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Abstract— Opportunities for interleaving or parallelizing
actions are abundant in everyday activities. Being able to
perceive, predict and exploit such opportunities leads to more
efficient and robust behavior. In this paper, we present a
mobile manipulation platform that exploits such opportunities
to optimize its behavior, e.g. grasping two objects from one
location simultaneously, rather than navigating to two different
locations. To do so, it uses a general least-commitment repre-
sentation of place, called ARPLACE, from which manipulation
is predicted to be successful. Models for ARPLACESs are learned
from experience using Support Vector Machines and Point Dis-
tribution Models, and take into account the robot’s morphology
and skill repertoire. We present a transformational planner that
reasons about ARPLACEs, and applies transformation rules to
its plans if more robust and efficient behavior is predicted.

I. INTRODUCTION

In everyday activities, opportunities for optimizing the
course of action arise constantly, as tasks can often be
interleaved or executed in parallel. For instance, when setting
the table, plates can be stacked instead of carrying them one
at a time, cupboards can be left open during the task, etc.
Being able to perceive, predict and exploit such opportunities
leads to more efficient and robust behavior.

To enable this approach, the robot must: 1) use least-
commitment planning, i.e. not prematurely commit to a
specific plan when it is not necessary; 2) have rules for
transforming suboptimal plans into more efficient ones. In
this paper, we apply plan transformation rules to a mobile
manipulation task, in which a robot approaches a table and
grasps one or more cups, as depicted in Fig. 1.
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Fig. 1. Mobile manipulation task considered in this paper. Example of a
successful and a failed attempt. This figure is explained in more detail in
Section IV.

To enable least-commitment planning when navigating in
order to grasp, we propose a concept of action-related place,
denoted ARPLACE, that takes into account the manipulation
and navigation skills of a robot, as well as its hardware
configuration. The ARPLACE is represented as a probability
map that maps positions of the robot and target objects to a
probability that the target objects will be successfully grasped
from the robot’s position. Fig. 2 visualizes ARPLACEs for
some given target object positions. The ARPLACE imple-
ments a least-commitment realization of positions, meaning
that the robot does not commit itself to a specific initial
position, but can refine it as the robot learns more about the
task context, such as a better estimation of the target object’s
position, or observed clutter in the environment.
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Fig. 2. Left: ARPLACE probability map for grasping cup with left gripper.
Center: ARPLACE probability map for right gripper. Right: Grab both
cups with left/right gripper respectively. It is the product of the other two
probability maps. Green areas mark regions where the probability of a
successful grasping action is high.

In this paper, we combine the concept of ARPLACE with a
transformational planning system and compose ARPLACES
for multiple actions. The transformational planning system
specifies its plans in RPL [12]. RPL is a flexible and
powerful language for specifying plans — control programs
that cannot only be executed but also reasoned about. Trans-
formational planning performs substantial changes in robot
behavior, e.g. by adding plan steps, removing unnecessary
ones, or reordering and recombining existing steps. More
specific examples are stacking of objects to reduce the
number of navigation actions, but also the elimination of
more critical failures such as moving objects temporarily out
of the way when they are blocking a location the robot needs
to navigate to.

We consider a scenario in which the robot has to pick
up two cups. By default, this task is solved by navigating
to one cup, grasping it, navigating to the second cup, and
grasping it. By using the ARPLACE probability map, the
transformational planner is able to decide if a position exists
where the probability of successfully grasping both cups at



once is sufficiently high. If this is the case, the planner
applies a rule for transforming the default plan into the
more efficient plan of grasping both cups from one position.
This reduces the overall plan length (we save one navigation
action), and enables faster task execution.

The main contributions of this paper are: 1) Proposing
methods for learning ARPLACE representations from ob-
served experience, using Support Vector Machines and Point
Distributions Models 2) Merging different ARPLACEs for
independent tasks 3) Integrating ARPLACEs in a transfor-
mational planner.

The rest of this paper is structured as follows. In the next
section, we discuss related work. In Section III, we describe
the concept of ARPLACE. We then explain how a so-called
Generalized Success Model (GSM) is learned, and how the
GSM is used to compute an ARPLACE with a Monte Carlo
simulation in Section IV and V respectively. In Section VI
we show how a transformational planning system uses the
concept of ARPLACE to optimize plans. Empirical results are
presented in Section VII, and we conclude with Section VIIIL.

