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Abstract. A key feature of human cooperation is that we can coor-
dinate well without communication or negotiation. We achieve this by
anticipating the intentions and actions of others, and adapting our own
actions to them accordingly. In contrast, most multi-robot systems rely
on extensive communication to exchange their intentions.
This paper describes the joint approach of our two research groups to
enable a heterogeneous team of robots to coordinate implicitly, without
negotiation. We apply implicit coordination to a typical coordination
task from robotic soccer: regaining ball possession. We discuss the bene-
fits and drawbacks of implicit coordination, and evaluate it by conducting
several experiments with our robotic soccer teams.

1 Introduction

Coordination of actions is essential to solve multi-agent tasks effectively. A strik-
ing aspect of human coordination is that we can achieve it with little or no com-
munication. Consider two people assembling a bookcase. With apparent ease,
actions are anticipated and coordinated: if I see you grab a screwdriver, I will
take one of the shelves, and hold it in place, and so forth. Instead of commu-
nicating, humans achieve this by inferring the intentions of others. Once the
beliefs and desires of the cooperating party are known, we simply imagine what
we would do in that situation. This is called the Intentional Stance [1].

In previous research, we have achieved negotiation-free coordination, also
called implicit coordination, within the Agilo RoboCuppers group [2]. Here, we
extend and integrate this with another line of research, which is the formation of
a mixed team [3]. Due to scientific as well as pragmatic reasons, there is a growing
interest in the robotics field to join the efforts of different labs to form mixed
teams of autonomous mobile robots. For many tasks, a group of heterogeneous
robots with diverse capabilities and strengths is likely to perform better than one
system that tries to encapsulate them all. Also, for many groups, the increasing
cost of acquiring and maintaining autonomous mobile robots keeps them from
forming a mixed team themselves. Furthermore, to allow all mid-size teams to
participate at RoboCup 2006, many of them are required to form a mixed team.
Our two groups, who have individually taken part in the RoboCup mid-size
league since 1998, have formed a mixed team with robots from the different



labs. As almost all robots in this league, our robots are custom built research
platforms with unique sensors, actuators, and software architectures. Therefore,
forming a heterogeneous cooperative team presents an exciting challenge. One
of these challenges is achieving robust coordination.

The standard solution in robotic teams is not to anticipate the actions of
others, as humans do, but instead to extensively communicate utilities or in-
tentions in a negotiation scheme. Previous work on robot coordination seems to
have focussed almost exclusively on explicit coordination, as an overview paper
on the key architectures shows [4].

In this paper, we discuss the benefits of implicit coordination, and imple-
ment it for our heterogeneous team. We apply implicit coordination to a typical
coordination task from robotic soccer: regaining ball possession. Acquiring ball
possession is a goal for the team as a whole, but only one of the field players
is needed to achieve it. Of course, the robots must agree upon which robot will
approach the ball. The intuitive underlying rule is that only the robot who is
quickest to the ball should approach it. To infer the intentions of others, the
agents first learn utility prediction models from observed experience. For the
ball approach task, the utility measure is time, so the robots learn to predict
how long it will take to approach the ball. During task execution, the robots
locally predict the utilities for all robots, and globally coordinate accordingly.

The main contributions of this paper are: 1) learning temporal prediction
models that take technical differences between the robot platforms into account
2) using these models to enable implicit coordination within a heterogeneous
team of robots 3) demonstrating that coordination based on belief states is more
robust than explicit coordination.

The rest of this paper is organized as follows. In the next section we describe
how implicit coordination was implemented in our teams. Experimental results
are presented in Section 3. In this section, we also discuss the benefits, as well as
some drawbacks, of implicit coordination. Related work is presented in Section 4,
and we conclude with Section 5.

2 Applying Implicit Coordination

In [2], we introduced a computational model for implicit coordination, that spec-
ifies three components are necessary for implicit coordination: 1) utility predic-
tion models 2) knowledge of the states of others 3) the robots should have a
shared performance model for joint actions. In our scenario, the latter compo-
nent is a locker-room agreement [5] that only the quickest robot should approach
the ball. Here, we apply this computational model to a team of heterogeneous
robots. After presenting the two teams, we discuss the first two components of
the computational model in more detail.

