elements and tries to send them to R, which writes the elements on an output
tape. The protocols are required to guarantee that (a) at any moment the
sequence of data elements received by R is a prefix of X (safety) and (b) if the
communication medium satisfies certain so-called fairness conditions, every data
element of X will eventually be written by R (liveness). Fairness here means
that infinitely many messages from S to R and from R to S are delivered,
guaranteeing that every message arrives eventually.

It is easy to see that no protocol can guarantee these properties in an en-
vironment were deletion errors, mutation errors, and insertion errors may all
occur. For, suppose that the symbols transmitted over the channel are 0, 1, and
A (where A denotes that nothing is sent), and that the elements of the input
sequence X are 0Os and 1s. Now any sequence of messages in {0,1,A}* sent by
S may be changed by the communication channel to any other sequence of the
same length as the original.

Halpern and Zuck did however solve the sequence transmission problem for
communication media where any two kinds of the above-mentioned errors oc-
curred together. In order to do this, they used for each combination of two



errors a special encoding of messages ensuring unique decodability and error
detection. Thus, the knowledge-based protocols A and B were implemented in
different ways to solve the sequence transmission problem in different kinds of
communication media. (See [5] or for more background [7, 4]).

In this paper it is our goal to use epistemic methods to specify and ana-
lyze a protocol that is actually used in today’s technology: the Transmission
Control Protocol (TCP). Because this protocol is indispensable for the Internet
it is probably the most frequently used protocol around today. The epistemic
analysis of the TCP will be done in much the same fashion as has been done
with other protocols in the past. Before doing this we will have to abstract
from irrelevant technical aspects. We will eventually acquire a knowledge-based
protocol, represented by a simple algorithm. As we shall see, this algorithm
beautifully demonstrates the windowing principle used by the TCP.

The analysis of this algorithm yields some interesting results. We will show
that the depth of knowledge the sender and receiver can accumulate about
messages sent is dependent upon the length of the tape and the position of
information on the tape. If an infinite tape models the transmitted data, it can
be shown that an n-fold depth of knowledge arises for any n on some position
on the tape, although common knowledge can never be achieved. Another
interesting aspect of the TCP is that it may almost be viewed as a generalization
of protocol B - but not quite, as protocol B uses only a finite message alphabet
and the knowledge-based protocol for TCP does not.

The rest of the paper is structured in the following way. Section 2 gives
a short introduction to the Transmission Control Protocol and its role for the
Internet. In Section 3, we present knowledge-based algorithms that model the
TCP. Section 4 contains an epistemic analysis of these algorithms, giving bounds
on the state of knowledge achieved by sender and receiver. Finally, Section 5
gives some conclusions.

2 The Transmission Control Protocol

In this section we will discuss the history of the Internet, and the role which the
TCP plays in it. The birth of the Internet as we now know it goes back as far
as 1969 [9]. It was then that the U.S. Defense sponsored the development of the
Advanced Research Projects Agency Network (ARPANET). The ARPANET
consists of four layers. The lowest one is called the Network Interface Layer and
comprises the physical link between devices. The second is the Internet Layer,
which insulates hosts from network-specific details. The Internet Protocol (IP)
was developed for this purpose. The third layer, the Service Layer, is very
important because it guarantees that packages are delivered. Two protocols
were developed for the Service Layer. The TCP was introduced in 1973 and is
used when a very reliable delivery is necessary. The User Datagram Protocol is
used when the reliability requirements are not so high. The combination of the
TCP and IP protocols, called TCP /IP, is so frequently used that they are almost
always found together. In this article we will only discuss the TCP. The highest
layer is the Process/Application Layer, which supports user-to-host and host-
to-host processing. This layer includes applications such as Telecommunications
Network (TELNET) and File Transfer Protocol (FTP).

The ARPANET was a network that made communication between differ-



ent computers and servers efficient, and, as soon became clear, viable for non-
military uses. A number of ARPANET spin-offs were developed for this purpose.
Collectively these spin-offs were called the Internet. Although there were dif-
ferences, they all shared the TCP/IP and related protocols. {From this small
U.S.-based network the global Internet as we now know it evolved.

The Internet introduces a lot of problems when it comes to the correct
delivery of a package from one computer to the other. First of all it should
facilitate communication between a wide variety of servers, operating systems,
and Internet browsers. This part is taken care of by the IP. It also has to
deal with the limited capacity a network might have, and possible deletion and
reordering problems that may arise from overloading such a network. The TCP
does not only deal with these problems, but it also provides efficient use of a
network, adapting transmission speed to the network load.

