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Abstract— One of the hallmarks of the performance, versatility,
and robustness of biological motor control is the ability to adapt
the impedance of the overall biomechanical system to different
task requirements and stochastic disturbances. A transfer of this
principle to robotics is desirable, for instance to enable robots
to work robustly and safely in everyday human environments. It
is, however, not trivial to derive variable impedance controllers
for practical high DOF robotic tasks. In this contribution, we ac-
complish such gain scheduling with a reinforcement learning ap-
proach algorithm, PI2 (Policy Improvement with Path Integrals).
PI2 is a model-free, sampling based learning method derived from
first principles of optimal control. The PI2 algorithm requires no
tuning of algorithmic parameters besides the exploration noise.
The designer can thus fully focus on cost function design to
specify the task. From the viewpoint of robotics, a particular
useful property of PI2 is that it can scale to problems of many
DOFs, so that RL on real robotic systems becomes feasible. We
sketch the PI2 algorithm and its theoretical properties, and how
it is applied to gain scheduling. We evaluate our approach by
presenting results on two different simulated robotic systems, a
3-DOF Phantom Premium Robot and a 6-DOF Kuka Lightweight
Robot. We investigate tasks where the optimal strategy requires
both tuning of the impedance of the end-effector, and tuning
of a reference trajectory. The results show that we can use
path integral based RL not only for planning but also to derive
variable gain feedback controllers in realistic scenarios. Thus,
the power of variable impedance control is made available to a
wide variety of robotic systems and practical applications.

I. INTRODUCTION

Biological motor systems excel in terms of versatility,
performance, and robustness in environments that are highly
dynamic, often unpredictable, and partially stochastic. In con-
trast to classical robotics, mostly characterized by high gain
negative error feedback control, biological systems derive
some of their superiority from low gain compliant control
with variable and task dependent impedance. If we adapt
this concept of adaptive impedance for PD negative feedback
control, this translates into time varying proportional and
derivative gains, also known as gain scheduling. Finding the
appropriate gain schedule for a given task is, however, a hard
problem.

One possibility to overcome such problems is Reinforce-
ment Learning (RL). The idea of RL is that, given only a
reward function, the learning algorithm finds strategies that
yield high reward through trial and error. As a special and
important feature, RL accomplishes such optimal performance
without knowledge of the models of the motor system and/or

the environment. However, so far, RL does not scale well to
high-dimensional continuous state-action control problems.

Closely related to RL is optimal control theory, where
gain scheduling is a natural part of many optimal control
algorithms. However, optimal control requires model-based
derivations, such that it is frequently not applicable to com-
plex robotic systems and environments, where models are
unknown.

In this paper, we present a novel RL algorithm that does
scale to complex robotic systems, and that accomplishes gain
scheduling in combination with optimizing other performance
criteria. Evaluations on two simulated robotic systems demon-
strate the effectiveness of our approach. In the following
section, we will first motivate variable impedance control.
Then, we sketch our novel RL algorithms, called PI2, and
its applicability to learning gain scheduling. In the fourth
section, we will present evaluation results on a 3 DOF and a
6 DOF robotic arm, where the task requires the robot to learn
both a reference trajectory and the appropriate time varying
impedance. We conclude with a review of related work and
discussions of future directions.

II. VARIABLE IMPEDANCE CONTROL

The classical approach to robot control is negative feedback
control with high proportional-derivative (PD) gains. This type
of control is straightforward to implement, robust towards
modeling uncertainties, and computationally cheap. Unfortu-
nately, high gain control is not ideal for many tasks involving
interaction with the environment, e.g. force control tasks or
locomotion. In contrast, impedance control [5] seeks to realize
a specific impedance of the robot, either in end-effector or joint
space. The issue of specifying the target impedance, however,
is not completely addressed as of yet. While for simple
factory tasks, where the properties of the task and environment
are know a priori, suitable impedance characteristics may be
derivable, it is usually not easy to understand how impedance
control is applied to more complex tasks such as a walking
robot over difficult terrain or the manipulation of objects in
daily life (e.g. pillows, hammers, cans, etc.). An additional
benefit of variable impedance behavior in a robot comes from
the added active safety due to soft “giving in”, both for the
robot and its environment.