The Ulm Sparrows [6] are custom built robots, with infrared based near range
finders and a directed camera. The available actuators are a differential drive,
a pneumatic kicking device and a pan unit to rotate the camera horizontally
(270o). Each robot acts upon an egocentric belief state, using the camera as its



main sensor. The Agilo RoboCuppers [7] are customized Pioneer I robots, with
differential drive and a fixed forward facing color CCD camera. They act upon
an allocentric belief state, which is acquired by cooperative state estimation.
For the experiments we will present later, it is important that the variables are
controllable and reproducible. Therefore, we have used our ground truth system
to determine the positions of the robots with even more accuracy. This system
uses three ceiling cameras to detect colored markers on top of the robots.

Utility Prediction Models. All robots must be able to predict their own
ball approach time, as well as that of others. Therefore, they learn temporal pre-
diction models from observed experience. Examples are gathered by navigating
to random targets on the field, thereby measuring the time it took to approach
the target. These measurements were acquired through the ground truth system.
A model tree is then trained with these examples. Model trees are functions that
map continuous or nominal features to a continuous value. They recursively par-
tition the data, and fit linear models to the data in each partition. In previous
research [2], we have shown that executing 300 navigation tasks yields a suffi-
cient amount of training examples to learn an accurate prediction model. This
takes about half an hour, so this is well within the continuous operational range
of the robots. The mean absolute error of the models on a separate test set was
0.25s for the Ulm Sparrows, and 0.18s for the Agilo RoboCuppers. For more
information about model trees, and how they can be used to learn action models
of navigation tasks, we refer to [2].

Knowledge of the states of others. Predicting utilities for others, called
perspective taking, can only be done if the robots have estimates of the other’s
states, which can be difficult if the robots only have local sensors. For instance,
due to the limited view of our cameras, it is often not possible to see all the
teammates. Therefore, our robots communicate their belief states to each other
to achieve more coherent and complete beliefs about the world [3], which they
use to determine their (joint) actions. This might seem contrary to the paradigm
that we want to achieve coordination without communication. However, there
are some important differences between communicating intentions and commu-
nicating beliefs, as we shall discuss in Section 3.2.

3 Experimental Evaluation

To evaluate if the learned prediction models and shared representations are suffi-
ciently accurate for implicit coordination, we have conducted three experiments,
one in a dynamic, one in a static environment, and one in simulation. For each
experiment, we used one Sparrow and one Agilo robot. Each robot has a tem-
poral prediction model for both robot types.

Dynamic environment experiment. In this experiment, the robots con-
tinuously navigated to random targets on the field, for about half an hour. The
paths were generated such that interference between the robots was excluded.
At 10Hz, each robot records its own position and orientation, as well as that of
its teammate and the ball. Each robot also logs the predicted approach time for



both robots, and based on these times, which robot should approach the ball, in
their view. Note that the robots never actually approach the ball.

Static environment experiment. In the previous experiment, it is im-
possible to measure if the temporal predictions were actually correct, and if
potential inaccuracies caused the robots’ estimate of who is quickest to be incor-
rect. Therefore a second experiment was conducted. The experimental set-up was
as follows: Both robots navigate to different random positions and wait there.
During the experiment, the target to approach is fixed and the same for both
robots. Then, the robots are requested to record their own state, as well as that
of their team mate. The robots compute the predicted approach times, and add
them to the log-file. Then, one after the other, the robots are requested to drive
to the goal position, and the actual approach duration is recorded. The log-files
so acquired are almost identical to the ones in the dynamic experiment. The
only difference is that they also contain the actual observed time for the robot.
This static environment is less realistic, but allows us to compare the predicted
time with the actually measured time for each robot.

Simulated experiment. Here, the experimental set-up is identical to the
dynamic experiment. The simulator allows us to vary two variables that most
strongly influence the success of implicit coordination. The first is communication
quality. At random times, and for random durations, communication is switched
off in both directions. By controlling the length of the intervals, we can vary
between perfect (100%) and no (0%) communication. The second is the field
of view of the robot. We can set the view angle of the robot’s forward facing
camera between 0 (blind) and 360 (omni-directional vision) degrees. The other
robot and the ball are only perceived when in the field of view. Gaussian noise
with a standard deviation of 9, 25 and 22 cm is added to the robot’s estimates of
the position of itself, the teammate and the ball respectively. These correspond
to the errors we have observed on the real robots.