3 The Knowledge-Based Algorithm

To give a knowledge-based explanation of the TCP we will first have to convert
the technical Internet language to more knowledge-based terms.

The Internet sends Application Data (a file) from one computer to the other.
Because this data is often too large to send as a whole, it is cut up into different
segments. A TCP- and IP-header are attached to this segment, converting it to
an IP-Datagram. These IP-Datagrams are sent over the network [3].

The Application Data can be thought of as a tape, which sender S wants to
send to receiver R. Here, as an example, the tape contains the roman alphabet.
This tape will not be sent as a whole, but is cut up into slots. In this example
every slot contains one letter. A slot can be referred to by a natural number,
called a position, which is a pointer to the element in that slot. Our IP-datagram,
which we will call a package, only needs the actual data (a letter), and a TCP-
header which will be the position of the slot the data came from. This will make
our packages look like (a, 1),(z,26) or («, %), in which « is a variable that can be
any letter of the roman alphabet. Acknowledgements are of the form (ack, 3) or
(@, 3), acknowledging the receipt of the third package. Packages will sometimes
be referred to by either only their data or position.

In Halpern and Zuck’s protocols A and B the sender sends one package, and
just resends it until the receiver has acknowledged it [5, 7]. These protocols are
reliable, but do not make use of the bandwidth of the Internet. The TCP uses
the windowing principle to exploit the bandwidth: it sends a whole series of
packages at once. Which series of packages are to be sent is determined by a
window which is placed across the tape. In figure 1, the window is represented by
a box, enclosing the first four packages. In this example packages 1,2,3,4 may
be sent without waiting for any acknowledgements. After sending these four
packages the sender waits a while for acknowledgements. If none are received
all the packages in the window are sent again [3].

Let us suppose that sender S has sent the packages 1,2,3,4, but package 3
goes lost somewhere, as shown in figure 1. Receiver R now receives package 1,2
and 4. Because R knows that it has not yet received (a, 3) it will acknowledge
package 2, and not 4. Package 2 is called the highest consecutive package re-
ceived. After receiving (ack,2) from R, S knows that is not necessary to send
(a,1) or (b,2) again. This is why S will shift the window so that it no longer



window
abcd|. . ..
12345678

window
abcdef] . C? ‘
123456(78

Figure 1: Windowing principle

contains 1 and 2. As a consequence the same window, of size four, now does con-
tain packages 5 and 6, and of course still contains packages 3 and 4. S will now
send the series of packages 3,4,5,6. . .wait. . .3,4,5,6 until an acknowledgement of
one of the packages in the current window is received.

The algorithms that will be discussed in the next section make one important
assumption about packages that have been received. This assumption is that
every package that has been sent or received is stored in a knowledge base, and
kept there forever. This is necessary to reason about packages that have been
sent or received in the past. The Internet of course doesn’t do this, otherwise
your computer’s memory would be overloaded very quickly. Once the Internet
has retrieved the data from the IP-Datagram, the IP- and TCP-header become
obsolete. Once the original Application Data has been reconstructed, all the
individual packages can also be disposed.

3.1 The Algorithms

We have constructed a knowledge-based algorithm that models the TCP, and
thus makes use of the windowing principle. First we will discuss the sender’s
algorithm, and then the receiver’s algorithm.

In order to visualize how the knowledge-based algorithm of the TCP works
we have constructed an applet which can be found on [10]. The applet link
in the upper menu of this page will take you to an interactive applet that
shows the algorithms at work. A small manual is added to explain the applet.
We recommend the reader to use the applet to visualize what the rules of the
algorithms do.

Before we discuss the sender’s and receiver’s algorithms we will explain what
the variables and functions refer to.

windowSize : This is the size of the window.
offset : This is the position on the tape where the window begins.
i : This is a pointer to a position on the tape. The package with

this position will be sent next, but only if it is in the window.



bestReceived() : This function returns a position. It checks the set of packages

10

11

12

13

14

15

16

the sender has received so far, and returns the position of the
package with the highest consecutive position.
max : The highest consecutive position the sender has received so far.
lastAck : This keeps track of the position of the highest consecutive
package received. If the receiver has received packages 1,2 and 4,
last Ack will be 2.