II. RELATED WORK

Berenson et al. [3] deal with the problem of finding opti-
mal start and goal configurations for manipulating objects in
pick-and-place operations. They explicitly take the placement
of the mobile base into account. As they are interested
in the optimal start and goal configurations, instead of a
probabilistic representation, this approach does not enable
least-commitment planning.

The Capability Map is another approach to modelling
robot configurations that lead to possible grasps [20]. Ca-
pability Maps are used to find regions where the dexterity
of a manipulator is high. As they focus on the kinematics
of a robot, they are not related to a given skill repertoire or
environment. Also, they do not take uncertainties in robot or
object position into account.

The robot ‘Dexter’ learns sequences of manipulation skills
such as searching for and then grasping an object [7].
Declarative knowledge such as the length of its arm is learned
from experience. Learning success models has also been
done in the context of robotic soccer, for instance learning the
success rate of approaching a ball [18]. Our system extends
these approaches by explicitly representing the regions in
which successful instances are observed, and computing a
GSM for these regions.

Friedman and Weld demonstrated the advantages of least-
commitment planning in [5]. They showed that setting open
conditions to abstract actions and later refining this choice
to a particular action can lead to exponential savings. The
principle of lazy evaluation is applied to motion planning by
Bohlin and Kavraki [4]. They are able to significantly reduce
the number of collision checks for building a PRM.

Sussman [19] was the first to realize that bugs in plans
do not just lead to failure, but are actually an opportunity
to construct improved and more robust plans. Although this
research was done in the highly abstract symbolic blocks

world domain, this idea is still fundamental to transforma-
tional planning.

The basis of our transformational planning system is the
declarative and expressive plan language RPL, which is
described in [2]. The constraints for plan design, especially
the specification of declarative goals indicating the purpose
of code parts, have been shown in [1]. Besides the modeling
of navigation tasks, our system scales with respect to reason-
ing about perception based on computer vision, the relation
between objects and their representation in the robot’s belief,
as well as reasoning about complex manipulation tasks.

Temporal projection is an integral component of a trans-
formational planning system. McDermott [13] developed a
very powerful, totally ordered projection algorithm capable
of representing and projecting various kinds of uncertainty,
concurrent threads of execution, and exogenous events.

III. CONCEPT OF ARPLACE

We propose ARPLACE as a powerful and flexible repre-
sentation of the utility of positions in the context of action-
related mobile manipulation. The concept of ARPLACE is
implemented as a continuous probability map that represents
the probability of successfully grasping the target object
when standing at a certain initial position. Figure 2 depicts
three such maps for grasping various cups on a table.
Figure 8 shows how variations in the robot’s estimation of
the cup position influences ARPLACE'.

Instead of committing to a specific position in advance, an
ARPLACE enables least-commitment planning, as a whole
range of positions are predicted to be successful, or at least
probable. The robot will start to move to a position that is
good enough to execute the subsequent manipulation action
and will refine the goal position while it moves. In the
context of grasping a cup from a table, this would mean
that the concept of ARPLACE finds a solution area that is
good enough for the robot to start moving. As the robot
approaches the table, new sensor data comes in, and the
robot’s state estimate is updated (i.e. cup position accuracy,
information on clutteredness of regions, etc.). As a conse-
quence the ARPLACE is updated, and becomes more precise.
The principle of least commitment is especially powerful in
real environments, where complete information, required to
compute optimal goal positions, is not available. Even if the
environment is completely observable, dynamic properties
could make an optimal pre-planned position suboptimal or
unaccessible.

Additionally, the concept of ARPLACE can be easily trans-
fered to a utility-based representation by creating heuristics
that optimize for arbitrary secondary constraints such as
power consumption, time, end-effector-movement, or torque-
change. For further information on the optimization of sub-
goals with respect to secondary criteria, we refer to [18].