In the following we consider robots with torque controlled
joints. The motor commands u are calculated via a PD control



law with feedforward control term uff :

u = −KP (q− qd)−KD(q̇− q̇d) + uff (1)

where KP , KD are the positive definite position and velocity
gain matrices, q, q̇ are the joint positions and velocities, and
qd, q̇d are the desired joint positions and velocities. The
feedforward control term may come, for instance, from an
inverse dynamics control component, or a computed torque
control component [15]. Thus, the impedance of a joint is
parameterized by the choice of the gains KP (“stiffness”) and
KD (“damping”).

For many applications, the joint space impedance is, how-
ever, of secondary interest. Most often, regulating impedance
matters the most at certain points that contact with the envi-
ronment, e.g., the end-effectors of the robot. We therefore need
to assess the impedance at these points of contacts rather than
the joints. Joint space impedance is computed from the desired
task space impedance KP,x,KD,x by help of the Jacobian J
of the forward kinematics of the robot as follows [15]:

KP,q = JTKP,x J and KD,q = JTKD,x J (2)

Here we assume that the geometric stiffness due to the
change of the Jacobian is negligible in comparison to the
terms in Eq.(2). Regulating the task space impedance thus
implies regulating the joint space impedance. Furthermore,
this fundamental mathematical relationship between joint and
task space also implies that a constant task stiffness in general
means varying gains at the joint level.

In the next section we will sketch a reinforcement learning
algorithm that is applied to learning the time dependent gain
matrices.

III. REINFORCEMENT LEARNING IN HIGH DIMENSIONS –
THE PI2 ALGORITHM

Reinforcement learning algorithms can be derived from
different frameworks, e.g., dynamic programming, optimal
control, policy gradients, or probabilistic approaches. Recently,
an interesting connection between stochastic optimal control
and Monte Carlo evaluations of path integrals was made [9].
In [18] this approach is generalized, and used in the context
of model-free reinforcement learning with parameterized poli-
cies, which resulted in the PI2 algorithm. In the following, we
provide a short outline of the prerequisites and the develop-
ment of the PI2 algorithm as needed in this paper. For more
details refer to [18].

The foundation of PI2 comes from (model-based) stochastic
optimal control for continuous time and continuous state-
action systems. We assume that the dynamics of the control
system is of the form

ẋt = f(xt, t) + G(xt) (ut + εt) = ft + Gt (ut + εt) (3)

with xt ∈ <n×1 denoting the state of the system, Gt =
G(xt) ∈ <n×p the control matrix, ft = f(xt) ∈ <n×1

the passive dynamics, ut ∈ <p×1 the control vector and
εt ∈ <p×1 Gaussian noise with variance Σε. Many robotic
systems fall into this class of control systems. For the finite

horizon problem ti : tN , we want to find control inputs uti:tN
which minimize the value function

V (xti) = Vti = min
uti:tN

Eτ i [R(τ i)] (4)

where R is the finite horizon cost over a trajectory starting at
time ti in state xti and ending at time tN

R(τ i) = φtN +
∫ tN

ti

rt dt (5)

and where φtN = φ(xtN ) is a terminal reward at time tN .
rt denotes the immediate reward at time t. τ i are trajectory
pieces starting at xti and ending at time tN .