Sender’s algorithm:

windowSize := 4;
{Set the size of the window.}
offset := 0;

{Set the first position of the window at the beginning of the tape.}
while true
{After the initialization has taken place, start sending the tape.}
do i := offset;
{Set pointer ‘I’ at the beginning of the window.}
while i # offset + windowSize)
{Check if 1’ is outside the window. If not, send package (a,i) in rule 6/7.}
do read(x,i);
{Read the package with position ‘i’ from the tape.}
send(x,1);
{Send the package you have just read.}
i=1i+ 1;
{Set pointer ‘i’ to the next position on the tape.}
max = bestReceived();
{Set ‘max’ to ‘bestReceived()’: the package with the highest
consecutive position received. }
if (offset < max)
{Check if you have received a package with a position higher than your
current window offset.}
then offset := max + 1;
{A package in your window was acknowledged (rule 10). Shift
your window.}
i := offset;
{After shifting your window, set ‘i’ to the beginning of the
window. }
end
{End the window-shifting statements}
end
{End the package sending statements}
waitlong
{The network is busy. Wait a while}
end

{While(true)-loop finished. Start again.}



Receiver’s algorithm:

1 when received(x,0)
{You can start the algorithm when the first package has been received.}
2 lastAck := 0;
{You have just received the package (x,0), so set ‘lastAck’ to 0.}
3 while true
{After the initialization has taken place, get ready to receive the tape.}
4 do write(x,lastAck);
{Write the received package with position ‘lastAck’ to your output tape.}
5 while not(received(x,lastAck+1))
{This rule determines if you have received the next package on the tape.}
6 do waitshort;
{Wait a while before sending the next acknowledgement. If you don’t,
the network will overload.}
7 send (ack,lastAck) ;
{Send an acknowledgement of the last received package.}
8 end
{End the statements that send an acknowledgement.}
9 lastAck := lastAck+l;
{You have received (x,lastAck+1), so ‘lastAck’ can now be incremented.}
10 end
{While(true)-loop finished. Start again.}

3.2 TCP revisited

Now that we have a clearer picture of how the windowing principle works we can
explain how the TCP exploits the bandwidth of a network. It might seem that
the TCP uses the bandwidth of a network in a very blunt and naive way. It just
dumps a large amount of packages on the network, hoping that some will arrive.
The actual process is much subtler. The beautiful thing about the TCP is that
it can vary its window size. The receiver determines how much room is left in
its buffer to receive IP-datagrams. It determines what the optimal window size
would be, and sends this along with its acknowledgements. In order to keep the
knowledge-based algorithm transparent we have not treated this feature of the
TCP.

Another aspect that is worth mentioning is that if a tape is very long, the
position marker will become larger and larger. Your first package might be
(a, 1), whilst a latter package might be (a,1000). The first position requires
one bit, the latter ten. Luckily, our algorithm has infinite computing capacity.
But the Internet does not. The TCP-Header of the IP-Datagram always reserves
32 bits to indicate the sequence number, our position. This allows more than
4 % 10° sequence numbers to be generated, which is sufficient in practice. On
the total scale of an IP-Datagram, these 32 bits are not that substantial.

4 Epistemic analysis of the TCP protocol

We will first describe some choices we made in modeling the sequence transmis-
sion problem for the Internet.

An important aspect of the model of sequence transmission given by Aho and
others and analyzed in Halpern and Zuck’s paper, is that they assume message



transmission to proceed in synchronous clocked rounds. One may think of these
rounds as consisting of three consecutive phases: a send phase, a receive phase,
and a local computation phase. In their model, messages are received in the
same round as they are sent, if they are received at all, so reordering problems
do not appear [2]. This model is not adequate for studying TCP, where a global
clock is an unlikely assumption and reordering is one of the most important
problems to be solved. The model was relaxed by Halpern and Zuck to include
asynchronous systems, where S and R perform an action only when they are
scheduled. In order to assure liveness, it is assumed that S and R are scheduled
infinitely often [5]. We adopt this extension to asynchronous systems.

Like Halpern and Zuck, we also extend the model by Aho and others by
allowing messages to come from an alphabet larger than {0,1,A\}. We even
assume that the strings for (a,4) and (ack,4) are distinct for every value of i,
so either we need an infinite alphabet or the strings grow longer as ¢ becomes
larger. This assumption is necessary to solve the sequence transmission problem
in communication media where reordering is possible. For example, suppose
that messages (a,10) and (a,1000) are represented by the same string and R
receives (a,1000) just after sending its acknowledgment about (b,999). Then,
due to possible reordering problems, R will not be able to decide whether it is
a new message or an overly late version of (a, 10).