Figure 3 depicts a system overview of how ARPLACE is
learned and used for transformational planning. Numerals in

! A better impression is given by a video which can be downloaded from
http://www9.cs.tum.edu/people/fedrizzi/icar_-09



the figure refer to sections in this paper. First, a Generalized
Success Model (GSM) is learned from observed experience.
The transformational planner requests ARPLACEs whenever
it finds several manipulation actions in order to find a
better location to perform them. These are computed by
the PLA4AMAN module, which uses the GSM to perform
a Monte Carlo simulation. ARPLACEs for individual tasks
are merged, to compute ARPLACEs for joint tasks.
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Fig. 3. System overview.

IV. LEARNING A GENERALIZED SUCCESS MODEL

In this section, we describe the implementation of the
learning of the GSM, as depicted on the left side in Fig. 3.
The rest of this section is structured according to Algo-
rithm 2, which is explained throughout this section.

input : T (task relevant parameters (cup positions))
1 #episodes ; (#experiments per parameter setting)
output : gsm; (generalized success model)
2 forall cupyy in T do
3 experience_set.clear();
4 for i=1:#episodes do
5 robot;y = randompos(cupzy);
6 success? = executescenario(robotyy, cupzy);
7 experience_set.add( (robot.,, success?) );
8 end

9 boundary = classify(experience_set) ; (With SVM)

10 boundary_set.add( (cupzy, boundary) );

11 end
12 H = alignpoints(boundary_set);
13 (H,P,B) = computePDM(H);
14 W =[1T]/BT; (Mapping from task relevant parameters to B)
15 gsm = (H,P, W)
Algorithm 1: Computing a Generalized Success Model.

Line 2-6: Acquiring Training Data. The robot first
gathers training data by repeatedly executing a navigate-
reach-grasp action sequence (see Fig. 1). To acquire sufficient
data in little time, we perform the training experiments in
the Gazebo simulator. The robot is modeled accurately, and
thus the simulator provides training data that is also valid
for the real robot. The action sequence is executed for a
variety of task-relevant parameters, i.e. positions of the cup
on the table (cup,,), which are stored in the matrix T.
The 12 cup positions with which the robot is trained are
depicted in Fig. 4. For each cup position, the action sequence
depicted in Fig. 1 is executed (Line 6) 350 (#episodes)
times. After approximately 350 episodes, adding gathering

more data does not improve the accuracy of the learned
model (on a fixed test set with 100 episodes). The initial
robot position robot,, for reaching and grasping is randomly
sampled (Line 5), and the result success? (whether the
robot was able to grasp the cup or not) is stored in a log-
file (Line 10). In Fig. 4 depicts succesful and failed grasp
positions in green and red respectively.

Line 9: Computing Classification Boundaries. To dis-
cern between good and bad places to perform manipulation
actions from, the robot needs a compact model of the large
amount of data it has acquired in simulation. To do so, we
learn a binary classifier for the observed data with Support
Vector Machines (SVM), using the implementation by [17].
We used a Gaussian kernel with =0.03, and cost parameter
C=20.0. Fig. 4 depicts the resulting classification boundaries
for different configurations of task-relevant parameters. The
models on average classify 5% of examples wrongly when
using a training/test set that contain 66%/33% of the data
respectively, and 3% when using the training data for testing.
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Fig. 4. Successful grasp positions and their classification boundaries. Every
sub-image shows the boundary that corresponds to the cup position that is
visualized with the black cup. To save space, the table on which the cup is
placed is only shown in the right-most graphs, and not all failed data points
are drawn. Data points correspond to the center of the robot base.

Line 12-13: Computing the Point Distribution Model.
As input a PDM requires n points
that are distributed over the contour.
We distribute 20 points equidis-
tantly over each boundary, and
determine the correspondence be-
tween points on different bound-
aries by minimizing the sum of
the distances between correspond-
ing points, while maintaining order
between the points on the boundary.
The result is depicted in Fig. 5,
where only 4 of the 12 classification boundaries are depicted
for clarity. Given the aligned points on the boundaries, we

Fig. 5. Point-alignment



compute a PDM. Although PDMs are most well-known for
their use in computer vision, we use the notation by Roduit
et al. [15], who focus on robotic applications. First, the 2D
boundaries are merged into one 40x12 matrix H, where the
columns are the concatenation of the z and y coordinates
of the 20 points along the classification boundary. Each row
represents one boundary. The next step is to compute P,
which is the matrix of eigenvectors of the covariance matrix
of H. Given P, we can decompose each boundary hj in
the set into the mean boundary and a linear combination
of the columns of P as follows hy = H + P - by,. Here,
by, is the so-called deformation mode of the k** boundary.
This is the Point Distribution Model. To get an intuition for
what the PDM represents, the first two deformation modes
are depicted in Fig. 6(a), where the values of the first and
second column of B are varied between their extreme values.
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Fig. 6. A Generalized Success Model based on a Point Distribution Model.

