
Movement Segmentation using a Primitive Library

Franziska Meier Evangelos Theodorou Freek Stulp Stefan Schaal
fmeier@usc.edu etheodor@usc.edu stulp@clmc.usc.edu sschaal@usc.edu

Computer Science, Neuroscience, and Biomedical Engineering, University of Southern California, Los Angeles, USA

Abstract— Segmenting complex movements into a sequence
of primitives remains a difficult problem with many applications
in the robotics and vision communities. In this work, we show
how the movement segmentation problem can be reduced to
a sequential movement recognition problem. To this end, we
reformulate the original Dynamic Movement Primitive (DMP)
formulation as a linear dynamical system with control inputs.
Based on this new formulation, we develop an Expectation-
Maximization algorithm to estimate the duration and goal
position of a partially observed trajectory. With the help of
this algorithm and the assumption that a library of movement
primitives is present, we present a movement segmentation
framework. We illustrate the usefulness of the new DMP formu-
lation on the two applications of online movement recognition
and movement segmentation.

I. INTRODUCTION

Automatically observing and interpreting human move-
ment has become an important topic in computer vision,
robotics, human robot interaction, surveillance, and many
other fields. One can at least distinguish two major purposes
of observing movements with a computer system: i) action
understanding with the help of classification algorithms, and
ii) parsing observed movement into units of action that
can be reproduced on a robotic system. In point (i), the
representations for activity understanding only subserve the
subsequent classification algorithms, and a wide variety of
possibilities exist [1]. For point (ii), it is important that the
representations for extracting units of actions also relate to
movement generation, which is more constraining.

Our work addresses the latter issue. The larger goal of our
research is to bootstrap autonomous learning robots through
imitation learning, i.e., to teach robots by demonstrating
motor skills, which the robot can subsequently refine by
autonomous trial-and-error learning. As many others [2], we
start our work with the assumption that complex movement
skills are composed from smaller units of action, which we
call movement primitives. A significant amount of previous
work in the literature tries to segment human movement
into such movement primitives, e.g., with statistical methods
[3], [4]. A typical problem of such approaches is that the
extracted segments are behaviorally often of little meaning,
such that movement generation with such primitives is not

This research was supported in part by National Science Founda-
tion grants ECS-0326095, IIS-0535282, IIS-1017134, CNS-0619937, IIS-
0917318, CBET-0922784, EECS-0926052, CNS-0960061, the DARPA pro-
gram on Advanced Robotic Manipulation, the Army Research Office, the
Okawa Foundation, and the ATR Computational Neuroscience Laboratories.
F.S. was supported by a Research Fellowship from the German Research
Foundation (DFG).

straightforward in the context of a desired task. In contrast,
we assume that useful segments have already been taught in
isolation, such that a pre-existing library of movement prim-
itives exists. Thus, in this research, our goal is to recognize
these primitives in a complex movement sequence, and also
indicate that a new primitive has to be learned if no element
of the library provides a sufficient fit. A typical problem
in this scenario is that temporally adjacent primitives have
been smoothed together, such that clear demarcation points
for segmentation are not easy to find.

In a fully developed stage, this research will be able to
bootstrap a library of movement primitives from a continual
learning process.

After giving a brief literature review in the next section,
we formalize the concept of movement segmentation using
a library in Section III. In Section IV we introduce the
mathematical and algorithmic details of our approach. Sec-
tion V and VI then present possible applications and results,
respectively.

II. RELATED WORK

The approaches to movement segmentation can be grouped
into two main categories. The first category comprises of
methods that perform segmentation without the use of pre-
trained motion primitive models. In [5] a combination of k-
means clustering and dynamic programming is presented for
temporal segmentation of human motion. Most approaches
can also be viewed as methods to identify movement prim-
itives in observed data. For instance, [6] represent motion
primitives as dynamical systems incorporated in a gaussian
process. A sequence of dynamical models is segmented
by inferring switches between different Gaussian process
models. Another approach to identifying motion primitives
is proposed in [7], where movement is assumed to be
generated by a factorial hidden Markov model (HMM), in
which each chain represents a primitive. In [8], dictionaries
of human motion primitives are learned using an approach
based on sparse coding. A generative probabilistic model for
movement segmentation, where movement is assumed to be
generated by a sequence of hidden trajectories, is introduced
in [9].