3.1 Results

Do the robots agree upon who should approach the ball? To answer this question,
we simply determined how often the two robots agreed on which robot should
approach the ball in the dynamic experiment, which was 96%.

Do the robots choose the quickest one? We would also like to know if the
chosen robot is actually the quickest one to approach the ball. Of course, this
could only be determined in the static experiment, in which the actual times it
took each robot to approach the ball are known. A robot’s decision to coordinate
is deemed correct, if the robot that was the quickest was indeed predicted to be
the quickest. The robots’ choice was correct 92% of the time.

Are temporal prediction models necessary, or would a more simple value such
as distance suffice? Using only distance as a rough estimate of the approach
time, would save us the trouble of learning models. Although time is certainly
strongly correlated with distance, using distance alone leads to significantly more
incorrect coordinations. Agreement is still very good (95%), but the robot that
is really the quickest is chosen only 68% of the time. So, when using distance,



the robots are still very sure about who should approach it, but they are also
wrong about it much more often.

When does implicit coordination fail? In the dynamic experiment, coordina-
tion succeeds 96% of the time. In the log-file, we labeled all examples in which
exactly one robot decided to approach the ball with ‘Success’, and others with
‘Fail’. A decision tree was then trained to predict this value. The learned tree
is represented graphically in Figure 1. The main rule is that if the difference in
predicted times between two robots is small, coordination is likely to fail, and if
it is large, it is likely to succeed. This is intuitive, because if the difference be-
tween the times is large, it is less likely that estimation errors will invert which
time is the smallest. Note that in between these two limits, there is a ‘gray’ area,
in which some other rules were learned. They only accounted for a small number
of example, so for clarity, we will not discuss them here.

In sports like soccer or volleyball, it is
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Fig. 1. Visualization of the de-
cision tree that predicts coordi-
nation failure

sometimes not completely clear who should
go for the ball. Humans solve this problem
by communicating their intention through an
exclamation:“Mine!”, or “Leave it!”. The de-
cision tree essentially provides the robots with
similar awareness, as they predict when im-
plicit coordination failure is likely. So, they
could be used for instance to determine when
robots should resort to explicit coordination.

How do communication quality and state estimation accuracy influence co-
ordination? The results of the simulation experiment, which show how the per-
formance of different coordination strategies depends on the quality of commu-
nication and the field of view, are depicted in Figure 2. Communication quality
is the percentage of packets that arrive, and field of view is in degrees. The z-
axis depicts coordination success, which is the percentage that only one robot
intended to approach the ball.
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Fig. 2. Results of the simulation experiment, which show how the performance of
coordination strategies depends on the quality of communication and the field of view.



Since explicit coordination is based completely on communication, it is not
surprising that it perfectly correlates with the quality of the communication,
but is independent of the size of the field of view. No communications means
no coordination, and perfect communication means perfect coordination. For
implicit coordination without communication, the relation is converse. If a robot
is able to estimate the states of others better, it is able to coordinate better. The
third graph shows implicit coordination with belief state exchange (as used on
our real robots). If the robot has another in its field of view, it determines
the other’s state through state estimation, otherwise it uses communication (if
possible) to exchange beliefs. These states are then used to predict the utilities of
others, independent if they were perceived or communicated. The graph clearly
shows that this approach combines the benefits of both.

3.2 Discussion

There are several important benefits that implicit coordination without com-
munication has over explicit coordination. First of all, protocols and arbitration
mechanisms must be adopted between communicating entities to enable inten-
tion communication, which adds complexities and can degrade the system. It
is generally argued that communication can add unacceptable delays in infor-
mation gathering and should be kept minimal [8]. Furthermore, rescue robotics
and autonomous vehicles operating in traffic are examples of domains in which
robust communication is not guaranteed, but where correct coordination and ac-
tion anticipation is a matter of life and death. Finally, human-robot interaction,
a current research focus in for instance space exploration or rescue robotics, it
cannot be expected of humans to continuously communicate their intentions.
Instead, the robot must be able to anticipate a human’s intentions, based on
predictive models of human behavior. We consider implicit coordination to be
essential for natural interaction between robots and humans, so adhering to ex-
plicit coordination will prevent robots from making a break-through into these
application domains.