By inspecting the eigenvalues of the covariance matrix of
H, we determined that the first 2 components already contain
96% of the deformation energy. Therefore, we use only the
first 2 deformation modes, without losing much accuracy.
Fig. 6(b) demonstrates that the original 12 boundaries can
be reconstructed well when using combinations of only the
first two deformation modes.

The advantage of the PDM is not only that it substantially
reduces the high dimensionality of the initial 40D bound-
aries. It also allows us to interpolate between them in a
principled way using only two deformation parameters. The
PDM is therefore a compact, general, yet accurate model for
the classification boundaries.

Line 14: Relation to task-relevant parameters. The final
step of model learning is to relate the specific deformation
of each boundary (contained in B) to the values of the task-
relevant parameters such as cup,, that are varied during data
collection. Since the correlation coefficients between the first
and second deformation modes and the task relevant param-
eters T are 0.99 and 0.97 respectively, we simply compute
the linear relation between them with W = [1 T]/B7”. This
approach adheres to the proposed strategy of “learning task-
relevant features that map to actions, instead of attempting
to reconstruct a detailed model of the world with which to

plan actions” [9].
Line 15: Generalized Success Model. The GSM is con-
structed as a 3-tuple, containing the mean of the classification

boundaries H, the eigenvectors P, and the mapping from
task relevant parameters to deformation modes W.

V. COMPUTING ARPLACES ON-LINE

In this section, we describe how appropriate ARPLACEs
for manipulation are determined on-line. We call this module
"places for manipulation’ (PLA4MAN). As can be seen in the
computational model in Fig. 3, this module takes the GSM
and the estimation of the robot and target object position
(as probability distributions) as an input, and returns an
ARPLACE such as depicted in Fig. 2.

input :gsm=(H,P,W); (generalized success model)
1 objectposition ; (probability distribution, estimated)
2 robotposition ; (probability distribution, estimated)
output : arplace ; (probability map)
3 for i=1 to #samples do
4 s = samplefromdistribution(objectposition);
5 bs = ([1 ts] - W)T;
6 classif_boundary_set.add( H+ P - by );
7 end
8 arplace = f_sl'lmples grid (boundary.set;) / #samples;
9 arplace = arplace * robotposition ; (Convolution)

Algorithm 2: Computing ARPLACE.

Line 3-6: Monte Carlo simulation. Because of the
uncertainty in the estimated cup position, it does not suffice
to compute only one classification boundary given the most
probable position of the cup as the ARPLACE from which
to grasp. This might lead to a failure if the cup is not at the
position where it is expected. Therefore, we use a Monte-
Carlo simulation to generate a probabilistic advice on where
to navigate to grasp the cup.

This is done by taking 100 (#samples) samples from the
distribution of the cup position. For each iteration, this yields
the task relevant parameters t; = [z y;]. The corresponding
classification boundary is determined by first computing the
appropriate deformation values from the cup position with
b, = ([1 ts] - W)T, and then using these to compute h, =
H+ P - b,. The boundary hg estimates the area in which
the robot should stand to be able to make a successful grasp
of the cup at position t; = [zs ys].

The distribution of cup position is modelg:d as a Gaussian
with mean [z y], and covariance matrix (7z* ), which is
provided by our vision-based object localization module [10].
In Fig. 7(a), 30 out of the 100 sampled boundaries are
depicted, with a cup position distribution with x=-0.3, y=0.1,
Ozx=0yy=0.05, 05y=0y,=0.

Line 8: Summation over classification boundaries. We
then generate a discrete grid in which each cell measures
2.5 x 2.5cm, and compute the number of classification
boundaries that classify this cell as a success. Dividing
the result by the overall number of boundaries yields the
probability that grasping the cup will succeed from this
position. The corresponding probability map, which takes



Hull for

Sampled cu
x=-0.3, y=0.1 PP

positions

()
5
%)
()
=
fol,
()
(@)
ot
(Vp)

X 12 -1 0.8 06
(b) Discretized relative sum
of the boundaries.