The second major category of movement segmentation
methods comprises of approaches that use pre-trained motion
models and perform movement segmentation with simul-
taneous movement recognition. Many approaches in vision
applications train HMMs to represent one motion primitive,

for instance [10] and [11]. While in [10] stochastic context-
free grammars are used to probabilistically parse likelihood
outputs of HMMs to obtain the most likely sequence of
segments, [11] first applies adaboost to combine several
HMMs to learn a strong classifier for one primitive, and
then employs a dynamic programming approach to perform
simultaneous recognition and segmentation. [12] represents
human motion through autoregressive models and utilizes
a version of the condensation filtering algorithm that au-
tomatically switches between the models. More details on
movement segmentation in the vision community is given
in [1].

III. MOVEMENT SEGMENTATION USING A LIBRARY OF
MOVEMENT PRIMITIVES

When performing movement segmentation based on an
observed trajectory Y = {y1,y2, ...,yT}, with yt as the vector
of state variables for all degrees-of-freedom (DOFs) at time
t, it is, in general, not known, what and how many motion
segments Y = [Y(1),Y(2), . . . ,Y(N)] are present. Even if the
sequence of N primitives within Y is known, it is still
necessary to identify switching points between segments to
carry out segmentation. Thus, the segmentation problem is
divided into three subproblems:
• determining the number N of segments within Y,
• estimating start and end time of each segment Y(n),
• and recognizing which primitive from the library is

executed in each segment Y(n).
In this paper we aim at movement segmentation with simul-
taneous movement recognition.

We approach the segmentation problem by assuming that
a library L of movement primitives exists, which contains
all primitives expected to appear in any observed trajectory.
Furthermore, we assume that the first observed data point
is the starting point of the first motion segment Y(1). Thus,
we begin the segmentation by determining the time t1 that
corresponds to the end of segment Y(1) =Y1:tt such that Y1:t1
optimally matches one of the movement primitives in library
L . The optimal matching is done in an online fashion by
increasing the value of t1 from a start time until the trajectory
Y1:t1 can be recognized with high statistical confidence as
a primitive in library L – note that t1 will, in general,
not be the same as the true duration of a primitive due to
the temporal overlapping of primitives when performed in
sequence. Once t1 has been found, Y(1) is removed from the
sequence Y, and the whole process is repeated. As a result,
the movement segmentation problem has been reduced to the
problem of online sequential movement recognition.

In order to realize online movement recognition, we have
to address two open questions. First, a representation is
needed for the movement primitives in the library L , and
second we require a recognition algorithm that is suitable for
recognition of partially observed motions, as we have to as-
sume that temporally adjacent primitives have been smoothed
together, a phenomenon addressed as co-articulation in the
behavioral literature [13]. We have chosen to represent the
movements as Dynamic Movement Primitives (DMP) [14].

DMPs have a compact representation and can be formulated
such that they are parameterized by the movement duration
τ and goal position g of the encoded motion, i.e., the
segmentation point if no co-articulation were present. Having
the duration and goal position as open parameters enables us
to represent many different versions of the same movement
primitives, as DMPs have especially designed temporal and
spatial generalization properties. We show how the original
DMP formulation is expressed as a linear dynamical system
(LDS) with control inputs. Additionally, we demonstrate how
the new formulation together with the library of primitives
is used to solve both movement recognition and movement
duration in a well-define statistial maximum-likelihood es-
timation problem, which is solved with an Expectation-
Maximization algorithm.

IV. KALMAN FILTER FORMULATION OF DYNAMIC
MOVEMENT PRIMITIVES

Dynamic Movement Primitives (DMPs) encode a desired
movement trajectory in terms of the attractor dynamics of
nonlinear differential equations [14]. For a 1 DOF system,
the equations are:

1
τ

ż = αz(βz(g− p)− z)+ s f

1
τ

ṗ = z (1)

such that p, ṗ, p̈= ż are position, velocity, and acceleration
of the movement trajectory, where

f (x) =

N
∑

i=1
ψiwix

N
∑

i=1
ψi

, with ψi = exp
(
−hi(x− ci)

2)
with

1
τ

ẋ =−αxx

and
s =

g− p0

g f it − p0, f it
=

g− p0

∆g

In general, it is assumed that the duration τ and goal
position g are known. Thus, given τ and g the DMP is
parametrized through weights w = (w1, ...,wN)

T which are
learned to represent the shape of any smooth movement.
During this fitting process, the scaling variable s is set to
one, and the value of ∆g is stored as a constant for the DMP.

