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Typical real world machine control tasks have
some characteristics which makes them difficult to
solve: Their state spaces are high-dimensional and
continuous, and it may be impossible to reach a sat-
isfying target state by exploration or human control.
To overcome these problems, in this paper, we pro-
pose (1) to use radial basis functions for value func-
tion approrimation in continuous space reinforce-
ment learning and (2) the use of learned inverse pro-
jection functions for state space exploration. We ap-
ply our approach to path planning in dynamic envi-
ronments and to an aircraft autolanding simulation,
and evaluate its performance.

1 Introduction

Many autonomous machine control skills are too
complex and laborious to hand code. Such skills
must be acquired by suitable learning algorithms.
Reinforcement learning has proven to be such a
method. But unfortunately, typical real world ma-
chine control tasks have a number of problems: their
state spaces are high-dimensional and continuous,
and it may be extremely difficult to control the ma-
chine towards a desired target state by either hand-
coded exploration or human control. Thus we are
forced to develop novel solutions that can deal with
these problems.

Landing an aircraft is such a problem: The state
space is high-dimensional and continuous, therefore
neither a simple exploration policy nor human con-
trol (except for experienced pilots) will reach the
target state. Marginal differences in control may
cause significant differences in the resulting state. A
state space for the simulation of an aircraft must in-
clude distances, angles, and velocities (see fig. 1(a)).
Discretizing these values will be a problem, because
they are often nonlinear in their temporal behavior.
Moreover, determining the neighborhood of a state
becomes more difficult. Since the size of the state
space grows exponentially with the number of di-
mensions it is impossible to cover the whole state
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Figure 1: (a): The state of the autolanding task. (b):
The path planning problem.

space by exploration. Furthermore, discretization
may lead to extremely discontinuous behavior.

Many machine control problems have been solved
successfully by reinforcement learning, as well as
tasks with high-dimensional and continuous state
spaces. Approximating the value function in rein-
forcement learning has been surveyed in a number
of articles. But how to handle tasks with contin-
uous state spaces where no hand-coded or human-
controlled exploration policy ever reaches the target
state has received surprisingly little attention so far.

Our contributions in this paper are (1) the use
of networks of radial basis functions for the safe ap-
proximation of a continuous value function and (2)
an inverse neural projection function for the explo-
ration of the state space backwards from the tar-
get state. This is an important means for explo-
ration if no trajectories leading to the target state
can be found by forward exploration. This is likely
in extremely difficult control tasks. To exploit the
trajectories given by the backward exploration we
build attractors around them. The trajectories are
represented by radial basis functions which work as
attractors. We then apply gradient descent on the
approximated value function.

The remainder of the paper is organized as fol-
lows: In sections 2 and 3 we introduce the inverse
state projection and the value function approxima-
tion using radial basis functions. Section 4 presents
results of applying our method to path planning in
dynamic environments (fig. 1(b)) and an aircraft au-
tolanding simulation (fig. 1(a)). We discuss related
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Figure 2: Using the inverse projection P~ the state
space can be explored starting at the target state.

work in section 5. Section 6 closes with a conclusion
and future work.

2 Inverse State Projection

Usually the exploration of the state space S is
done by a hand-coded or human-controlled policy.
But in extremely difficult control tasks this approach
of forward exploration is likely to fail because no tra-
jectory to the target can be found. This leads to the
idea of a backward exploration starting at the tar-
get state instead (see figure 2). To safely apply this
method we must learn a reliable inverse state pro-
jection
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that maps a current state (; and its predecessor
action a;_1 (A is a set of possible actions) to the
predecessor state (;_1. P~ is trained by multi layer
neural networks [6, 13] with data acquired by forward
exploration.

To generate training data for the learning of the
value function V sequences of backward explorations
are made. All states visited during these explo-
rations are given a value corresponding to their tem-
poral distance to the target state or to states from
which the value is already known (see figure 3):
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with v being a discount factor (e.g. v = 0.9). V,

telling us how good it is to be in a certain state,

is trained with the obtained patterns ({,V(¢)) (see

section 3). Once V is computed, it is used to de-

termine the action corresponding to the best-valued
successor state to get to the target:

a = arg max V(P ((;, a5)) (3)
ajeA
Herein P7 is a forward projection that maps the

current state (; and a possible action a; to the suc-
cessor state ;41 as follows:
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Figure 3: During the exploration of the state space &
the value V of each state visited is computed according to
equation (2). Thus states far from the target get reduced
values.
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P+ is trained (with data acquired by forward ex-
ploration) by multi layer neural networks [6, 13] as
well as P~ is.