As immediate reward we consider

rt = r(xt,ut, t) = qt +
1
2
uTt Rut (6)

where qt = q(xt, t) is an arbitrary state-dependent reward
function, and R is the positive semi-definite weight matrix
of the quadratic control cost. From stochastic optimal control
[16], it is known that the associated Hamilton Jacobi Bellman
(HJB) equation is

∂tVt = qt + (∇xVt)T ft −
1
2

(∇xVt)TGtR−1GT
t (∇xVt) (7)

+
1
2
trace

(
(∇xxVt)GtΣεGT

t

)
The corresponding optimal control is a function of the state
and it is given by the equation:

u(xti) = uti = −R−1GT
ti(∇xtiVti) (8)

We are leaving the standard development of this optimal
control problem by transforming the HJB equations with the
substitution Vt = −λ log Ψt and by introducing a simplifica-
tion λR−1 = Σε. In this way, the transformed HJB equation
becomes a linear 2nd order partial differential equation. Due
to the Feynman-Kac theorem [13, 25], the solution for the
exponentially transformed value function becomes

Ψti = lim
dt→0

∫
p (τ i|xi) exp

− 1
λ

φtN +
N−1∑
j=0

qtjdt

dτ i
(9)

Thus, we have transformed our stochastic optimal control
problem into an approximation problem of a path integral.
As detailed in [18], it is not necessary to compute the value
function explicitly, but rather it is possible to derive the optimal
controls directly:

uti =
∫
P (τ i) u (τ i) dτ i (10)

u(τ i) = R−1Gti
T
(
GtiR

−1Gti
T
)−1

(Gtiεti − bti)

where P (τ i) is the probability of a trajectory τ i, and bti is
a more complex expression, beyond the space constraints of
this paper. The important conclusion is that it is possible to
evaluate Eq. (10) from Monte Carlo roll-outs of the control
system, i.e., our optimal control problem can be solved as an
estimation problem.



A. The PI2 Algorithm

The PI2 algorithm is just a special case of the optimal
control solution in Eq. (10), applied to control systems with
parameterized control policy:

at = gTt (θ + εt) (11)

i.e., the control command is generated from the inner product
of a parameter vector θ with a vector of basis function gt –
the noise εt is interpreted as user controlled exploration noise.

A particular case of a control system with parameterized
policy is the Dynamic Movement Primitives (DMP) approach
introduced by [6]:

1
τ
v̇t = ft + gTt (θ + εt) (12)

1
τ
q̇d,t = vt

ft = α(β(g − qd,t)− vt)
1
τ
ṡt = −αst (13)

[gt]j =
wjst∑p
k=1 wk

(g − q0) (14)

wj = exp
(
−0.5hj(st − cj)2

)
(15)

The intuition of this approach is to create desired trajectories
qd,t, q̇d,t, q̈d,t = τ v̇t for a motor task out of the time evolution
of a nonlinear attractor system, where the goal g is a point
attractor and q0 the start state. The parameters θ determine
the shape of the attractor landscape, which allows to represent
almost arbitrary smooth trajectories, e.g., a tennis swing, a
reaching movement, or a complex dance movement. While
leaving the details of the DMP approach to [6], for this paper
the important ingredients of DMPs are that i) the attractor
system Eq. (12) has the same form as Eq. (3), and that ii) the
p-dimensional parameter vector can be interpreted as motor
commands as used in the path integral approach to optimal
control. Learning the optimal values for θ will thus create a
optimal reference trajectory for a given motor task. The PI2

learning algorithm applied to this scenario is summarized in
Table I. As illustrated in [18, 19], PI2 outperforms previous
RL algorithms for parameterized policy learning by at least
one order of magnitude in learning speed and also lower
final cost performance. As an additional benefit, PI2 has no
open algorithmic parameters, except for the magnitude of the
exploration noise εt (the parameter λ is set automatically,
cf. [18]). We would like to emphasize one more time that
PI2 does not require knowledge of the model of the control
system or the environment.

Key Innovations in PI2: In summary we list the key inno-
vations in PI2 that we believe lead to its superior performance.
These innovations make applications like the the learning of
gain schedules for high dimensional tasks possible.
• The basis of the derivation of the PI2 algorithm is the

transformation of the optimal control problem from a
constrained minimization to a maximum likelihood for-
mulation. This transformation is very critical since there

TABLE I
PSEUDOCODE OF THE PI2 ALGORITHM FOR A 1D PARAMETERIZED

POLICY.