Correctness results

The algorithms implementing the knowledge-based protocol in the applet can
solve the sequence transmission problem in communication media where deletion
errors and reordering errors, but no other kinds, occur. Formally, this can be
proved using a semantics of interpreted systems I consistemt with the knowledge-
based protocol.

Theorem 1 Let I be an interpreted system consistent with the knowledge-based
protocol given in section 4. Then every run of I has the safety property and
every fair run of I has the liveness property.

See the introduction for definitions of the notions of safety, fairness, and
liveness. Intuitively, safety for the TCP is obvious since R writes a data element
only if it knows its value. A formal proof of such a correctness result is still
quite long and complicated, however, and we do not give it here (see the journal
version of [5] for similar proofs).

Comparison with protocol B

As mentioned in the introduction, TCP could inexactly be viewed as a general-
ization of Halpern and Zuck’s protocol B, by setting the window-size to 1. As
a reminder, knowledge-based protocol B is given here in a presentation similar
to the one in [7]:



Protocol B Sender’s algorithm:

1 i :=0;
2 while true do
3 begin read(z;);
{Read the package with position ‘i’ from the tape.}
4 send(z;); ‘‘KsKgr(zi—1)’’ until KsKg(x;);

{Send a combined message of the data element you have just read
and an acknowledgement of R’s last acknowledgment (none if i=0).}
5 i::=1i+ 1;
{Set pointer ‘i’ to the next position on the tape.}
6 end

Protocol B Receiver’s algorithm:

1 when Kg(zo) set i:=0;
{You can start the algorithm when the first data element has been received.}
2 while true do
{After the initialization has taken place, get ready to receive the tape.}
3 begin write(z;);
{Write the received data element with position i to your output tape.}
4 send ‘‘Kg(x;)’’ until Kg(zit1);
{Send an acknowledgement of the last received package.}
5 i:=1i+ 1;
6 end

In this special case where TCP operates with window-size 1, it will send one
package at a time and the window may only be shifted if the acknowledgement
for this package has been received, exactly as in protocol B.

However, there is an important difference between the two algorithms as
well. When implementing protocol B, a finite message alphabet is used so that
e.g. the “KgKgr(x;—1)” messages are not distinct for all values of 7. For protocol
B, which is meant to work in environments where reordering problems do not
occur, this does not present a problem. Afek and others have shown, however,
that protocols using only a finite message alphabet can never solve the sequence
transmission problem in environments where both reordering and deletion errors
may occur, see [1]. Thus it is essential that our knowledge-based protocol for
TCP uses an infinite message alphabet (or messages growing in size).

Accumulating knowledge

The theorem below holds in communication media where there may be deletion
and reordering errors, but no other kinds. In particular, there should be no un-
detected mutation and insertion errors. The theorem says essentially that, using
the TCP, the sender and receiver accumulate more and more knowledge about
messages sent a long time ago. For example, after the window has moved two
complete window sizes, the sender knows that the receiver knows that the sender
knows that the receiver knows that the sender knows that the receiver knows
that the sender knows the first data element, or formally Kg(KrKg)3(a,1).
This result is different from Halpern and Zuck’s analysis of the protocols A and
B, where only a depth 4 knowledge of the form (KsKg)?(i) was shown to hold
(see the conference version of [5]).



Definition 1 We use the following abbreviations:
Kg(a,n) stands for “R knows that the n-th data element is a”;
similarly for Kg(a,n).
Kgr(n) stands for “R knows the value of the n-th data element”;
similarly for Kg(n).
Oy stands for “p holds now and at all moments in future”, i.e. Op < pAG(p).

Theorem 2 Let R be any set of runs where:

o The safety property holds (so that at any moment the sequence Y of data
elements received by R is a prefix of X, the infinite sequence X of data
elements on S’s input tape);

e S'’s state records all data elements it has read and acknowledgements it
received;

e R’s state records all the data elements it has written.

Let w be the window-size. Then for all runs in R and all n > 0,7 > 0 the
following hold:

R R writes (a,i +n*w) - O(KrKs)" " (a,1).
S S receives (ack,i +n * w) = OKg(KrKs)" 1 (4).