In our problem setting the parameter roles are reversed.
We are given a library of dynamic movement primitives

L = {Θ(1), . . . ,Θ(m), . . . ,Θ(M)},

where M is the number of movement primitive in the
library and Θ(m) = {w(m), ∆g(m)}. Assuming we know which
primitive has generated a partially observed motion Y, we
can plug the corresponding w and ∆g in (1), but are left
wondering about which value to use for τ and g. We would
like to determine these values such that the distance between
the trajectory P produced by (1) and the observed trajectory
Y is minimal.

To accomplish this goal, we reformulate the original DMP
to take the form of a linear dynamical system, with τ and g as
the key system parameters. As a result, the estimation of τ,g
becomes a system identification problem, and the similarity
measure between Y and P is given through the likelihood
p(Y|τ,g).

A. Reformulation

The DMP equations are discretized using Euler discretiza-
tion with time step ∆t, resulting in

xt = −αx xt−1τ ∆t + xt−1

zt = (αz(βz(g− pt−1)− zt−1)+ s f (xt−1))τ ∆t + zt−1

pt = zt−1τ ∆t + pt−1

Next, we formulate the discrete time DMP as a linear
dynamical system with inputs and Gaussian noise. Let st =(
zt pt

)T be the (hidden) state of the primitive and yt the
observed trajectory point at time step t. We can write the
stochastic DMP as

st = A1st−1 +A2st−1τ +B∗ τ ∗ut−1 + ε

yt = C st + v

where ε ∼ N(0,Q) and v ∼ N(0,R). The state transition
matrices A1 and A2 are defined as

A1 =

(
1 0
0 1

)
,A2 =

(
−αz ∆t −αzβz ∆t

∆t 0

)
.

The control input matrix B and the observation matrix C are
set to

B =

(
∆t
0

)
, C =

(
0 1

)
and the control input ut is computed as

ut = αzβzg+ s f (xt).

Note that the phase variable x is not part of the state st and
only influences the input ut .

B. Parameter Estimation

The parameters of the stochastic DMP formulation are
given by

θall = {w,∆g,τ,g,A1,A2,B,C,Q,R}.

However, the state transition, control input and observation
matrices are fixed and do not depend on the problem setting.
Furthermore, we assume that the weights w and the value of
∆g are known for primitives in the library. Thus the open
parameters that can influence the likelihood of observing a
trajectory Y are

θ = {τ,g,Q,R}

The goal is to estimate these parameters given an observed
trajectory Y= {yt}T

t=1 using maximum likelihood estimation.
Because the model has hidden variables S = {st}T

t=1 we use
an Expectation Maximization algorithm to estimate these
variables.

TABLE I: Duration and Goal Estimation

• Given
– Partially observed movement Y1:T
– weights w and ∆g of movement
– initial estimate of goal g and duration τ

– state transition matrix A = A1 +A2τ and control matrix B
– observation matrix C and noise covariance matrices Q,R

• for i = 1 : itermax
% perform forward kalman filter

– init ŝ+f ,0 = E[s0] and V f ,0 = E[(s0− ŝ+f ,0)(s0− ŝ+f ,0)
T]

– for t = 1 : T
∗ P f ,t = A V f ,t−1A+Q
∗ K = P f ,t CT (CP f ,t CT +R)−1

∗ ŝ−f ,t = A ŝ+f ,t−1 +B ut−1

∗ ŝ+f ,t = ŝ−f ,t +K (yt −C ŝ−f ,t)
∗ V f ,t = (I−K C)P f ,t
∗ ct = N (yt | C ŝ−f ,t , C P f ,t CT +R)

end
% perform smoothing and compute needed expectations

– init ŝT = ŝ+f ,T and VT = V f ,T
– for t = (T −1) : 1
∗ Jt = V f ,t A(P f ,t+1)

−1

∗ Vt = V f ,t −Jt(P f ,t+1−Vt+1)JT
t

∗ ŝt = ŝ+f ,t +Jt(ŝt+1− ŝ−f ,t+1)
∗ E[st] = ŝt
∗ E[st sT

t] = Vt + ŝt ŝT
t

∗ E[st sT
t−1] = Jt−1Vt + ŝt ŝt−1

end
% compute log likelihood

– l = ∑
T
t=1 ln(ct)