• Given:
– An immediate cost function rt = qt + θTt Rθt (cf. Eq. (5))
– A terminal cost term φtN (cf. 5)
– A stochastic parameterized policy at = gTt (θ+εt) (cf. Eqs. (11)

and (12))
– The basis function gti from the system dynamics (cf. 14)
– The variance Σε of the mean-zero noise εt
– The initial parameter vector θ

• Repeat until convergence of the trajectory cost R:
– Create K roll-outs of the system from the same start state x0

using stochastic parameters θ + εt at every time step
– For all K roll-outs, compute:

∗ P
(
τ i,k
)

= e
− 1
λ
S(τ i,k)∑K

k=1
[e
− 1
λ
S(τ i,k)

]

∗ S(τ i,k) = φtN ,k +
∑N−1

j=i
qtj ,k + 1

2

∑N−1

j=i+1
(θ +

Mtj ,kεtj ,k)TR(θ + Mtj ,kεtj ,k)

∗ Mtj ,k =
R−1gtj ,k gT

tj,k

gT
tj,k

R−1gtj ,k

– For all i time steps, compute:

∗ δθti =
∑K

k=1

[
P
(
τ i,k
)
Mti,k εti,k

]
– Compute [δθ]j =

∑N−1

i=0
(N−i) wj,ti [δθti ]j∑N−1

i=0
wj,ti (N−i)

– Update θ ← θ + δθ
– Create one noiseless roll-out to check the trajectory cost R =

φtN +
∑N−1

i=0
rti . In case the noise cannot be turned off, i.e., a

stochastic system, multiple roll-outs need to be averaged.

is no need to calculate a gradient that is usually sensitive
to noise and large derivatives in the value function.

• Paths with higher cost have lower probability. A clear in-
tuition that has also rigorous mathematical representation
through the exponentiation of the value function. This
transformation is necessary for the linearization of HJB
into the Chapman-Kolmogorov PDE.

• With PI2 the optimal control problem is solved with
the forward propagation of dynamics. Thus no backward
propagation of approximations of the value function is
required. This is a very important characteristic of PI2

that allows for sampling (i.e. roll-out) based estimation
of the path-integral.

• For high dimensional problems, it is not possible to
sample the whole state space and that is the reason for
applying path integral control in an iterative fashion to
update the parameters of the DMPs.

• The derivation of an RL algorithm from first principles
largely eliminates the need for open parameters in the
final algorithm.

IV. VARIABLE IMPEDANCE CONTROL WITH PI2

The PI2 algorithm as introduced above seems to be solely
suited for optimizing a trajectory plan, and not directly the
controller. Here we will demonstrate that this is not the
case, and how PI2 can be used to optimize a gain schedule



simultaneously to optimizing the reference trajectory. For this
purpose, it is important to realize how Eq. (3) relates to a
complete robotics system. We assume a d DOF robot that
obeys rigid body dynamics. qv denotes the joint velocities,
and qp the joint angle positions. Every DOF has its own
reference trajectory from a DMP, which means that Eqs. (12)
are duplicated for every DOF, while Eqs. (13), (14), and (15)
are shared across all DOFs – see [6] for explanations on
how to create multi-dimensional DMPs. Thus, Eq. (3) applied
to this context, i.e. using rigid body dynamics equations,
with M,C,G the Inertia matrix, Coriolis/centripedal and and
gravity forces respectively, becomes:

q̇v = M(qp)−1 (−C(qp,qv)−G(qp) + u)
q̇p = qv (16)

1
τ
ṡt = −αst

where each element ui of the control vector u:

ui = −KP,i

(
qpi − q

p
d,i

)
− ξi

√
KP,i

(
qvi − qvd,i

)
+ uff,i (17)

The terms qvd,i, q
p
d,i are the reference joint angle position and

velocity of the ith DOF and they are given by the set of
equations:

1
τ
q̇vd,i = α(β(gi − qpd,i)− q

v
d,i + gi,Tt (θiref + εit)

