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I. INTRODUCTION

When first posed with the problem 15 x 15, we may
generate the answer by applying a set of rules, e.g breaking
the problem down into (10 + 5) x 15 and solving the
subcomponents of these simpler multiplications first [2]. But
after having solved this problem several times, we simply
recall that the answer to 15 x 15 is 225. This distinction
between generation and recall can also be applied to motor
planning [2], as described in the next two sections.

A. Motion Generation

Motion generation is based on planning with internal mod-
els, to determine which movements should be used to achieve
a specific goal [2]. An example in robotics is Rapidly-
exploring Random Trees (RRTs) [6], where a (bidirectional)
search based on an internal model of the environment and
the robot is used to find a collision-free motion plan from
the current state to the goal state. The main advantage of
using motion generation is its generality — in theory, if a
motion plan connecting two states exists, it can be found.
We believe this generality is one of the main reasons for
the popularity of sampling-based motion planning in state-
of-the-art mobile manipulation. A disadvantage, however, is
that accurate internal models must be available to perform
the search. Also, changes in dynamic environments might
invalidate the plan, and thus require re-planning.

B. Motion Recall

In motion recall, a specific movement is stored, e.g. a
particular movement for grasping objects. When the appro-
priate task context arises, e.g. we see a cup on a table, we
recall this movement and execute it. This is analogous the
remembering that the number 225 is the answer to 15 X 15,
rather than generating it from scratch. Small adaptations may
be necessary to adapt the stored movement to the specific
task parameters, e.g. the specific position of the object on
the table.

Recalling motion plans exploits the fact that in almost all
activities of daily living, related tasks are encountered over
and over again. Therefore, humans “tend to solve similar
or even identical instances over and over, so we can keep
recycling old solutions with minor modifications” [4]. An
example of this approach in robotics is using Dynamic

Movement Primitives [5], which represent a goal-directed
movement as a set of dynamical systems equations, where the
goal parameters may be adapted to the specific task. Motion
primitives are typically initialized with imitation learning,
and then ‘replayed’ in similar task contexts. Some advantages
of motion recall with motion primitives are: its negligible
computational cost; reproducibility of the movement, since
the same primitive is executed in the same context; on-
line adaptation without replanning, e.g. dynamic obstacle
avoidance. A disadvantage is that each motion primitive can
only be applied to a limited task context, and is thus not very
general.

C. Project Goals

The main goal of our collaboration is to quantitatively
evaluate the advantages of using motion generation and/or
motion recall for everyday manipulation tasks on a com-
mercial robot platform. We do so along the dimensions of
generality, motion variability, and computational load.

II. IMPLEMENTATION

Our evaluation is performed with the REEM humanoid
robot developed at PAL Robotics, and depicted in Fig. [I} To
implement motion generation, we use the open-source im-
plementation LazyRRT in the OMPL library [11], combined
with the constraint aware spline smoother [9]. For motion
recall, we use an open source implementation of Dynamic
Movement Primitives [10] to represent, store and execute
motion plans.

III. RESULTS

The results with respect to the tree evaluation measures
are depicted in the video, as well as Fig. [I}

o Motion Variability. Because a new plan is generated
from scratch with LazyRRT each time, there is high
variance in the generated movement. In the video this
is visualized by overlaying 4 executions. In Fig. |1 the
mean and standard deviation over 100 trials is shown.
When using Dynamic Movement Primitives, the same
primitive is executed at each trial, so the variance is
very low — in the video, it is hardly visible that 4 trials
have been overlayed.
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LazyRRT+trajectory filter (no replanning): 91% success rate.

Fig. 1.

o Computational Load. First of all, the planning time for
the LazyRRT makes up 35% of the total execution time,
averaged over 100 trials. For the Dynamic Movement
Primitives, this is 0%.

o Generality. The LazyRRT is a probabilistically com-
plete motion planner. If given enough planning time, it
will eventually find a solution to the problem at hand,
if it exists. On the other hand, Dynamic Movement
Primitives perform well within their prescribed context,
but poorly outside of it. In our experiments, the task
context is limited to reaching different positions over a
moderately tall table. Within the table plane, the motion
primitive is able to generalize to targets more than 0.4m
away from the learned goal, but when faced with a table
that is lower by 0.25m, the motion primitive fails to
render the qualitatively different motion that is required.

IV. CONCLUSION AND OUTLOOK

Our preliminary results show that the advantages of motion
generation and motion recall are complementary, which
suggests a system that uses both strategies to have the
best of both worlds. This comparison therefore constitutes
the first step in a broader research project, in which we
will investigate how methods based on motion recall for
motion planning can be integrated for general, efficient, and
reproducible behavior in mobile manipulation. Some of the
specific research questions we seek to address are:

« How can we initialize motion primitives with the output
of sampling-based motion planners [1]? I.e. how can we
recall plans that have previously been generated [8]?

e« How can robot (learn to) recognize in which task
contexts a motion primitive can be successfully exe-
cuted [3]?
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Evaluation of the variability and planning time of LazyRRT (left) and DMPs (right).

How repetitive are everyday manipulation tasks, and
how many motion primitives are required to solve the
bulk of them?

How can we plan with motion primitives, for instance
to generate sequence of motion primitives for more
complex pick-and-place tasks?

How do optimization principles in sampling-based mo-
tion planning [7] influence the variability of the motion
plans they generate?
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