(a) Sampled classification boundaries
(hs).

Fig. 7. Monte-Carlo simulation of boundaries to compute ARPLACE.

the uncertainty of the cup position into account, is depicted
in Fig. 7(b).

Line 9: Uncertainty in robot position. The Adaptive
Monte Carlo Localization from the Player project [6] also
returns a covariance matrix for the robot’s position. This
uncertainty must be taken into account in ARPLACE. For
instance, although any position near to the left of the steep
incline in Fig. 7(b) is predicted to be successful, they might
still fail if the robot is actually more to the right than
expected. Therefore, we convolve the ARPLACE as depicted
in Fig. 7(b) with a discretized (2.5 x 2.5¢m) probability
distribution of the robot’s position>. Some results of this
convolution are depicted in Fig. 2 (2D) and 8 (3D). Note that
this convolution also works for multi-modal distributions as
returned by particle filters.

Fig. 8. These images show how varying certain task-relevant
parameters affects the shape of the ARPLACE probability map. The
table and the cup are drawn to scale in the zy-plane. The video on
http://www9.cs.tum.edu/people/fedrizzi/icar.09 gives
an even better impression.

Fig. 8 depicts how the probability map is affected by
varying task relevant parameters. Please notice in the first
row, how it becomes ‘more difficult’ (less likely to suc-
ceed) to grasp the cup as the cup moves away from the
table’s edge. The probability maps in Fig. 8 represent the
robot’s concept of ARPLACE which takes into account the
uncertainty in both the pose of the robot and target object.

Note that this uncertainty is in the current position of the robot (c), not
the position it is navigating to in order to grasp (g). An assumption we
make is that as the robot approaches g, the uncertainty in ¢ will become
closer and closer to the uncertainty at g, and be equal once g = c.

These distributions are generated from a model that is very
much grounded in observed experience, as it is learned from
observation. Note that this concept is also specific for the task
context and the skills of the robot. Using a different robot
or controller would lead to different observations, and hence
to a different concept of successful ARPLACEs. It is the
autonomous learning ARPLACE from observed experience
that enables us to apply the same algorithm to a wide range
of robots and controllers; an advantage over analytical or
hand-coded approaches.

A. Merging ARPLACEs

So far, we have considered ARPLACEs for single objects
O;. In this case we compute the ARPLACE representation
Ro, of grasping O; with the right hand and the ARPLACE
representation Lo, of grasping O; with the left hand.
Without further constraints the robot will use the right arm
to grasp Oy if maxz(Rop,) > max(Lo,) and the left arm
otherwise. In the case where two objects have to be moved,
there are several possibilities. The robot can either grasp
each object individually by moving to O; and grasping it,
then moving to Oz and grasping it. Another possibility is to
grasp O; and O; from one single position. Our ARPLACE
representation can handle this generalization easily. Given
the ARPLACE representations Ro,, Lo,, Ro,, and Lo,, we
can compute the joint ARPLACE probability maps Rp, Lo,
(the robot grasps O; with its right arm and Oy with its
left arm) and Rp,Lo,. This is easily done by a piecewise
multiplication of probabilities in the ARPLACE maps, as
depicted in Fig. 2. In the next section, we describe how
the transformational planner uses merged ARPLACEs to
determine the best course of action.

Computing and merging ARPLACESs online as the robot
gathers more information about the state of the world is a
powerful approach. If a RRT [11] planner is used to compute
the optimal configuration C; to grasp O; and configuration
Cs to grasp Oq, it is not straightforward how to merge C}
and Cj to find a configuration C5, from where both objects
can be grasped at once. A RRT approach would have to
revise large parts of the prior solutions in a replanning step
to solve for a new task. Moreover the configuration space of
the new task will be higher, because more joints have to be
considered when grasping multiple objects. In our approach
the probability of successful execution can be composed
from more simple solutions through matrix multiplication,
which is a computationally cheap operation.