1
τ
q̇pd,i = qvd,i (18)

Note that in the control law in (17), we used Eq. (1) applied
to every DOF individually using a time varying gain, and
we inserted the common practice that the damping gain Ki

D

is written as the square root of the proportional gain Ki
P

with a user determined multiplier ξi. A critically important
result of [18] is that for the application of PI2 only those
differential equations in Eq. (16) matter that have learnable
parameter θi. Moreover, the optimization of these parameters
is accomplished by optimizing the parameter vector of each
differential equation independently (as shown in Table I),
despite that the DOFs are coupled through the cost function.
For this reason, PI2 operates in a model free mode, as only
one of the DMP differential equation per DOF is required, and
all other equations, including the rigid body dynamics model,
drop out.

For variable stiffness control, we exploit these insights and
add one more differential equation per DOF in Eq. (16):

K̇P,i = αK

(
gi,Tt,K(θiK + εiK,t)−KP,i

)
(19)

[gt,K ]j =
wj∑p
k=1 wk

(20)

This equation models the time course of the position gains,
coupled to Eq. (15) of the DMP. Thus, KP,i is represented
by a basis function representation linear with respect to the
learning parameter θiK , and these parameter are learned with
the PI2 algorithm following Table I. We will assume that the

Fig. 1. 3-DOF Phantom simulation in SL.

time constant 1
αK

is so small, that for all practical purposes we
can assume that KP,i = gi,Tt,K(θiK + εiK,t) holds at all times.

Essentially equations 16,17,18 and 20 are incorporated in
one stochastic dynamical system of the form of Eq. (3). In
conclusion, we achieved a novel formulation of learning both
the reference trajectory and the gain schedule for a multi-
dimensional robotic system with model-free reinforcement
learning, using the PI2 algorithm and its theoretical properties
as foundation of our derivations.

V. RESULTS

We will now present results of applying the outlined al-
gorithms to two simulated robot arms with 3 and 6 DOFs,
respectively. For both robots, the immediate reward at time
step t is given as:

rt = Wgain

∑
i

Ki
P,t +Wacc||ẍ||+WsubgoalC(t) (21)

Here,
∑
iK

i
P,t is the sum over the proportional gains over

all joints. The reasoning behind penalizing the gains is that low
gains lead to several desirable properties of the system such
as compliant behavior (safety and/or robustness [2]), lowered
energy consumption, and less wear and tear. The term ||ẍ||
is the magnitude of the accelerations of the end-effector. This
quantity is penalized to avoid high-jerk end-effector motion.
This penalty is low in comparison to the gain penalty.

The robot’s primary task is to pass through an intermedi-
ate goal, either in joint space or end-effector space – such
scenarios occur in tasks like playing tennis or table tennis.
The component of the cost function C(t) that represents this
primary task will be described individually for each robot in
the next sections. Gains and accelerations are penalized at each
time step, but C(t) only leads to a cost at specific time steps
along the trajectory.

For both robots, the cost weights are Wsubgoal = 2000,
Wgain = 1/N , Wacc = 1/N . Dividing the weights by the
number of time steps N is convenient, as it makes the weights
independent of the duration of a movement.

A. Robot 1: 3-DOF Phantom

The Phantom Premium 1.5 Robot is a 3 DOF, two link arm.
It has two rotational degrees of freedom at the base and one in



Fig. 2. Initial (red, dashed) and final (blue, solid) joint trajectories and gain scheduling for each of the three joints of the phantom robot. Yellow circles
indicate intermediate subgoals.

the arm. We use a physically realistic simulation of this robot
generated in SL [14], as depicted in Fig. 1.

The task for this robot is intentionally simple and aimed at
demonstrating the ability to tune task relevant gains in joint
space with straightforward and easy to interpret data.

