(will be inserted by the editor)

Autonomous Robots: Special Issue on Autonomous Mobile Manipulation manuscript No.

Generality and Legibility in Mobile Manipulation

Learning Skills for Routine Tasks

Michael Beetz, Freek Stulp, Piotr Esden-Tempski, Andreas Fedrizzi, Ulrich Klank, Ingo Kresse,

Alexis Maldonado, Federico Ruiz

Intelligent Autonomous Systems Group, Technische Universitdt Miinchen, Department of Informatics

Boltzmannstr. 3, D-85748 Garching bei Miinchen, Germany

Received: date / Revised version: date

Abstract This article investigates methods for achiev-
ing more general manipulation capabilities for mobile
manipulation platforms, which produce legible behavior
in human living environments. To achieve generality and
legibility, we combine two control mechanisms. First of
all, experience- and observation-based learning of skills
is applied to routine tasks, so that the repetitive and
stereotypical character of everyday activity is exploited.
Second, we use planning, reasoning, and search for novel
tasks which have no stereotypical solution. We apply
these ideas to the learning and use of action-related
places, to the model-based visual recognition and lo-
calization of objects, and the learning and application
of reaching strategies and motions from humans. We
demonstrate the integration of these mechanisms into
a single low-level control system for autonomous manip-
ulation platforms.

1 Introduction

In this article, we investigate a simple everyday mobile
manipulation task: putting typical, easy to grasp every-
day objects, e.g. mugs and plates, on the table in order
to perform a household task such as setting the table.
Our objective is to perform such tasks with a generality
and flexibility that is typically required in the context of
everyday manipulation tasks, and to exhibit motions and
behavior that look natural and are legible for humans.
The objective of performing manipulation tasks al-
ready presents a huge challenge for mobile manipulation
research. Rosenbaum and his colleagues [34] call this the
Turing test for action: “In order to follow a simple in-
struction to pick up a rock, the robot must somehow

O This article is accompanied by several videos, which
can be downloaded from http://www9.in.tum.de/people/|

stulp/arvideo

1. robot navigates to cup 5. robot navigates to
|

=3 = 4

6. robot approaches counter
I . .} A Y ks

7. robot puts down cup
= I et

. robot returns to base
g
\ B

Fig. 1 A reach and grasp trajectory performed during the
demo

answer questions such as: “From what direction should I
approach it? Should I grab it on that outcropping closest
to my left? Which posture will allow me to reach it?” ”

There are two extreme positions on how to approach
the Turing test for action. First, reinforcement learn-

http://www9.in.tum.de/people/stulp/arvideo/
http://www9.in.tum.de/people/stulp/arvideo/

ing aims at learning an optimal policy for doing the
task [44]. Policies so acquired are very specific for the
task context in which they were learned, and it is dif-
ficult to port them to new robots and tasks. Motion
planning, the second approach, is more flexible, as it
uses (directed) search to find a solution to the task [22].
However, this approach treats each task as a novel one,
and cannot exploit similarities between tasks. Also, in
high-dimensional spaces, a solution is not always found.

Our approach is to have learned standard solutions,
or skills, for routine tasks, as depicted in Fig. 2] These
skills are optimized over time, which leads to stereotypi-
cal motion [50]. Such motion is predictable, can be mod-
elled well, and is legible for humans, i.e. humans rec-
ognize the intention of the motion. By exploiting the
recurrence of many tasks in this way, we are “exploiting
the loopholes of life”, as Ian Horswill puts it [I5]. This
approach combines the advantages of both reinforcement
learning and motion planning, being optimality and flex-
ibility respectively.

Gather experience
Learn models of solutions
Optimize solutions

Task classifier <—} Belief State

Routine task

Novel tas

‘ ‘Canned’ Solutions ‘ ‘ Novel Solutions
ﬂszn Download 3D models

Vision: Use known 3D models
Reaching: Use DMPs
Navigation:

‘ Gather experience
Learn models and policies
Compile knowledge

eaching: Use RRTs
Navigation:

Fig. 2 Learning and optimizing skills for routine tasks.

To exploit the stereotypical character of everyday ac-
tivity we employ a control system that first classifies
tasks into everyday ones for which it has canned so-
lutions and novel ones which have to be planned for
and require more sophisticated reasoning before being
solved. Having encountered novel tasks that might have
to be performed more often, the system gathers experi-
ence with the novel tasks to optimize their solution and
stores learned models and solutions for later use.