% collect statistics and update parameters g and τ

– Σ1 = 0; Σ2 = 0; Σ3 = 0; Σ4 = 0
– for t = 2 : T
∗ Σ1 = Σ1 +Tr(AT

2 E[st sT
t−1])+E[st]

T But−1
Σ1 = Σ1−Tr(A2E[st−1sT

t−1]A
T
1)−E[st−1]

T AT
1 But−1

∗ Σ2 = Σ2 + Tr(A2E[st−1sT
t−1]A

T
2) + 2E[st−1]

T AT
2 But−1

Σ2 = Σ2 +uT
t−1BT But−1

∗ û = f (xt−1)/(∆g)+αzβz
∗ Σ3 = Σ3 + û BT (E[st]−A1E[st−1]−A2E[st−1]τ)
∗ Σ4 = Σ4 + û BT B û;

– end
– τ = Σ1/Σ2;
– g = 1/τ ∗ (Σ4)

−1Σ3;
end
return log likelihood l and updated parameters τ,g

The complete data log likelihood is given by:

ln p(Y,S|τ,g) = ln p(s1)

+
T

∑
t=2

ln p(st |st−1,A1,A2,B,ut−1,Q,τ,g)

+
T

∑
t=1

ln p(yt |st ,C,R)

Taking the expectation of the complete-data log likelihood
with respect to the posterior p(S|Y,θ old) defines the function

Q(θ ,θ old) = ES|θ old
[

ln p(Y,S|θ)
]
,

which we want to maximize with respect to θ . The max-
imum likelihood solution of all parameters in θ are found
analytically. Taking the derivative of Q(θ ,θ old) with respect

to τ1 and solving for τ , yields

τ =
Σ1

Σ2

where Σ1 and Σ2 are given through

Σ1 =
T

∑
t=2

{
Tr(AT

2 E[stsT
t−1])+E

[
sT

t
]
But−1

−Tr(E
[
st−1sT

t−1
]
AT

1 A2)−E
[
st−1

]T AT
1 But−1

}
Σ2 =

T

∑
t=2

{
Tr(E

[
st−1sT

t−1
]
AT

2 A2)

+2E
[
sT

t−1
]
AT

2 But−1 +uT
t−1BT But−1

}
.

Optimizing for g results in the update

g =
1
τ
(Σ4)

−1
Σ3,

with

Σ3 =
T

∑
t=2

ûT
t−1BT Bût−1

Σ4 =
T

∑
t=2

ûT
t−1BT (st −A1st−1−A2st−1τ)

and
ût =

f (xt)

∆g
+αzβz

To compute the maximum likelihood estimation of θ , the
following expectations are needed:

E
[
st−1] = ŝt−1

E
[
st−1sT

t−1] = cov(st−1,st−1)+ ŝt−1ŝT
t−1

E
[
stsT

t−1] = cov(st ,st−1)+ ŝt ŝT
t−1.

The estimates of the state and covariance matrices are cal-
culated through Kalman smoothing. In Table I the complete
algorithm for updating the goal and duration parameter of a
1D trajectory is given.

So far we have presented a probabilistic version of Dy-
namic Movement Primitives. With the probabilistic formula-
tion it is possible to estimate the duration τ and the goal
position g of a partially observed trajectory. In the next
section we describe how this new formulation is used to
perform movement recognition and prediction of the goal
position of a partially observed motion, and how to perform
movement segmentation.

V. APPLICATIONS

In the previous section we have seen that given the weights
w of the DMP we can estimate the optimal τ and g for an
observed trajectory Y. However, in reality we do not know

1Note that the phase variable xt is not part of state st although xt depends
on τ . However, one can show that the inclusion of xt in st with the
assumption of no noise on xt , leads to the same update equation for τ .

Fig. 1: Illustration of EM fitting of a partially observed trajectory.
(Top) 3 primitives in the library. (Bottom) Observed trajectory in
blue, and the estimated goal, duration and likelihood estimates
for each primitive obtained through the EM algorithm. The green
dashed line shows the predicted rest trajectory, given the estimates
of g(m),τ(m).

the w that generated the observations. Thus we build a library
of movement primitives containing all primitives expected to
be observed. Each primitive is parametrized through

Θ
(m) = {w(m),∆g(m),θ (m) = {τ(m),g(m),Q(m),R(m)}}.