The duration of the movement is 2.0s, which corresponds
to 1000 time steps at 500Hz servo rate. The intermediate goals
for this robot are set as follows:

C(t) = δ(t− 0.4) · | qSR(t) + 0.2 |+ (22)
δ(t− 0.8) · | qSFE(t)− 0.4 |+
δ(t− 1.2) · | qEB(t)− 1.5 |

This penalizes joint SR for not having an angle qSR = −0.2
at time t = 0.4s. Joints SFE and EB are also required to go
through (different) intermediate angles at times 0.8s and 1.2s
respectively.

The initial parameters θi for the reference trajectory are
determined by training the DMPs with a minimum jerk
trajectory [26] in joint space from qt=0.0 = [0.0 0.3 2.0]T

to qt=2.0 = [−0.6 0.8 1.4]T . The function approximator for
the proportional gains of the 3 joints is initialized to return
a constant gain of 6.0Nm/rad. The initial trajectories are
depicted as red, dashed plots in Fig. 2, where the angles and
gains of the three joints are plotted against time. Since the task
of PI2 is to optimize both trajectories and gains with respect
to the cost function, this leads to a 6-D RL problem. The robot
executes 100 parameter updates, with 4 noisy exploration trials
per update. After each update, we perform one noise-less test
trial for evaluation purposes.

Fig. 3 depicts the learning curve for the phantom robot
(left), which is the overall cost of the noise-less test trial after
each parameter update. The joint space trajectory and gain
scheduling after 100 updates are depicted as blue, solid lines
in Fig. 2.

Fig. 3. Learning curve for the phantom robot.

From these graphs, we draw the following conclusions:
• PI2 has adapted the initial minimum jerk trajectories such

that they fulfill the task and pass through the desired joint
angles at the specified times with only small error. These
intermediate goals are represented by the circles on the
graphs. The remaining error is a result of the trade-off
between the different factors of the cost function (i.e.
penalty for distance to goal vs. penalty for high gains).

• Because the magnitude of gains is penalized in general,
they are low when the task allows it. After t = 1.6s,
all gains drop to the minimum value1, because accurate
tracking is no longer required to fulfill the goal. Once
the task is completed, the robot becomes maximally
compliant, as one would wish it to be.

• When the robot is required to pass through the inter-
mediate targets, it needs better tracking, and therefore
higher gains. Therefore, the peaks of the gains correspond
roughly to the times where the joint is required to pass
through an intermediate point.

1We bound the gains between pre-specified maximum and minimum values.
Too high gains would generate oscillations and can lead to instabilities of the
robot, and too low gains lead to poor tracking such that the robot frequently
runs into the joint limits.



Fig. 4. Initial (red, dotted), intermediate (green, dashed), and final (blue, solid) end-effector trajectories of the Kuka robot.

Fig. 5. Learning curve for the Kuka robot.

• Due to nonlinear effects, e.g., Coriolis and centripedal
forces, the gain schedule shows more complex temporal
behavior as one would initially assume from specifying
three different joint space targets at three different times.

In summary, we achieved the objective of variable
impedance control: the robot is compliant when possible, but
has a higher impedance when the task demands it.

B. Robot 2: 6-DOF Kuka robot

Next we show a similar task on a 6 DOF arm, a Kuka Light-
Weight Arm. This example illustrates that our approach scales
well to higher-dimensional systems, and also that appropriate
gains schedules are learned when intermediate targets are
chosen in end-effector space instead of joint space.

The duration of the movement is 1.0s, which corresponds
to 500 time steps. This time, the intermediate goal is for the
end-effector x to pass through [ 0.7 0.3 0.1]T at time t = 0.5s:

C(t) = δ(t− 0.5)| x− [ 0.7 0.3 0.1]T | (23)

The six joint trajectories are again initialized as minimum
jerk trajectories. As before, the resulting initial trajectory is
plotted as red, dashed line in Fig. 4. The initial gains are
set to a constant [60, 60, 60, 60, 25, 6]T . Given these initial
conditions, finding the parameter vectors for DMPs and gains
that minimizes the cost function leads to a 12-D RL problem.
We again perform 100 parameter updates, with 4 exploration
trials per update.