VI. TRANSFORMATIONAL PLANNING WITH ARPLACE

In this paper, we consider the optimization of a pick-up
task: grasping one cup with the left gripper and one with
the right gripper. When executing these actions, the robot
first drives to a location near the first cup, picks it up, and
navigates to a different location to pick up the second cup.
This approach works very reliably, and is independent of
where the cups are located relative to each other. But it does
not perform very well. The overall task could be executed
faster by using the same location for picking up both cups.



It is difficult to solve this in a control program without
sacrificing generality. The reason is that the two pick-
up actions are executed sequentially, and in their default
implementation they cannot influence each other or would
become less general. In contrast, a transformational planner,
as described in this section, is able to detect and locally
modify the two locations that cause the sub-optimal behavior.

A. Plan Design

We define plans as robot control programs that cannot
only be executed, but also reasoned about. This is important,
since it enables a transformational planner to reason about
the intention of a specific code part and therefore to infer
if a goal has been achieved or not, and what the reason for
a failure was. Standard control programs written in RPL
[12] are annotated in order to indicate their purpose and
make them transparent to the transformational planner. For
example, actions that must be performed at a certain location
are executed within the context of an at-location block. The
most important RPL instructions for semantic annotation in
the context of pick-and-place tasks are achieve, perceive and
at-location. In the context of this paper, we will not give a
formal definition of the semantics of these instructions but
will describe them only informally.

The achieve statement asserts that a successful execution
of the statement implies that the logical expression passed
as its argument must hold after execution. For example, the
statement (achieve (entity-picked-up ?cup)) states that after
executing this instruction, the object referenced by variable
?cup must be in the robot’s gripper’.

Before manipulating objects, the robot must find the
objects and instantiate them in its belief state. The statement
(perceive ?cup) guarantees that after executing it, the object
referenced by ?cup has been found and a reference to its
internal representation is returned.

Manipulation implies the execution of actions at specific
locations. Therefore, it must be assured that pick-up actions
are only executed when the robot is at a specific location. (at-
location ?location ...) asserts that code within its context is
either executed at the specified location or fails. Please note
that transformations which affect the location where actions
are performed directly modify the ?location parameter of
such at-location expressions. Therefore, at-location is the
most important declarative plan expression for optimizing
ARPLACES.

The declarative expressions explained above form a code
tree. Every achieve statement can contain several further
achieve, perceive and at-location statements. For instance,
the goal (achieve (entity-at-location ?object ?location)) first
perceives the object, then picks it up by achieving entity-
picked-up, which executes the pick-up action within an
at-location block, and puts the object down by achieving
entity-put-down, which also contains an at-location block.
Transformation rules are implemented to replace sub-trees

3Please note the lisp syntax, where variables are prefixed with a *?, for
example ?cup, and predicates and functions are pure symbols.

within the code tree by new code. The plan is executed by
interpreting every node in the code tree and a so-called task
tree is generated. The task tree contains information about
plan execution the code tree does not contain, but which is
necessary to find behavior flaws.

B. Transformational Planning

A transformational planning system consists of three main
components: 1) a projection mechanism for predicting the
outcome of a plan, 2) a mechanism for detecting behavior
flaws within the predicted plan outcome, and 3) mechanisms
to fix the detected flaws by applying transformation rules to
the plan code. Planning is performed by repeatedly perform-
ing these steps until the resulting plan cannot be optimized
any more, or a timeout occurs.

Transformational planning enables the robot to detect and
fix behavior flaws, such as 1) collisions, e.g. caused by under-
parameterized goal locations; 2) blocked goals, e.g. when a
chair is standing at a location the robot wants to navigate to;
3) flaws affecting performance, as in our example of picking
up two cups from two different initial locations.

1) Plan Projection: A central component of a transforma-
tional planning system is an accurate prediction mechanism
that generates, based on the plan code, a temporally ordered
set of events. For projecting plans, we again use the Gazebo
simulator. To not only simulate the execution of plans,
but record the events generated by the interaction with the
simulated world, we extended Gazebo with plug-ins that
signal collisions, perception events, and location changes
of the robot and objects. Projection of a plan generates an
execution trace that contains the state of the plan, the belief
state of the robot and the state of the simulated world for
every point in time.