The most difficult aspect of implicit coordination is estimating the states of
others. Especially for robots with a limited field of view, such as ours, this is
problematic. Therefore, we resorted to the communication of beliefs to acquire
a shared representation. This might seem contrary to our communication-free
paradigm, but there is an important difference between communicating inten-
tions and beliefs. We believe that improvements in sensor technology and state
estimation methods will allow robots to autonomously acquire a increasingly
complete and accurate estimation of the states of others. In RoboCup for in-
stance, almost all mid-size teams have resorted to omni-directional vision to
achieve exactly that. So, beliefs needed to infer the intentions of others are be-
coming more complete and accurate, independent of communication. The arrow
in the third graph in Figure 2 depicts this trend. More accurate state estimation
can essentially replace communication. This is certainly not the case for explicit
coordination, which will always fully rely on communication.



Furthermore, the third graph in Figure 2 clearly shows that implicit coor-
dination with belief exchange achieves better performance with communication
loss than explicit coordination alone. Instead of complete coordination failure in
case of communication loss, there is a graceful decay, because a second system
based on state estimation can still be used to estimate the intentions of others.

Summarizing, improvements in sensor and state estimation will allow implicit
coordination to depend less and less on belief communication. This is necessary
to simplify communication schemes, increase coordination robustness, and enable
human-robot cooperation. This work proposes a step in this direction.

4 Related Work

The idea of cross team cooperation has some tradition within the RoboCup
leagues. The most similar mixed team cooperation effort was the Azzurra Robot
Team, a mid-size team from various Italian universities. Their focus was on
explicit role assignment and communication-based coordination strategies among
the field players [9].

Previous research on cooperation has focussed almost exclusively on explicit
coordination [4]. On the other hand, work on implicit coordination usually as-
sumes that all agents have access to a central and global representation of the
world, which is enabled by simulation, as in [10], or global perception, as in the
RoboCup small-size league [8,11]. In all these papers, teammates are not rea-
soned about explicitly, but are considered to be mere environment entities, that
influence behavior in similar ways to obstacles or opponents.

In [5] the issue of low band-width communication in the simulation league
is dealt with by locker-room agreements, in which players agree on assigning
identification labels to certain formations. During the game, only these labels,
instead of complete formations, must be communicated.

Most similar to our work is [12], in which robots in the legged-league also co-
ordinate through implicit coordination which is based on representations which
are completed through the communication of belief states. Communication is es-
sential, and assumed to be flawless. It is not investigated how communication loss
influences coordination. The utility measure is a sum of heuristic functions, which
are represented as potential fields. Whereas our utility models are grounded in
observed experience, and have a well-defined meaning (e.g. execution duration
in seconds), these heuristic functions have no clear semantics. Therefore, cus-
tomizing these functions to individual robots is difficult, as the semantics of and
interactions between them are not fully understood. However, this customiza-
tion is essential for achieving efficient coordination in a heterogeneous team with
robots with different dynamics and capabilities.

5 Conclusion

In this paper, we have discussed the necessity for implicit coordination in do-
mains in which communication is unreliable or impossible. Relying on intention



communication will prevent multi-robot systems from being applied in these
domains. We have presented a system that achieves implicit coordination by
predicting the utility of itself and others, and adapt its actions to the predicted
intentions of others. Knowing the states of others is essential, so belief states
are communicated. We have shown that this approach is more robust than com-
municating intentions, and have argued that improvements in sensors and state
estimation will allow implicit coordination to become increasingly independent
of communication. We have applied the system to a ball approach task from
robotic soccer, and demonstrated its performance in several experiments.

Our current work aims at learning temporal models that take opponent
robots into account. Because the state space of this problem is much larger,
more training examples are needed. We will also learn more complex models
that take into account the player’s roles, as well as strategic considerations.
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