The learning curve for this problem is depicted in Fig. 5.
The trajectory of the end-effector before learning and after 30
and 100 updates is depicted in Fig. 4. The intermediate goal

at t = 0.5 is visualized by circles. Finally, Fig. 6 shows the
gain schedules before learning and after 30 and 100 updates
for the 6 joints of the Kuka robot.

From these graphs, we draw the following conclusions:

• PI2 has adapted joint trajectories such that the end-
effector passes through the intermediate subgoal at the
right time. It learns to do so after only 30 updates
(Figure 5).

• After 100 updates the peaks of most gains occur just
before the end-effector passes through the intermediate
goal (Figure 6), and in many cases decrease to the
minimum gain directly afterwards. As with the phantom
robot we observe high impedance when the task requires
accuracy, and more compliance when the task is relatively
unconstrained.

• The second joint (GA2) has the most work to perform, as
it must support the weight of all the more distal links. Its
gains are by far the highest, especially at the intermediate
goal, as any error in this DOF will lead to a large end-
effector error.

• The learning has two phases. In the first phase (plotted
as dashed, green), the robot is learning to make the
end-effector pass through the intermediate goal. At this
point, the basic shape of the gain scheduling has been
determined. In the second phase, PI2 fine tunes the gains,
and lowers them as much as the task permits.

VI. RELATED WORK

In optimal control and model based RL, Differential Dy-
namic Programming (DDP) [7] has been one of the most estab-
lished and used frameworks for finite horizon optimal control
problems. In DDP, both state space dynamics and cost function
are approximated up to the second order. The assumption of
stabilizability and detectability for the local approximation of
the dynamics are necessary for the convergence of DDP. The
resulting state space trajectory is locally optimal while the cor-
responding control policy consists of open loop feedforward
command and closed loop gains relative to a nominal and
optimal final trajectory. This characteristic allows the use of
DDP for both planning and control gain scheduling problems.
In [4, 24] DDP was extended to incorporate constrains in
state and controls. In [10] the authors suggest computational



Fig. 6. Initial (red, dotted), intermediate (green, dashed), and final (blue,
solid) joint gain schedules for each of the six joints of the Kuka robot.

improvements to constrained DDP and apply the proposed
algorithm to a low dimensional planning problem.

An example of a DDP application to robotics is in [12]. In
this work, a min-max or Differential Game Theory approach to
optimal control is proposed. There is a strong link between ro-
bust control frequency design analysis such as H∞ control and
the framework of Differential Game Theory [1]. Essentially
the min-max DDP results in robust feedback control policies
with respect to model uncertainty and unknown dynamics.
Although, in theory, min-max DDP should resolve the issue
of model uncertainty, it can lead to overly conservative control
policies. The conservatism results from the need to guarantee
that the game theoretic approach will be always stabilizable,
i.e. making sure that the stabilizing controller wins. For linear
and time invariant systems, such guarantee is feasible through
γ-iteration [23]. However, for nonlinear systems providing this
guarantee is not trivial.

The work on Receding Horizon DDP [17] provided an

alternative and rather efficient way of computing local op-
timal feedback controls. Nevertheless, all the computations
of optimal trajectories and control take place off-line and
the model predictive component is only due to the fact that
the final target state of the optimal control problem varies.
Recent work on LQR-trees uses a simpler variation of DDP,
the iterative Linear Quadratic Regulator (iLQR) [11], which is
based on linear approximations of the state space dynamics,
in combination with tools from Nonlinear Robust Control
theory for region of attraction analysis. Given the local optimal
feedback control policies, the sums of squares optimization
scheme is used to quantify the size of of the basin of attraction,
and provides so-called control funnels. These funnels improve
sampling since they quantize the state space into attractor
regions placed along the trajectories towards the target state.
This is a model based approach and inherits all the problems of
model based approaches to optimal control. In addition, even
though sampling is improved, it is still an issue how LQR
trees scale in high dimensional dynamical systems.