3 Value Function Approximation Us-
ing Radial Basis Functions

Using the inverse projection P~ for the explo-
ration of the state space backwards from the target
we get data for learning the value function: A num-
ber of trajectories through the state space leading
to the target are given. Since we want to learn a
value function that leads towards the target state
we need to build attractors around these trajecto-
ries. Therefore we use networks of radial basis func-
tions [8, 11, 12]. These functions represent a multi-
variate Gaussian function (RBF-neuron) ¢; each.
Each RBF-neuron ¢; is characterized by the param-
eters f1;, 0;, w;, and §; where 1; is the mean in S, o;
is the standard deviation, w; is the height (weight)
of the function, and 8; is the threshold of the neuron:

Tk
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Thus the number of free parameters per RBF-
neuron is d + 3 where d = dim(S). We approximate
V by a number of such RBF-neurons (V):

V=3 ¢ (6)

i=1

For the training we set some neurons on the train-
ing patterns: u = ¢, w = V({). We then approxi-
mate V by using the error function

E=

N | =

> V() = V(G)? (7)
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Figure 4: The simulated robot perceives objects up to
a distance of 1m all around it and up to 3m in its view-
angle.

where p is the number of training patterns. Fortu-

nately g—f, 2B B and $£ can easily be computed

(see appendix). Therefore we use gradient descent
with adaptive step size computation [13] to learn V.

Using our RBF++ library (C++ library for RBF
networks) enables us to make use of some further fea-
tures such as (1) automatic merging of neighboring
RBF-neurons (|7; — z;| smaller than a certain €), (2)
elimination of ineffective RBF-neurons (w; less than
a certain € or |;| bigger than a certain €), (3) auto-
matic insertion of new RBF-neurons (if the error is
above a certain e for a certain time) at places with
high error etc.

4 Experimental Results

4.1 Path Planning in Dynamic Environ-
ments

The path planning problem chosen involves learn-
ing to steer a robot (diameter 1m) through a room of
40%40m? with 250 moving obstacles with a diameter
of 1m each. The robot must move 1m per simulation
cycle but can choose an angle between —45 and 45
degrees. So actions are chosen from the action space

A= {1} x [~45, +45] 8)

The robot gets information on the distance and
the angle of obstacles in its viewing angle (—90...90
degrees) up to a distance of 4 meters. Up to a dis-
tance of 1m the robot perceives obstacles anywhere
around it. Obstacles move at 1m per cycle as well.
They move to randomly defined targets.

To simplify the problem we define a state by

Co = (d,a) (9)

with d (a) being the distance to (angle to) ob-
stacle 0. V is then computed by minimizing over all
obstacles perceived (O):
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Figure 5: The approximated value function V repre-
sented by radial basis functions. The function is depicted
dependent on 2 dimensions only. d, and dj, are scaled to
[0, 1] both.

V = minocoVi((,) (10)

where V; is the approximated value function for
one obstacle. When applying V we heuristically gen-
erate 40 possible actions and evaluate all their suc-
cessor states. That leads to a success rate of 98.8%
for static obstacles and to a success rate of 88.6% for
dynamic obstacles (around 3000 trials each). Suc-
cess means that the robot reaches its target without
any collision. Regarding the lower success rate for
dynamic obstacles one must consider that there are
cases where the robot cannot avoid all obstacles by
any action. Further exploration was done with static
obstacles only. The success rate during exploration
was close to zero. Altogether these are encouraging
results, especially for the dynamic obstacles. A short
animation related to these experiments can be found
at hitp://www9.in.tum.de/people/buck/pprll. gif

4.2 The Aircraft Autolanding Task

While the path planning task described in the pre-
vious section does not necessarily need inverse pro-
jection the problem introduced here is much more
difficult: If an aircraft is landing its velocity both in
horizontal and vertical direction must be very small.
But to get a small sinking velocity a high horizontal
velocity is necessary. Furthermore, the landing po-
sition and angle must satisfy some very special con-
straints. Some airports have only very short landing
strips so landing must occur in a limited space. All
this makes it inevitable that the policy should plan
ahead. Furthermore, the target state can definitely
not be reached by any random or simple policy. Even
a pilot must have extensive training to be able to
land an aircraft safely.
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Figure 6: The state of a simulated aircraft over time.
The vertical line marks the landing.