The second issue we want to address in this article is
generality. Rather than spelling everything out explicitly
and in a detailed manner by hand, we would like to state
the control programs more generally and let the program
infer the details given more specific information about
the current task context, the task itself, and the situation
in which the task is to be performed. Thus instead of
specifying the exact position from where the robot is
to pick up a particular object we ask the robot to go
to a place that is suitable for the robot to pick it up.
The robot then chooses the most suitable position based
on context information such as clutteredness and more
accurate information about the object to be lifted.

The application scenario we consider, as depicted in
Fig. 1} is an autonomous kitchen assistant [2], in par-
ticular setting the table. This task requires the robot

M. Beetz et al.

to localize itself, to grasp several objects from working
surfaces in the kitchen, and to place them on a table.

The main contributions of this paper, which are il-
lustrated in this application scenario are the following
ones. We propose

— ... methods for achieving more general manipulation
capabilities for mobile manipulation platforms, which
produce legible behavior in human living environ-
ments by combining two control mechanisms. First
of all, experience- and observation-based learning of
skills is applied to routine tasks, so that repetitive
and stereotypical character of everyday activity is ex-
ploited.

— ... the concept of action-related place to make least-
commitment decisions as to where the robot should
stay to reach for an object. Action-related places are
learned from experience and the robot can revise and
refine action-related places during operation in order
to better reflect the action context including esti-
mated accuracies of the robot’s and the target ob-
ject’s pose.

— ... a reliable object recognition and localization sys-
tem that can find instances of object categories in
its environments by retrieving 3D models from the
world wide web and that improves the models to fa-
cilitate the subsequent visual tasks concerning this
object.

— ... a control mechanism for reaching tasks that learns
the motion strategy and behavior from the observa-
tion of human reaching behaviors. The result is a leg-
ible and predictable reaching behavior of the robot.

We demonstrate the integration of these mechanisms
into a single low-level control system for autonomous
manipulation platforms.

The rest of this article is structured as follows: First,
we present the application scenario and an overview of
the system. Then, we discuss related work in Section
In Section [3| we describe an algorithm that determines
goal positions for navigation, from which manipulation
will likely succeed. Section [4] explains how the robot uses
its stereo vision system to localize the target object.
The stereo-typical reaching trajectories the robot uses
to reach to and grasp the object are explained in Sec-
tion[5} Section [6] presents the task-level controller that is
important for high-level failure recovery and allows for
flexible and reliable operation of the system. Results are
presented in Section [7] and we conclude with Section

1.1 Application Scenario

To illustrate the operation of our system let us consider
the following demonstration scenario, which addresses
several questions raised by the “Turing test for action”.
These questions include the ones about where the robot
should go in order to perform some manipulation action,

Generality and Legibility in Mobile Manipulation

where should the robot grasp the object, and how should
the robot reach such that reaching is flexible and natural
looking. In all these aspects the robot will make control
decisions and parameterize actions in ways that it has
learned from experience.

-4 mug - Google 3D Warehouse Search - Iceweasel [BEE
File Edit View History Bookmarks Tools Help

<’: v @ b @ /\J} ‘u http://sketchup.google.com/3dwarehc 'l B |[Gl- ‘w\
English change SignIn -

GOUSIQ 3D Warehouse |mug

Search for: & Models ¢ Collections

_Search [atancea

3D Warehouse Results Results 1- 12 of about 155 for mug (0.1 seconds)
Sorted by relevance Sort by date Sort by rating Sort by popularity Sort by title —

Mug Mug

L]

£ 2 by jacob by pma
) Mug, 10" x 20" giant china mug -l) |Mug

Download to Google SketchUp 6 Download to Google SketchUp B

Mug Mug
by NightShadows by utube

E A glass mug. High-poly Dodger blue mug...
Download to Google SketchUp Download to Google SketchUp 6

=l

q | 5]

Fig. 3 Result of the querying Google 3D warehouse for the
term “mug”.

In our scenario the robot is installed in its working
environment and automatically learns a semantic 3D ob-
ject model of its environment [36]. It also learns models
of the objects it has to manipulate in the installation
phase. To do so, the robot crawls websites and retrieves
candidate 3D models of object classes that are relevant
for upcoming jobs. Fig. [3| shows the result of a htip-
get-query to Google 3D warehouse. The robot filters out
incorrect answers assuming that most of the answers re-
turned by Google 3D warehouse are models that match
the query. It then uses the plausible 3D object models
to find instances of the object class in its environment,
as depicted in Fig.