2) Behavior Flaws and Reasoning about Plan Execution:
The second component of a transformational planner is
a reasoning engine to find pre-defined flaws in the robot
behavior. Behavior flaws include not only critical errors in
plan execution, like collisions, but also behavior affecting the
performance of the executed plan. The latter is investigated
in this paper. Behavior flaws are specified using a Prolog-like
reasoning engine implemented in Common Lisp. Expressions
are written in Lisp syntax and have the form

({predicate) [param|*)

== is unification and thnot is a weak inversion predicate,
that holds true when it cannot be proven that the passed
term holds true.

The execution trace generated by plan projection is trans-
parently integrated into the reasoning engine, i.e. the execu-
tion trace is queried using Prolog predicates. In combination
with a set of facts modeling the semantics of declarative
expressions such as achieve and at-location and concepts of
the world, for instance that objects are placed on “supporting
planes” (table, cup-board, ...), the information recorded in
the execution trace is a central component in order to find
behavior flaws.
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Behavior flaws can be separated in several classes which
can further be specialized. Our planner is aware of the two
main classes “detected flaw”, which represents errors the
robot control program was able to detect and “undetected
flaw”, flaws that can only be inferred from the execution
trace. It includes flaws such as collisions, misperceived
objects, but also performance flaws. Listing 1 shows the
specification of the flaw generated by two pick-up actions
which are executed at different initial locations. The code
will be explained in Section VI-C.

Listing 1. Definition of the performance flaw
(def—behavior—flaw unoptimized—locations
:specializes performance—flaw
:flaw (and

(task—goal ?task—I

(achieve (entity —picked—up ?object —1)))
(task—goal ?task—2

(achieve (entity —picked—up ?object —2)))
(thnot (== ?task—1 ?task —2))

(optimized—action—location
?object—1 ?object -2
?optimized—location)))

3) Plan Transformations and Transformation Rules: After
a behavior flaw has been detected, the last step of a planner
iteration is the application of a transformation rule to fix the
behavior flaw. Transformation rules are applied to parts of
the code tree formed by the plan code and cause substantial
changes in its structure and the corresponding robot behavior.
A transformation rule consists of three parts. The input
schema is matched against the plan part to be transformed,
the transformation part performs transformations on the
matched parts, and the output plan describes how the new
code of the respective plan part has to be reassembled.

input schema )
ﬂansfermatlon
output plan

C. Optimization using ARPLACE

Besides the integration of ARPLACE into the robot control
program, it is also integrated into the reasoning engine of our
transformational planner. Using two locations for grasping is
considered a performance flaw if one would suffice. Infor-
mally, we investigate the execution trace for the occurrence
of two different pick-up actions, where one is executed at
location Ly, and the other one is executed at location Ls.
Then we request a location L3 to perform both actions and
the corresponding probability. If the probability of success is
sufficiently high, we apply a plan transformation, and replace
locations L and Lo by location Lg.

More specifically, Listing 1 shows the definition of the
behavior flaw. The flaw is in the class of performance flaws,
i.e. specializing the flaw performance-flaw (line 2). In lines
4 to 8, two different pick-up tasks are matched, and the
corresponding variables are bound. For that, it uses the
predicate task-goal, which asserts that a task successfully
achieves the corresponding goal according to the semantics
of achieve. Finally, in line 9, the ARPLACE system is queried
for a location to grasp both objects, ?object-1 and ?object-
2. The predicate only holds true when the probability of

the new location is sufficiently high (>0.85), i.e. the flaw is
detected only if a better location exists. For more detailed
information on transformation rules and their application for
plan optimization, please see [14].

Note that “sufficiently high” depends very much on the
scenario context. In robotic soccer for instance, it can be
beneficial to choose fast and risky moves, whereas in safe
human-robot interaction, certainty of succesful execution is
more important than mere speed. This paper focusses on
principled ways of integrating such thresholds in a transfor-
mational planner, and relating them to grounded models of
the robot’s behavior. What these thresholds should be, and
how they are determined, depends on the application domain
and the users.

VII. EMPIRICAL EVALUATION OF ARPLACE

The hardware platform we use for our experiments is a
B21r mobile robot from Real World Interface. Its wheels
allow this round robot to move forward and turn around its
center axis. Two 6-DOF lightweight arms from Amtec with
slide grippers are mounted on this base, allowing for the
manipulation of objects at table height.