In the following simulation we simplify the prob-
lem by regarding a five-dimensional state space only.
A state

C: <dw7dh7a7V$7Vh) (11)

includes the distance to the end of the landing
strip projected on the ground (d;), the height of the
aircraft (dp), the angle of the aircraft (« = 0 means
horizontal flight), the horizontal velocity V., and the
vertical velocity V}, (see figure 1(a)). Even with this
simplification it is extremely difficult for a human
to safely land an aircraft simulated by the means
described in the appendix. In contrast to the work
described in [10] our task is not to follow a given
trajectory but to find a trajectory towards a target
state.

The action space is two-dimensional and consists
of the power p that controls the propulsive force and
the rotational factor r that makes the aircraft rise or
sink by adjusting a:

a=(p,r) (12)

p must be in the range of [0,F, ,.] and r €
[-10,10], where F, __  is the maximal propulsive
force of the aircraft (see appendix).

The scenario is the following: an aircraft is placed
at (s¢qre- Then the control policy must land the air-
craft at (iorget- Table 1 specifies the constraints for
the start and target states.

During forward exploration a simple policy never
managed to reach a target state. But using the in-

| Variable | unit range Cstart | range (rarget |
ds km € [20, 30] €[0,3]
s km c[6,8] =0
«a degrees | € [—10,+10] € [0, +30]
Ve km/h € [500, 800] € [0, 300]
Va km/h | € [-200, +100] | € [=25,0]

Table 1: Constraints for start and target states.

verse projection P~ (equation 1) trajectories back-
wards from the target could be found. From the
obtained data a network of radial basis functions
is trained. This trained value function V is partly
depicted in figure 5. In more than 500 runs it
always attracted the aircraft and lead it towards
the target. Figure 6 shows a typical development
of the aircrafts’ state over time. An animation
related to the above experiment can be found at
http://www9.in.tum.de/people/buck/aircraft.gif.

The experiments described above show that the
proposed approach is able to reliably solve difficult
problems in machine control.

5 Related Work

There is a number of applications for reinforce-
ment learning in machine control. However, most
of them use variations of ()-learning [18], one of the
most popular algorithms in reinforcement learning
[15]. @-learning incrementally learns a state-action
value function ) from experience. Q(¢,a) computes
how good it is to perform action a in state (. Ac-
cording to

Qe ar) + QG ae)+
a(rir +ymaxey Q(G41,a") — QG at)() :
13

@ is updated incrementally where v € [0,1] is a de-
crease factor and 741 is the reward received for per-
forming action a; in state (;. This takes place in a
discrete state space. To apply @Q-learning for tasks
in continuous domains like machine control the state
space can be discretized [7]. But in general, operat-
ing in a discrete state space brings some problems:
When using a coarse discretization the control out-
put is not smooth and when using a fine discretiza-
tion the number of states becomes huge, especially
in high dimensional spaces [4].

Nevertheless some successful work on machine
control reinforcement learning in discrete state
spaces has been done.

In order to both limit the number of states and
smooth the control output Moore and Atkeson [9]
propose to increase the resolution of the state space
in interesting regions while decreasing it in less in-
teresting regions.



A standard approach for reinforcement learning
in a continuous state space is to use the gradient of
the value function to choose an action [19]. Bert-
sekas and Tsitsiklis [1] propose to use neural net-
works [6] for the approximation of the value func-
tion. But only replacing the discrete value function
by a continuous approximation has been shown to
fail [2]. Thrun and Schwartz [17] find the overesti-
mation phenomenon to be the main reason for that.
Overestimation results from noise which is likely in
real world applications and since @-learning is an
incremental algorithm there is the danger of accu-
mulation of such errors. Approaches that overcome
these problems include the HEDGER algorithm [14]
and instance based reinforcement learning [5].

Another problem reported in the literature is the
discontinuity problem [16]: What happens if the op-
timal value function is non-continuous? Nearly all
common approximators will fail here. But in prac-
tice this case seldom appears.