Fig. 4 There is no matching object on the table (left) but
a matching object is found in the cupboard (right).

Besides acquiring the environment model and models
of the objects to be manipulated, the robot also learns
models of the effectiveness of its navigation and pick-
and-place capabilities in this particular environment. For
a particular environment at hand, these effectiveness-

models are used to tailor the choice and parameteriza-
tion of action control.

One particular example of acquiring environment-
specific models of its manipulation capabilities is that
the robot learns the places where it can easily pick up
objects from the table by autonomously collecting data
about picking up and placing objects in this particular
environment. These models take into account the height
and other dimensions of the table, the dexterity of the
robot with respect to the challenges imposed by the ob-
jects that are to be manipulated, and other aspects that
are important for achieving the manipulation task. The
models are therefore grounded in experience rather than
based on analytical considerations.

|
N
|

) S =

il v

|

\

\

Fig. 5 Results for a query for the location of a piece of
furniture, in this case the table.

Thus upon receiving a command to move a cup from
the table onto the kitchen counter, the robot uses its
environment model to query the information needed to
translate the abstract instruction into accurate geomet-
ric information required to navigate and look at the right
positions. Fig. [f] depicts the result of querying the envi-
ronment model for the table in the environment.

Based on this information the robot looks in order to
determine where the cup is located on the table. Because
it could not detect the cup the first time, the robot varies
its position and the direction of the camera to get a
better look. After having detected the mug, the robot
navigates to a suitable position for picking up the object.
Upon arrival the robot looks at the cup more carefully
to estimate the position of the cup with a precision that
is sufficient for reaching and grasping the cup.

Having fixated the cup on the table the robot per-
forms a reaching motion that mimics human reaching
trajectories. This motion strategy enables the robot to
produce not only behavior that is more legible for hu-
mans, but it also to better map motions of people to
its own motion apparatus and thereby simplifies imita-

Fig. 6 Two cups detected and localized on the table using
the model from Google 3D warehouse. The model has been
automatically scaled, but there are still discrepancies between
the cup and the model with respect to the handle of the mug.

tion learning. The navigation and the reaching trajectory
performed by the robot are depicted in Fig.

Having grasped the object, the robot moves its hand
into the carrying position for the object and then navi-
gates to the counter to put the object onto the counter.
Noticing the clutter on the counter, the robot adjusts its
position for placing the object to better reach the free
space on the counter.

1.2 System Ouverview

In this section, we describe the hardware and software
components of our system, required to realize the appli-
cation scenario described above.

We use a B21r mobile robot from Real World In-
terface. Its wheels allow this round robot to move for-
ward and turn around its center axis. It has two 6-DOF
lightweight arms from Amtec mounted on it. Despite
their human-like length they are still much more limited
than human arms as they have a very inhomogeneous
working space. For the vision system the robot is also
equipped with two high dynamic range cameras which
are mounted on a pan-tilt unit from directed perception.
Localization in the kitchen is done using a SickLMS400
laser range scanner, and the integrated odometry from
the wheels.

This robot is not the most advanced hardware plat-
form available. Our goal is to to develop algorithms that
run on many different robotic platforms. Therefore, we
have designed our software and hardware interfaces such
that we expect the same control program to run on our
DLR Arm [?] and DLR-HIT Hand [?], which we are cur-
rently installing.

With the increased dexterity and sensing that this
platform provides, we expect to be able to improve the
performance and robustness of our robot’s behavior.

An overview of our system is depicted in Fig.[7} Here,
the focus is on processes, not on models they operate

M. Beetz et al.

on. The system uses a variety of modules that com-
municate over two middleware systems: Player from the
Player/Stage/Gazebo project [10], and YARP [26] that
is developed in the RobotCub project. Player provides a
variety of hardware drivers and is mainly used for low-
level communication with the robot. Examples are re-
ceiving laser sensor data, controlling the manipulators,
communicating to the base navigation system, and mov-
ing the pan/tilt unit of the cameras. Player also comes
with some standard robotic algorithms. We currently use
the Adaptive Monte Carlo Localization algorithm for lo-
calization, pmap for map building, the AMCL Wavefront
Planner for global path planning. We added our own in-
terfaces and drivers, where necessary. For instance, we
implemented an interface to the Kinematics and Dynam-
ics Library (Orocos-KDL), a navigation controller, and
a driver that makes MSL for RRT-based motion plan-
ning available to the system. In Fig. [7] all processes that
are based on Player modules or external libraries are
indicated by a white background.