Before we give a formal proof, we will try to give an intuitive feel of the
knowledge the sender and the receiver can accumulate about each other with
respect to the packages. First of all S will know a package («, ) as soon as it has
been read from the tape (Kg(i)). R knows a package (a,4) when it is received
(Kg(i)). A package received by R must have been read by S, so R also knows
that S knows the package (KrKs(i)). When S receives an acknowledgement
of a package, S knows that R has received it. The sender can deduce KpKg(7)
from this (thus KsKrKs(i)).

Now we reach a more interesting case. We will show what R can deduce once
it receives a package (a, i+ w), in which w is the window-size. R will reason like
this. If S has sent (q, i +w) then its window must contain (@, 7+ w). A window
with size w that contains (a,i + w) cannot also contain («,7). Apparently S
has already shifted its window past (a,4). S would only have done this if it
has received (ack,?) from R. Since R now knows that S has received (ack, 1),
and that (as we showed above) S would deduce KsKgKs(i) from this, R can
deduce KrKsKgrKs(i) It also works the other way around. Once S receives
(ack,i + w) it knows that R has received (a,i + w). S knows that R will
deduce KrKsKgrKgs(i) from this package (as above), thus Ks KrKsKrKs(i).
Thus, the further the tape-transmission progresses, the more information can
be deduced about all parts of the currently read tape.

Proof We prove the theorem by induction on n. In the proof, we freely use
two general principles. First, P(Oyp) — O¢p (from tense logic); Second, R and
S are assumed to store all relevant information from their message history. So,
if R knows a positive modality (like KsKrKys) about data elements now, it
will know it always in future, i.e. Kgr(p) - OKg(p) for appropriate ¢, and
similarly for S.



n=0 It is clear that in general, we have the following, because S’s state records
all data elements it has read:

S sends («,i) = OKg(a,1)

R knows the above fact. Now if R receives a data element from S it knows
that S has sent it sometime in the past (for there are no undetected mu-
tation and insertion errors), which implies that Kr(POKg(«,1)), which
in turn implies by our two general principles that OK g Kg(a,4). Thus, we
have

R writes (a,i) - OKgKg(a,i),
which is the R-part of the theorem for n=0.

Because R sends (ack, ) only if it received the i-th data element sometime
in the past and because of the first general principle, the following holds:

R sends (ack,i) » OKrKg(i).

If S receives an acknowledgement, it knows that R has sent it in the past,
thus because S knows the above fact, we derive the following by the two
general principles:

S receives (ack,i) - OKsKrKs(i),

which is exactly the S-part of the theorem for n=0.

induction step Suppose as induction hypothesis that R and S hold for £ —1,
where k > 1. We will prove that R and S hold for k itself.

Because S only moves its window forward after it has received acknowl-
edgements about all data elements in the window, we have the following;:

S sends («,7 + k * w) — P(S receives (ack,i + (k — 1) x w)).

We may combine this fact with the S-part of the induction hypothesis and
the first general principle to derive:

S sends (i + k xw) = OKs(KrKs)*(i).

R knows the above fact. Now if R receives a data element with position
marker i + k % w from S, it knows that S has sent it sometime in the
past which implies by the above fact and our two general principles that
OKrKs(KrKs)*(i). Thus, we have

R writes (a,i + k xw) — O(KrKs)" (i),

which is exactly the R-part of the theorem for n=k.

As in the base case, R sends an acknowledgement about the i + k % w-th
data element only if it received that element in the past, so we derive by
our first general principle:

10



R sends (ack,i + k x w) — O(KgKs) 1 (i).

S knows the above fact, so if it receives an acknowledgement about the
1+ k * w-th data element, it knows that R has sent this in the past, so by
the two general principles we conclude:

S receives (ack,i + k * w) = OKg(KrKg) (i),
which is exactly the R part of the theorem.

We assumed from the start that the input tape is infinite and that infinitely
many messages from R to S and from S to R are delivered. Thus, the above
theorem shows that for any n and any message, depth n knowledge of that
message will eventually be reached. The next subsection shows that common
knowledge of the message remains nevertheless out of reach.

Negative results: no common knowledge

Even though for any n, an n-fold depth of knowledge about messages among
R and S is eventually realized, the two processors will never attain common
knowledge about anything that they did not mutually know from the outset. In
fact, this follows from some general results by Halpern and Vardi [6], using a
representation for traces by Van der Meyden [8]. First let us adapt a classical
definition. A trace (or run) si, s2,. .. of global states is called non-simultaneous
if for every transition from s; to s;y1, there exists a processor (from R, S) for
which the two global states are indistinguishable.