For localization and navigation, we use several standard
modules from the Player project [6], being Adaptive Monte
Carlo Localization, pmap for map building, and the AMCL
Wavefront Planner for global path planning. These modules
use the SickLMS400 laser range scanner and odometry
provided by the base. For reaching and grasping, we use
a combination of Dynamic Movement Primitives [8] and
Vector Fields. The inverse kinematics computations are per-
formed using the Kinematics and Dynamics Library (KDL)
from Orocos [16]. Detection and localization of the objects
to be grasped is done using the method described in [10].
For debugging and efficient data collection purposes, we also
use the Gazebo simulator [6].

At a day of open house, our B21 mobile manipulation plat-
form continually performed an application scenario, where it
locates, grasps, and lifts a cup from the table and moves it to
the kitchen oven. Fig. 9 shows two images taken during the
demonstration. The robot performed this scenario 50 times in
approximately 6 hours, which has convinced us that the robot
hardware and software are robust enough to be deployed
amongst the general public.

First, we compared the use of ARPLACE for grasping
a single cup (without plan transformations) with another
strategy which we call FIXED. FIXED implements the well-
in-reach strategy by always moving to a location that has
the same relative offset to the target object. The relative
location is chosen to be the offset with the best possible
overall performance. The cup is placed in three different
locations. In one experimental episode, we first determine
the real position of the cup, and sample an observed position
given the real position p, of the cup and the covariance
matrix C(p,). Given the estimated cup position, the robot
then uses the PLA4MAN or well-in-reach module to compute
an ARPLACE and performs the manipulation action. When
the robot is able to perform the manipulation task after



moving to the proposed position we mark the experiment as
SUCCESS. Otherwise we mark the experiment as FAILED.

[ Pla4Man
B Fixed

Success (%)

0.00 0.00 0.01 0.00 0.040.00
0.00  0.00 0.00 0.01 0.00 0.04

Covariance matrix of object localization C/(p,)

Fig. 9.
formed at a public demonstration.

A reach-grasp sequence per- Fig. 10.

evaluation.

Result of the empirical

Fig. 10 shows the results of the evaluation. Naturally,
the performance of both methods decreases, as the robot
becomes more and more uncertain about the cup pose. One
result is that PLAAMAN always performs better than FIXED.
We computed the significance of this performance increase
with the 2 test; the p-values are depicted in Fig. 10. The
only case when the increase is not significant is when there
is no uncertainty, a situation that does not arise on the real
robot. Another important result is that when the uncertainty
rises, the performance of FIXED suffers more than the
performance of PLA4AMAN. This can be explained by the
fact that PLA4AMAN tries to stay away from steep declines,
when the estimations of the robot get more uncertain.

We then evaluated the merging of ARPLACEs for joint
grasping, and applying transformation rules with our RPL
planner. Two cups are placed on the table, where the dis-
tance between them is varied between 20 and 60cm, with
increments of Scm. Our evaluation shows that grasping two
cups from separate positions requires on average 48 seconds,
independent of the relative distance of the cups to each
other. By applying transformation rules, the default plan
is optimized to 32 seconds, which is a significant (¢-test:
p < 0.001) and substantial performance gain of 50%. Above
45cm, two cups cannot be grasped from one position, and
plan transformation is not applied.

VIII. CONCLUSION

In this article, we presented a system that enables robots
to learn a concept of ARPLACE that is compact, grounded
in observed experience, and tailored to the robot’s hardware
and controller. ARPLACE is modeled as a probability map,
which enables the robot to perform least-commitment plan-
ning, instead of prematurely committing itself to specific
positions that could be suboptimal. We presented a trans-
formational planner that uses ARPLACEs to determine if
transformation rules for optimizing plans should be applied.
Our empirical evaluation has shown that ARPLACESs improve
the robustness of grasping, and when combined with the
transformational planner, leads to a substantial improvement
in plan execution duration.

We are currently extending our approach in several direc-
tions. We are applying our approach to more complex sce-
narios, and different domains. For instance, we are learning
higher-dimensional ARPLACE concepts. New aspects that
we are taking into account, are different kinds of objects
which require different kinds of grasps. We are also investi-
gating extensions and other machine learning algorithms that
will enable our methods to generalize over larger spaces.
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