YARP on the other hand is used for communicating
information between higher level systems. YARP and
Player co-exist peacefully, and we also built middleware
‘bridges’ that allow to send messages to both systems.

Legend:

Player Module

Reactive Plan Language
High-level control and planning
Monitoring
Error recovery
manipulation/ (Section 6) o

navigation

- request
Task classifier request \

o A, c
£[rrts |[DmPs Belief State BestGraspPos | S
g Novel ||Known Representation Determines g
& |tasks || tasks of system state best base pose| S
b (Sec- and task-relevant to grasp from |2
5 tion 5) information 8 (Section 3)
©
.g' Y/ object | current td i
£ | Vector Fields poses location grasp position
v
& | On-line
H = = 5
& | adaptation Vision Base Localiz. Base Navig.
Object Adaptive AMCL
- detection and Monte Carlo Wavefront
tracking Localization planner
KDL (Section 4)
Py A | Hardware
joint angles camera image 5 -
gripger state PTU state object ID odometry velocities
v
Arm + Hand Camera + PTU RFID Tags Base
PowerCube Mounted on Attached to B21
Arm and pan-tilt unit objects
Gripper

Fig. 7 System overview. The focus of this paper is on the
modules indicated with thick edges. For abbreviations, see

Section [[.21

For debugging and efficient data collection purposes,
we also use the Gazebo simulator [I0]. Gazebo is a high-
quality 3D multi-robot simulator for indoor and out-
door environments that uses the Open Dynamics En-
gine (ODE) library for a proper simulation of rigid body
physics. The simulator is especially useful for gathering
large training data sets required for learning action mod-
els, as described in Section (3.2

In our experience, using modules from Open Source
projects, e.g. Player, YARP, Orocos-KDL, and MSL has

Generality and Legibility in Mobile Manipulation

enabled us to quickly solve tasks that are necessary to
develop a running system. This has allowed us to focus
on tasks that are within our specific research interests.
The main research foci we present in this article are in-
dicated by boxes that are surrounded by thicker edges
in Fig. [7] These will be discussed in Sections [3] to [f]
The belief state plays an important role in our sys-
tem. In most systems that use plan-based control, the be-
lief state contains only abstract concepts. This abstrac-
tion makes planning tractable. However, this abstraction
often abstracts away from aspects of the behavior that
are very relevant to understanding the behavior of the
robot. For a flexible adaptive planning system, it is for
instance necessary to know on a lower level what caused
a failure. Only then can the robot understand the failure,
and change future plans to forestall the failure. There-
fore, our belief state receives all the information from the
state estimation modules. The planner chooses when and
at what level of abstraction it requires which information
from the belief state. Of course, local low-level control
loops between different modules also exist, for instance
in between the Vector Fields and Inverse Kinematics,
and the localization and navigation modules of the base.
For clarity, these low-level loops are not depicted in Fig-

ure [71

2 Related Work

In recent years, many novel mobile manipulation plat-
forms have been introduced. Platforms that have been
explicitly designed for manipulation and locomotion/-
navigation include humanoid robots [1l4], single manip-
ulators on mobile bases [19,32], bi-manual torsos on mo-
bile bases [47,48], and hybrid solutions, where the base
is mobile, but the arm is not [40]. Vision is currently
the predominant form of perception for manipulation for
these and other mobile platforms [20]. Another trend is
that many of these platforms use Rapidly-exploring Ran-
dom Trees (RRT's) [22] or related motion planning algo-
rithms for navigation and/or manipulation planning. As
discussed in the Section [1} our focus is rather on learn-
ing skills for routine tasks, and optimizing these skills
over repeated execution, rather than developing meth-
ods that can deal with all possible situations by relying
on search. We also focus on generality, for instance by
downloading 3D models (Section [4.2)) or instructions [27]
from the World Wide Web. Another example is learning
success models from observed experience (Section ,
rather than computing these probabilities based on ex-
plicit models of the robot and the environment; models
which often require and assume complete and accurate
knowledge of the world state [20].