Given the library, we can optimize the parameters θ (m) for
each primitive by plugging w(m) and ∆g(m) into (1) and
executing the EM algorithm as described in Table I. This
is illustrated in Fig. 1, where the library consists of the three
letters ‘a’, ‘o’ and ‘u’. The blue line represents the partially
observed trajectory that is used to fit the duration and goal
parameters for all three primitives. For letters ‘a’ and ‘o’
we see that the resulting goal position makes sense, and that
both letters are possible. Freek: How can we see that? I
don’t understand where this is visualized.

A. Creating the Library

During the creation of a primitive library we want to get an
average estimate of all parameters in Θ(m). Given N examples
of each primitive m, we first need to learn the corresponding
averaged weights w(m). Since for each training instance, we
know the duration and goal position, this is easily done by
weighted linear regression. Note that in this phase, the value
of s in Equation (1) is set to one. However, for recognition
purposes we will need an average estimate of ∆g(m), thus
the mean of the goal offset across all training instances for
primitive m is computed. The same is done for duration τ and
goal position g, as these averaged values serve as plausible
initial values for the EM algorithm.

Given the weights w(m) the duration τ(m) and the goal
distance ∆g(m) for each primitive, we can learn the noise
matrices Q(m) and R(m) as well. This is done by using the
expectation maximization algorithm as described in Table I,
with the difference that τ and g values are known, and thus
fixed, and values for Q and R need to be updated. Update
equations for the covariance matrices are found following the

steps in [15] in the section on how to learn linear dynamical
systems.

B. Movement Recognition and Prediction

Given the primitive library, it is now possible to perform
online movement recognition. While observing a motion, we
hypothesize which primitive m in L is responsible for the
observed trajectory, and where and when it is going to finish.
This is achieved by executing the EM algorithm in Table II
on Y1:t for all primitives m at each time step t until all
data points yt have been observed, or one of the primitives’
likelihood crosses a threshold.

First, the state transition matrices A1,A2, control input
matrix B and the observation matrix C are initialized. These
matrices are the same across all primitives in L and do not
change their value during the recognition process. Next, the
weights w(m) that determine the shape of each primitive are
set to the average estimates from the library. Then for each
primitive m, the noise covariances, Q(m) and R(m), and the
duration τ(m) and goal g(m) are initialized with the values
from the library. The noise covariances will not be updated
once initialized. Thus the only parameters that change as
more data points yt become available are the duration and
goal parameter for each primitive.

At each time step t we optimize each primitive for τ(m) and
g(m) as to best fit the partially observed trajectory Y1:t . This is
done by running the EM algorithm Freek: missing word?
updating the current estimates of τ(m) and g(m). Some atten-
tion is required when updating the parameter τ . When trying
to optimize the duration of a primitive that is incompatible
with Y1:t , it can happen that τ approaches extremely small
or large values that are unreasonable. Thus we constrain τ to
be in the interval [τmin,τmax]. If at time step t the update step
produces a τ outside that interval, the EM step is aborted for
this time step, and the recognition procedure will retry for
that primitive at the next time step.

Furthermore, instead of running the EM algorithm until
convergence for each time step, we choose to perform 10
iterations at each time step. This saves computational effort
and avoids overfitting of τ and g in the very beginning
when only few data points have been observed. Through the
expectation step, we obtain the likelihood of all primitives
in the library to have generated Y1:t . These likelihood values
are used to classify the partially observed trajectory as the
letter with the currently highest likelihood.

C. Movement Segmentation

We now show how the online movement recognition
process is used to perform segmentation on a trajectory that
is a sequence of primitives. Let us assume that the complete
trajectory Y1:T consists of two concatenated primitives, for
instance a word with two letters. Furthermore, let t1 be
the time step of the last data point of the first letter. It
is assumed that the first observed data point Y1 represents
the start position of the first primitive. Then, we try to find
the end of the first segment by performing online movement
recognition, starting with two data points and keep adding

TABLE II: Movement Segmentation

• Given
– first data point Y1 of new segment
– Library of motion primitives Θ = {Θ(m)}M

m=1
• for each new data point yt

– add new data point yt to trajectory Yt−1 to obtain Y1:t
– for each primitive in library
∗ execute 10 iterations of EM on Y1:t to update the pa-

rameters τ(m),g(m) and compute the new log likelihood
l(m)
t = ln p(Y1:t |θ (m))

– find the currently most likely primitive: mml,t =

argmaxm l(m)
t

– if we have surpassed the expected duration of the best
primitive, i.e. t > τ

(mml,t), set t(∗) = t, then break
• find segmentation point ts = argmax

t∈[t∗−k, t∗]
l(mml)
t

data points. At each time step we monitor the likelihood of
all primitives. Let mml,t be the primitive with the highest
likelihood at time step t, and τ