Lemma 1 (Halpern and Moses 1990) In non-simultaneous runs, common
knowledge is constant.

Lemma 2 (Halpern and Moses 1990, Van der Meyden 98) In an envi-
ronment where there is no common knowledge about the maximum time delay
with which messages may arrive, there cannot be a gain in common knowledge.

Theorem 3 In an asynchronous environment, no common knowledge about the
values of messages can be attained by any protocol.

Proof In our case, assuming that there is no global clock, states are best rep-
resented by the history of messages read and sent by the two processors, with
consecutive repetitions deleted. It is easy to see that two consecutive states in
such a trace are always indistinguishable for R or for S: if one processor has
just sent a message or an acknowledgement, it does not know whether the other
one has received it yet. Thus, the relevant runs are non-simultaneous. Now
the theorem follows immediately from the previous two lemmas, assuming the
natural condition that there is no common knowledge about the maximum time
delay with which messages may arrive.

11



5 Conclusions

In this article we have shown that a real-life protocol such as TCP can be
modelled by knowledge-based algorithms. These algorithms can be analyzed to
determine the robustness of the protocol. Can mutation, deletion or insertion
errors be handled by this protocol? If not, what are the practical consequences?
The User Datagram Protocol, mentioned briefly in section 2, might yield very
different results, as it has not been built to guarantee a perfect delivery.

In the future this approach could perhaps be used in designing and imple-
menting new protocols, for the Internet, or for any new technology requiring
electronic data transmission. Using these logical tools, correctness and robust-
ness of real-life protocols can be verified.

As to further research, it would be interesting to investigate whether the
correctness results of section 4 may be extended. We conjecture, for example,
that an environment with any two kinds of deletion, mutation, and insertion
errors can be handled by implementing the knowledge-based algorithm for TCP
using encodings similar to [5].

Acknowledgements

We would like to thank Egon Baars and Jeroen Meijer who (together with author
Freek Stulp) were contributors to the student project which inspired the writing
of this article. Also thanks to Bill Bitner who answered some of our questions
about TCP as it works in practice.

References

[1] Y. Afek, H. Attiya, A. Fekete, M. J. Fischer, N. Lynch, Y. Mansour, D.
Wang and L. D. Zuck, Reliable communication over unreliable channels,
Journal of the ACM, Vol. 41, No. 6 (1994), pp. 1267-1297.

[2] A.V. Aho, J.D. Ullman, A.D. Wyner, and M. Yannakakis, Bounds on the
size and transmission rate of communication protocols. Computers and
Mathematics with Applications, vol. 8 nr. 3 (1982), pp. 205-214.

[3] B. Bitner and R. White, Care and Feeding for better VM TCP/IP
Performance, IBM Endicott, 1992.
http://vmdev.gpl.ibm.com/dEVPAGES/Bitner /presentations/
tepip/ipcare.html

[4] R. Fagin, J.Y. Halpern, Y. Moses and M.Y. Vardi, Reasoning about Knowl-
edge, Cambridge (MA), MIT Press, 1995.

[5] J.Y. Halpern and L.D. Zuck, A little knowledge goes a long way: simple
knowledge-based derivations and correctness proofs for a family of proto-
cols. Journal of the ACM 39, nr. 3 (1992), pp. 449-478. Earlier version
appeared in: Proceedings of the Sizth ACM Symposium on Principles of
Distributed Computing, 1987, pp. 269-280.

[6] J.Y. Halpern and Y. Moses, Knowledge and common knowledge in a dis-
tributed environment, Journal of the ACM 37, nr. 3 (1990), pp. 549-587.

12



[7] J.-J. Ch. Meyer and W. van der Hoek, Epistemic Logic for AI and Computer
Science, Cambridge, Cambridge University Press, 1995.

[8] R. van der Meyden, Common knowledge and update in finite environments,
Information and Computation 140, No. 2 (1998), pp. 115-157.

[9] M. Miller, Troubleshooting TCP/IP: Analyzing the Protocols of the Inter-
net, San Mateo (CA), Prentice-Hall, 1992.

[10] F. Stulp, Visualisation of the Transmission Control Protocol,
http://tcw2.ppsw.rug.nl/ ~freeks/tcp/

13