The ability of the service robot ARMAR-III to fill
and empty a dishwasher is demonstrated by Asfour et
al. in [I]. The impressive robot solves the task well, but
under strong assumptions about the environment that

allows the usage of a limited perception system only han-
dling simple and well known objects. A more sophisti-
cated perception system for robot manipulation is pre-
sented by Kragic et al. in [2I]. It is based on a large set
of distinct methods to localize known and novel objects.
However, they assume the 3D models for most objects as
available and lack an ability to acquire new models. The
approach also uses a strict heuristic for the order of dif-
ferent visual cues to be extracted. Saxena et al. propose
in ([37]) a method to learn grasp points of novel objects
purely vision based. In contrast to this, our method tries
to find a good 3D model to fit it, while they try to avoid
the usage of 3D models. The ability of vision systems
to reliably scale so that they can handle a large number
of everyday objects has not been demonstrated [20]. We
believe that acquiring 3D models from the Internet is an
important step in this direction.

Another important research topic in this paper is
learning compact models. With regard to learning mod-
els of robot capabilities, Zacharias et al. addressed the
issue of capturing robot workspace structure [51]. Their
capability maps are generated by separating the workspace
into discrete regions and trying to solve multiple inverse
kinematics queries for every region. A capability map
helps to deduce the dextrous workspace of a manipu-
lator, which is useful for positioning the robot relative
to an object. However, capability maps do not consider
context information and therefore are not optimized for
a given environment. Although new versions of the ca-
pability map consider arm motion to reach a certain
pose [52], our approach explicitly takes the motion sys-
tem into account and optimizes the initial position so
that the following process of trajectory generation is as
easy as possible. Most importantly, the success models
we learn (Section are tailored to the set of motion
primitives our robot has (Section .

Haigh et al. [II] and Belker et al. [3] also developed
robots that optimize their high-level plans with action
models. These models are used to determine the best
path in a hallway environment. Our approach rather fo-
cuses on optimizing the parameterization of subgoals at
fixed points in the plan (i.e. where to navigate to grasp
the object), and is not limited to navigation plans or
tasks. A different thread in learning robotic action mod-
els from observed experience focusses on models that
monitor the execution of actions, rather than predicting
their outcome up front given a parameterization [9L[7].

The trajectory imitation technique we use in Sec-
tion [5| is based on the work by Ijspeert et al. [16] on
Dynamic Movement Primitives. Instead of imitating just
one example trajectory, we analyze human data to derive
stereo-typical trajectories, and imitate (combinations of)
those. A related approach for reaching and grasping uses
Gaussian mixture models to encode a set of trajecto-
ries [6] that are taught to a robot using kinesthetics
(the human teacher moves the robot’s actuators). These
models contain the allowed variance and generalize to

new task settings. Our approach observes data from real
human subjects while doing reaching movements in the
presence of obstacles, and use different models depend-
ing on the situation. The situation (e.g. position of the
obstacle) affects the the trajectory in a causal matter,
and our model takes into account different strategies for
accomplishing the same reaching task (avoiding the ob-
stacle on the left, right, or above it).

3 Navigating to Grasp

Mobile manipulation requires not only navigation and
manipulation skills, but also knowledge of the interac-
tions and coupling between them. Simply navigating to
a place that is close to the target object is not enough.
One of the questions implied by a Turing test for action
is the one concerning where the robot should stand in or-
der to perform its manipulation actions. Answering the
question seems trivial: simply go to a position such that
the target of manipulation is well in reach. However, a
more careful look at the question raises some serious is-
sues: What is a good place in the context of an intended
manipulation action? Can we have a least commitment
realization of places such that the robot can refine a
place as it learns more about the context (e.g. the clut-
teredness) of the surroundings? How can the concept of
places deal with the issue that the self localization of the
robot might be uncertain and inaccurate? How can we
deal with the issue that poses might be more or less ap-
propriate for performing a manipulation task? How can
we make the concept of action-related place support con-
junctive manipulation actions? That is given two actions
a1 and ag, what is a place where the robot can perform
both a; and ay and how well can it perform them.

P(success|x,y)

Fig. 8 Probability of successful manipulation, given the
robot’s position at the table. This is the concept of ’place’
for this particula task.