(mml,t) its predicted duration.
Once we reach time step t∗, such that t∗ > τ

(mml,t), we
assume that we have found or already passed the end point of
the first segment. Thus, we stop the procedure and choose the
segmentation point t1 as the point with the highest likelihood
in the time interval [t∗− k, t∗], t1 = argmaxt∈[t∗−k, t∗](l

(mml)
t)

where k is a small value. At the same time the discovered
segment is labeled as primitive mml,t . Our procedure to
finding the end point of a segment is given in Table II. The
next segment is found by cutting off the previous segment
and restarting the online movement recognition process.

VI. EXPERIMENTS

For evaluation purposes we recorded a dataset of 2D
trajectories of letters and words with a digitizing tablet. All
letters that are easily written with one stroke have been
recorded, which is a total of 22, and for each letter we created
20 samples. The primitive library was generated using 15
samples of each letter. The 5 remaining instances were
used as test instances to evaluate the movement recognition
performance.

60
80

100
40

60
80

100

90

95

100

105

110

115

120

125

130

135

y

 start

x

z

prim 1

prim 2

prim 3

prim 4

Fig. 2: Training data obtained from robot.

Additionally, we recorded 3D trajectories through kines-
thetic teaching using the endeffector of a robotic manip-

ulator (Barrett WAM). The recorded movement trajectory
was a demonstration of how to reach for a bottle, move
the endeffector to pour the content of water into a cup, to
place the bottle to its original start position, and move the
endeffector back to its starting pose. Each motion primitive
was performed 10 times, of which 9 were used for training
the library. The training data for this experiment is shown in
Fig. 2. For segmentation evaluation purposes, the complete
sequence of all four segments was performed and recorded
as a continuous motion.

In the following, first the movement recognition is evalu-
ated, then we present some results showing how the online
movement recognition is used for movement segmentation.

A. Movement Recognition and τ,g prediction

predicted primitives

a
c
tu

a
l
p

ri
m

it
iv

e
s

(a) Full Trajectory

predicted primitives

a
c
tu

a
l
p

ri
m

it
iv

e
s

(b) Half Trajectory

Fig. 3: Confusion matrices of recognition results. Rows represent
the actual primitives ‘a’ to ‘z’, whereas columns represent predicted
primitives. The darker a square at rowi,col j the more often primitive
i was classified as primitive j.

of observed trajectory points

20 40 60 80 100 120 140 160 180

a
b
c
d
e
g
h
i
j

k
l

m
n
o
p
r
s
u
v
w
y
z −20

−15

−10

−5

0

Fig. 4: Log Likelihood plots: (Top) online recognition of letter
‘a’. The plot illustrates how the likelihood values change for each
primitive in the library as more data points become available.

First we evaluate the recognition rate on the test instances
of the letter data set. In total there are 110 test instances.
When given only half of the trajectory of the test instances
11 of the 110 were miss classified, resulting in a recognition
rate of 90%. Given the full trajectory the recognition rate
was perfect. The confusion plots of the recognition results
are shown in Fig. 3. The typical reason behind a miss
classification is that the two confused letters, for instance
letters ‘a’ and ‘o’, share a similar first trajectory half.

0 20 40 60 80 100 120 140 160 180
150

200

250

τ

0 20 40 60 80 100 120 140 160 180
0

50

g
x

0 20 40 60 80 100 120 140 160 180
−150

−100

−50

g
y

t

Fig. 5: Parameter evolution plot. For each parameter, the ground
truth is shown as the green line.

A typical result of the online recognition is shown in
Fig. 4. The task was to recognize a test instance of letter
‘a’. The log likelihood at each time step for each movement
primitive is shown, where red encodes high likelihood and
blue low likelihood. In the beginning all primitives have
a high likelihood of having generated the observed partial
trajectory. However, as more data points become available,
likelihoods of most letters that are not ‘a’ are dropping.
Towards the end, the primitive causing the observations
becomes obvious. Similar results are observed when carrying
out the same experiment on the robot data, Fig. 4 (bottom).
Here an instance of the second primitive is sequentially
classified. While the first and fourth primitive have visibly
lower likelihoods in the end, the third primitive is almost as
likely as the second. This makes sense when looking at the
training data. The second (green) and third (red) primitive
have almost the same shape.