The path integral formalism for optimal control was intro-
duced in [8, 9]. In this work, the role of noise in symme-
try breaking phenomena was investigated in the context of
stochastic optimal control. In [22], the path integral formal-
ism is extended for stochastic optimal control of multi-agent
systems, which is not unlike our multi DOF control systems.

Recent work on stochastic optimal control by [21, 20, 3]
shows that for a class of discrete stochastic optimal control
problems, the Bellman equation can be written as the KL di-
vergence between the probability distribution of the controlled
and uncontrolled dynamics. Furthermore, it is shown that the
class of discrete KL divergence control problem is equivalent
to the continuous stochastic optimal control formalism with
quadratic cost control function and under the presence of
Gaussian noise. In all this aforementioned work, both in the
path integral formalism as well as in KL divergence control,
the class of stochastic dynamical systems under consideration
is rather restrictive since the control transition matrix is
state independent. Moreover, the connection to direct policy
learning in RL and model-free learning was not made in any
of the previous projects. In [3], the stochastic optimal control
problem is investigated for discrete state-action spaces, and
therefore it is treated as Markov Decision Process (MDP).
To apply our PI2 algorithm, we do not discretize the state
space and we do not treat the problem as an MDP. Instead
we work in continuous state-action spaces which are suitable
for performing RL in high dimensional robotic systems. To
the best of our knowledge, our results present RL in one
of the most high dimensional continuous state action spaces.
In our derivations, the probabilistic interpretation of control
comes directly from the Feynman-Kac Lemma. Thus we do
not have to impose any artificial pseudo-probability treatment
of the cost as in [3]. In addition, for continuous state-action
spaces, we do not have to learn the value function as it is
suggested in [3] via Z-learning. Instead we directly obtain the
controls based on our generalization of optimal controls. In the
previous work, the problem of how to sample trajectories is not



addressed. Sampling is performed with the hope to cover all
the relevant state space. We follow a rather different approach
by incremental updating, which allows us to address robotic
learning problems of the complexity and dimensionality of
complete humanoid robots.

VII. DISCUSSION

We presented a model-free reinforcement learning approach
that can learn variable impedance control for robotic systems.
Our approach is derived from stochastic optimal control with
path integrals, a relatively new development that transforms
optimal control problems into estimation problems. In partic-
ular, PI2 goes beyond the original ideas of optimal control with
path integrals by realizing the applicability to optimal control
with parameterized policies and model-free scenarios.

The mathematical structure of the PI2 algorithm makes it
suitable to optimize simultaneously both reference trajectories
and gain schedules. This is similar to classical differential dy-
namic programming (DDP) methods, but completely removes
the requirements of DDP that the model of the controlled
system must be known, that the cost function has to be twice
differentiable in both state and command cost, and that the
dynamics of the control system have to be twice differentiable.
The latter constraints make it hard to apply DDP to tasks with
discrete events, as is typical in force control and locomotion.

We evaluated our approach on two simulated robot systems,
which posed up to 12 dimensional learning problems in con-
tinuous state-action spaces. The goal was to learn compliant
control while fulfilling kinematic task constraints, like passing
through an intermediate target. The evaluations demonstrated
that the algorithm behaves as expected: it increases gains when
needed, but tries to maintain low gain control otherwise. The
optimal reference trajectory always fulfilled the task goal.
Learning speed was rather fast, i.e., within at most a few
hundred trials, the task objective was accomplished. From
a machine learning point of view, this performance of a
reinforcement learning algorithm is very fast.

The PI2 algorithms inherits the properties of all trajectory-
based learning algorithms in that it only finds locally optimal
solutions. For high dimensional robotic system, this is unfortu-
nately all one can hope for, as exploring the entire state-action
space in search for a globally optimal solution is impossible.

Future work aims at applying these methods to actual
robots for mobile manipulation and locomotion controllers.
We believe that our methods are a major step towards realizing
compliant autonomous robots that operate robustly in dynamic,
stochastic environments, without harming other beings or
themselves.
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