In our system we have realized the concept of action-
related place in the following way. An action-related
place is a set of regions (robot poses), from which the

M. Beetz et al.

respective manipulation action can be performed suc-
cessfully. Fig. |8 shows a distribution that visualizes the
probability of success when performing a manipulation
action from a given initial position. The plateau on the
top consists of a region of connected locations, where the
probability of success is sufficiently high. To find the best
position arbitrary cost functions can be used to optimize
a utility function that considers secondary constraints
like time, distance, or quality measures of the arm tra-
jectory. In this paper we take the success probability as
our utility function. Additional constraints such as pre-
viously unknown obstacles are dealt with by eliminating
the poses of a place that violate constraints, for exam-
ple those that might cause collisions. The uncertainty
the robot has about its own location is also taken into
account.

Action-related places for multiple actions are then
the intersection of the places of all individual actions. As-
suming that their success probability is independent of
each others, the poses in the intersection are valued with
the product of the probabilities of each single action.
Fig. [0 illustrates this for the task of concurrently grasp-
ing two cups. The yellow hull shows all places, where
the yellow cup can be grasped with the left arm. The
blue hull shows all places, where the blue cup can be
grasped with the right arm. Finally, the green hull shows
all places, where the grasping of both cups is possible.

- 05 0 B 05 0 A 05 0

Fig. 9 The concept of 'place’ as a distribution of probabil-
ities of successful task execution. The black cell is the max-
imum of the distribution. Left distribution: grab cup with
left gripper. Center distribution: grab cup with right grip-
per. Right distribution: Grab both cups with left/right grip-
per respectively. The probability of success of the latter is
the product of both individual distributions.

In the remainder of this section we will describe and
discuss how places can be represented compactly as a
function of the position of objects to be manipulated and
how this action-related concept of place can be learned
automatically from experience.

3.1 Gathering Training Data

The robot first gathers training data by repeatedly ex-
ecuting a navigate-reach-grasp action sequence. To ac-
quire sufficient data in little time, we perform the train-
ing experiments in the simulator presented in Section|L.2
Reaching and grasping are performed using exactly the

Generality and Legibility in Mobile Manipulation

same Dynamic Motion Primitives and Vector Fields that
we use on our real robot. These methods are presented
in Section 5} Moreover we designed a precise model of
the real robot in the simulation to ensure that the data
acquired in simulation is completely applicable to the
real robot.

The action sequence is executed
for a variety of task-relevant pa-
rameters. In our scenario we tried
to grasp a cup and the task-
relevant parameters were the x,y
position of the cup on a table. The
12 cup positions that the robot
used for training are depicted in
Fig. For each cup position,
the action sequence was executed
350 times. The initial position for
reaching and grasping was randomly sampled, and the
result whether the robot was able to grasp the cup or
not, was stored in a logfile.

Fig. 10 The po-
sitions of the cup
on the table.

Navigate

Grasp Lift

Initial

Fig. 11 Two experiment runs with different samples for
the robot position. The navigate-reach-grasp sequence in the
upper row succeeds. It fails in the lower sequence because the
robot is too far away from the cup.

3.2 Learning the Success Model

To learn the success model, we compute a hull around
the successful samples. This hull is a simple classifier:
successful positions should be in the hull, and failure
examples should lie outside. We compute the hull by
performing a Delaunay triangulation on the successful
points. Since the convezr hull usually contains failures,
we ‘tighten’ it around the successful samples by only
keeping a triangle if each supporting point in the trian-
gle is amongst the thirty nearest neighbors of the other
two points. As a result, triangles with very long edges
are filtered out. Fig. [12| depicts resulting hulls for differ-
ent configurations of task-relevant parameters. Here, we

make the strong assumption that no failures lie inside the
‘tightened’ hull around the successes. For our scenario,
this approach has proven sufficient, but in future work
we will investigate the use of Support Vector Machines
and AdaBoost with decision stumps. These approaches
provide more accurate classifications, but essentially also
provide classification hulls, which can be processed by
our algorithm just as the hulls depicted in Fig.

1.| OO0 o] Jele} QOeQ

| Q000 0000 0000
4,[0900 0900 0000

- 0000
.| #9000 000 0080

..[0900 0009 [cletele}

“loooo 0000 0000 0000
0000 0000 0000 0000

' 9000 0900 coe0 Q00e

Fig. 12 Successful grasp positions and their ‘tight’ hulls.
Every sub-image shows the hull that corresponds to the cup
position that is visualized with the black cup.