6 Conclusions and Future Work

The work described in this paper is a non-
incremental algorithm for reinforcement learning in
multi-dimensional continuous state spaces. The
main contributions are an appropriate method for
the safe estimation of the value function, a neural
forward projection function and an inverse neural
projection function.

In contrast to previous work our method does not
suffer from possible overestimation resulting from in-
cremental ()-learning. Our value function success-
fully reproduces trajectories by Gaussian attractors.

Experiments have shown that our method is a
suitable means for difficult machine control tasks.
However several improvements remain for the fu-
ture: One can imagine to regard the standard de-
viations of the RBF-neurons independently, which
makes ellipsoid functions possible. This may lead
to a higher accuracy of the approximation and may
save some RBF-neurons by the drawback of having
more parameters per RBF-neuron. Further explo-
ration could be realized as a combined process of
forward and backward exploration. This may lead to
more diverse trajectories which is necessary (because
of the exponential increase of the state space by the
number of dimensions) to more efficiently cover the
state space by trajectories.

Appendix

A Simulation Details of the
Autolanding Task

The simulator used for the experiments in section
4 relies only on the basic physical rules concerning

Figure 7: (a): Forces. (b): c, as a function of a.

forces and acceleration. It cannot be compared to
a real flight simulator. Nevertheless the behavior
of the aircraft, to a great extent, is realistic. The
following forces are taken into account (see figure

7(a)):

Gravitation The force of gravity is computed by
Fy; = mg, where m is the mass of the aircraft and g
is the earth constant.

Propulsive Force The propulsive force F is di-
rectly controlled by the policy (Fs = p). It ranges
from 0 to F, (see table below for constants).

Smaz

Buoyancy Buoyancy is computed by

]_ —
Fy = 5pea(a) Ap[7P (14)

where p is the atmospheric pressure, ¢, () is the
buoyancy factor (see figure 7(b)), A is the vane area
of the aircraft, and V is the velocity of the aircraft.

Air Drag The force of air drag is computed by

1 i
Fy = —5peu AV P (15)

where p is the atmospheric pressure, ¢, is the air
drag coefficient of the aircraft, A is the cross section
of the vanes of the aircraft, and V is the velocity of
the aircraft.

Acceleration The velocity of the aircraft is com-
puted by

— —

(F,+ F,+ F, + F,) - At

Virar = Vi + (16)

Ja

where At is set to one second. Thus the acceler-
ation directly depends on the forces.

Changes in State The change in state depends
on the velocities and is computed as follows:

(A h)pynr = (d h), + Vigar- At (17)



Once again At is set to one second. The angle
of the aircraft («) directly depends on the control
surface devices which are controlled by the policy:

O At = O + T¢ (18)

Table of Used Constants For our simulation cer-
tain constants are used. Each constants’ value and
meaning is described in the following table. Most
values correspond to the values of a filled real Boe-
ing 747.

Var. | Meaning | Value | Unit
p atmospheric pressure 1.3 kg/m?
Cw air drag coefficient 2.0 -
Ca buoyancy constant f(a) -
g earth constant 9.81 m/sec’
A cross section of vanes 10.0 m?
Ar vane area of a 747 528.20 | m?
m mass of a filled 747 350000 | kg
smae | Max. propulsive force 10304 | kN
(4 x 257.6 kN)
(engine GE CF6-80C2B1F)

The software of the simulation is accessible
at www9.in.tum.de/people/buck/aircraft_simu.tar.gz
and may be used for research purpose but without
any support or warranty. It is written in C++ and
runs under Linux, Solaris, and HP-UX.

B Gradient Descent with
Radial Basis Functions

To apply the backpropagation algorithm we use
the derivations of the error function (equation 7).
They are given by

S5E N C‘}; y 7\412—;;:42
5_Mi = ;(V(Ck) = V() * 7 *W; xe i
(19)

for the mean of the radial basis function (4&;) and
by

0B _ x5 NG - -t
o; ;(V(Ck)—V(Ck))*wz*T*e i
(20)
SE G2

T = Z(]}(Ck) - V(@) xe (21)
k

(S’U)i

% == V(&) = V(&) (22)
’ k

for the standard deviation (o;), the weight of the
function (w;), and the threshold 6;.
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