For the same instance of ‘a’, we also show how the
parameters τ and g evolve over time, see Fig. 5. After using
half of the trajectory points the estimate of τ is already close
to the ground truth.

B. Movement Segmentation

Some typical segmentation results using the algorithm in
Table II are shown in Fig. 6. In examples 6a and 6c all seg-
ments have been correctly found and classified. Instance 6b
illustrates a case where the current segmentation procedure
fails. While the first four segmentation points have been
found correctly, the last segmentation point was selected
too greedily. The fifth segment was cut off too early and
recognized as letter ‘c’ instead of ‘o’. The left over trajectory
can now not be classified anymore.

VII. CONCLUSION

In this paper, we present a movement segmentation al-
gorithm that assumes the presence of a library and reduces
the segmentation problem to online movement recognition.
We show how the original DMP formulation is reformulated
so that given a partially observed trajectory its duration
τ and goal position g are estimated using an expectation
maximization algorithm. Furthermore, we demonstrate how
the recognition of partially observed trajectories and the
prediction of τ and g is used in a segmentation framework.

550 600 650 700 750 800 850 900 950 1000
−520

−500

−480

−460

−440

−420

−400

(a)
600 650 700 750 800 850 900 950 1000 1050

−480

−460

−440

−420

−400

−380

−360

−340

(b)
60

70
80

90
100

110 50
60

70
80

90

95

100

105

110

115

120

125

130

(c)

Fig. 6: Segmentation results: For (a) and (b) the green dots indicate the selected segmentation points. For (c) the colors
represent the found primitives.

Future work will augment this framework so that it is
possible to recover from wrongly chosen segmentation points
and deal with cases in which no primitive in L can be found
to fit parts of a trajectory.

REFERENCES

[1] D. Weinland, R. Ronfard, and E. Boyer, “A survey of vision-based
methods for action representation, segmentation and recognition,”
Computer Vision and Image Understanding, 2011.

[2] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends
in Cognitive Sciences, vol. 3, no. 6, pp. 233–242, 1999, clmc.

[3] T. Inamura, T. Iwaki, H. Tanie, and Y. Nakamura, “Embodied sym-
bol emergence based on mimesis theory,” International Journal of
Robotics Research, vol. 23, no. 4-5, pp. 363–377, 2004.

[4] O. Jenkins and M. Mataric, “Performance-derived behavior vocab-
ularies: Data-driven acqusition of skills from motion,” International
Journal of Humanoid Robotics, vol. 1, no. 2, pp. 237–288, Jun 2004.

[5] F. Zhou, F. Torre, and J. Hodgins, “Aligned cluster analysis for
temporal segmentation of human motion,” in Automatic Face &
Gesture Recognition, 2008, pp. 1–7.

[6] M. Alvarez, J. Peters, B. Schölkopf, and N. Lawrence, “Switched latent
force models for movement segmentation,” NIPS, 2010.

[7] B. Williams, M. Toussaint, and A. Storkey, “Extracting motion prim-
itives from natural handwriting data,” ICANN, pp. 634–643, 2006.

[8] T. Kim, T. Chicago, G. Shakhnarovich, and R. Urtasun, “Sparse coding
for learning interpretable spatio-temporal primitives,” NIPS, 2010.

[9] S. Chiappa and J. Peters, “Movement extraction by detecting dynamics
switches and repetitions,” NIPS, 2010.

[10] A. Bobick and Y. Ivanov, “Action recognition using probabilistic
parsing,” in CVPR, 1998, pp. 196 –202.

[11] F. Lv and R. Nevatia, “Recognition and segmentation of 3-d human
action using hmm and multi-class adaboost,” in ECCV, 2006, pp. 359–
372.

[12] J. Rittscher and A. Blake, “Classification of human body motion,” in
ICCV, vol. 1, 1999, pp. 634 –639 vol.1.

[13] R. Sosnik, T. Flash, B. Hauptmann, and A. Karni, “The acquisition
and implementation of the smoothness maximization motion strategy
is dependent on spatial accuracy demands,” EXPERIMENTAL BRAIN
RESEARCH, vol. 176, no. 2, pp. 311–331, 2007.

[14] A. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor landscapes
for learning motor primitives,” Advances in neural information pro-
cessing systems, pp. 1547–1554, 2003.

[15] C. Bishop, Pattern recognition and machine learning. Springer New
York, 2006, vol. 4.