For each of the 12 different cup positions, we get one
hull. In the next step, we compile all hulls into a general-
ized compact representation using a Point Distribution
Model (PDM), which is a well established method in the
field of face recognition [49]. As input a PDM requires
n points that are distributed over the contour. We dis-
tribute 20 points equidistantly over each hull, and de-
termine the correspondence between points on different
hulls by minimizing the sum of the distances between
corresponding points, while maintaining order between
the hull points. This yields the point distribution de-
picted in Fig. Only 4 of 12 hulls are shown for clarity.

Fig. 13 Aligned points on the hulls.

Given the aligned points on the hulls, we compute
a PDM. Although PDMs are most well-known for their
use in computer vision, we use the notation by Roduit
et al. [33], who focus on robotic applications. First, the
2D hulls are merged into one 40x12 matrix H, where the
columns are the concatenation of the x and y coordinates
of the 20 points along the hull. Each row represents one
hull. The next step is to compute P, which is the ma-
trix of eigenvectors of the covariance matrix of H. Given
P, we can decompose each hull hy in the set into the
mean hull and a linear combination of the columns of
P as follows hy, = H+ P - b. Here, by, is the so-called
deformation mode of the k" hull. This is the Point Dis-
tribution Model. The first two deformation modes are
depicted in Fig. [l4(a), where the values of the first and
second columns of B are varied between their maximum
and minimum value.

0.4 04 04

0.3 03 0.3

0.2 0.2 0.2

0.1 0.1 0.1

0 0
-0.1 -0.1
-02 -02

-03 -031 |

-04 -04

[N
\
\I\\

N\ \ ,
05 051 Hull fromwhich /5/ 05
PDM
-0.6 -0.6 s Commjt‘a -0.6 L L L
-1 09 -08 -07 -1 -09 -08 -07 -1 -09 -08 -07
(a) First and second deformation mode (b) Reconstructing

in B. the original hulls

with the PDM.

Fig. 14 Generalizing over the hulls with a Point Distribu-
tion Model.

By inspecting the eigenvalues of the covariance ma-
trix of H, we determined that the first 2 components
already contain 96% of the energy. Therefore, we use
only the first 2 deformation modes, without losing much
accuracy. Fig. demonstrates that the original 12
hulls can be reconstructed well when using only the first
two deformation modes.

The advantage of the PDM is not only that it sub-
stantially reduces the high dimensionality of the initial
40D hulls, but also allows us to interpolate between hulls
in a principled way using only two deformation param-
eters. The PDM is therefore a compact, general, yet ac-
curate model.

The final step of model learning is to relate the spe-
cific deformation of each hull (contained in B) to the val-
ues of the task-relevant parameters varied during data
collection (i.e. cup positions). Since the correlation coef-
ficients between the first and second deformation modes
and the task relevant parameters T (the z and y coordi-
nates of the cup) are 0.99 and 0.97 respectively, we sim-

M. Beetz et al.

ply compute the linear relation between them with W =
[1 T]/B7T. Given a novel position t,ew = (Tnew, Ynew)
of the cup on the table, this model allows us to quickly
compute the area from which a successful grasp can be
expected. First, we compute the appropriate values of
brew = ([1 trew] - W)T. Then the hull is computed with
hyey = H+ P - byey. This hull estimates the area in
which the robot should stand to be able to make a suc-

cessful grasp.

3.8 Computing Successful Grasp Position Probabilities

In our system, an uncertainty is associated with the
task-relevant parameters. Therefore, it does not suffice
to compute only one hull given the most probable po-
sition of the cup as a place from which to grasp. This
might lead to a failure if the cup is not at the position
where it was expected. Therefore, we use a Monte-Carlo
simulation to generate a probabilistic advice on where
to navigate to grasp the cup. This is done by taking 100
samples from the Gaussian distribution of the cup posi-
tion, which yields a matrix of task relevant parameters
ts = [xs ¥s]. The corresponding hulls h, are computed
for the samples by using the method described above. In
Fig. 30 out of the 100 hulls are depicted. These
were generated from the task relevant parameters z=-
0.3, y=0.1, 0,=0.05, 0,=0.05.

06
04

0.2

-0.2

(<)
c
(Y)
()
e
{o),
Q)
(<))
=)
(0p)

-0.4

-1.2 -1 -0.8 -06 -1.2 -1 -0.8 -06
x X

(a) Sampled classification (b) Discretized
hulls (hs). sum of the hulls.

relative
Fig. 15 Monte-Carlo simulation

We then generate a discrete grid in which each cell
measures 2.5x2.5¢m, and compute the number of hulls it
is contained in. Dividing the result by the overall number
of hulls yields the probability that grasping the cup will
succeed from this position. The corresponding distribu-
tion, which takes the uncertainty of the cup position into
account, is depicted in Fig. [15(b)| as well as in Fig.

It is interesting to note the steep decline on the right
side of the distribution (in the direction of the table).
This is intuitive, as the table is located on the right side,

Generality and Legibility in Mobile Manipulation

and the robot bumps into the table when moving to
the sampled initial position, leading to an unsuccessful
navigate-reach-grasp sequence. Therefore, none of the 12
hulls contain this area, and the variation in P on the
right side of the PDM is low. Therefore, variation in B
does not have a large effect on this boundary, as can
be seen in Fig. [15(b)l When summing over the sampled
hulls, this leads to a steep decline in success probability
in the direction of the table.

Due to the uncertainty in the robot’s position, it
is unwise to choose a position close to steep bound-
aries in the probability distribution. Even if the pre-
diction of grasping the cup is ‘success’, a steep decline
can lead to a failed reaching action, if even only a small
localization error causes the robot to be on the wrong
side of the decline. The proposed position for grasping
an object should therefore take the uncertainty of the
robot’s position into account. To do so, we convolve the
grid of probabilities of grasp success with the discretized
(2.5 x 2.5¢m) probability distribution of the robot’s po-
sition. The result can be seen in Fig. Note that
this convolution not only works for a Gaussian distribu-
tions, but also for multi-modal distributions as returned
by particle filters. The goal position recommended to
the navigation module is the position that corresponds
to the maximum value of this distribution, so that grasp
success probability is optimized.

Fig. depicts how the probability distribution
is affected by varying task relevant parameters. Please
notice how in the first row, it becomes ‘more difficult’
to grab the cup (i.e. less likely to succeed) as the cup
moves away from the table’s edge.

8.4 Advantages and Shortcomings

We believe our system has three main advantages. First
of all, the learned model is very compact, with only 2 (de-
formation) parameters that are related to task-relevant
parameters. On the other hand, as it is learned from ob-
served experience, the model is grounded, and takes into
account the robot hardware, its control programs, and
interactions with the environment. These aspects do not
have to be explicitly modelled manually, as the system
is essentially considered to be a black box. Of course,
this implies that the models are tailored to the system
as a whole, and cannot be ported to other platforms.
The method itself however is in principle applicable to
any platform. Also, as the data is heavily compacted in
the model, querying the model on-line is very efficient.
This is an advantage of ‘compiling’ experience into com-
pact models, rather than running a novel search for each
situation.

Second, the output of this model is a place, which
is an area, instead of a specific position. Rather than
constraining itself to a specific place prematurely, this
representation enables the robot to optimize secondary

criteria within the area. Examples are execution dura-
tion, or determining the best position for grasping two
objects simultaneously. In previous work, we proposed
subgoal refinement [41] for optimizing such secondary
criteria with respect to subgoals.

Finally, the compact model enables us to compute
the probability of successful grasp given a position, which
takes the uncertainty of the robot’s location and the
task-relevant parameters into account. Optimizing the
probability of successful grasping leads to more robust
and legible behavior. The reason is that unnecessarily
complicated initial positions for starting the grasping
process are never faced. Therefore, motion planners or
motion controllers for reaching and grasping are able to
work faster and more effectively, because they find them-
selves in initial states from where the state space can be
explored well. This leads to more natural and legible be-
havior.

Gathering the data is a time-consuming process. There-
fore, we used the Gazebo simulator to automate and
parallelize data acquisition. The goal of many current
robotic applications is to achieve continuous extended
deployment in human environments. When this is achieved,
the robot will be able to acquire over time. The challenge
is then not so much gathering the data, but recording,
classifying and storing it in a principled way.

As previously discussed, we require more sophisti-
cated classification algorithms to determine the classifi-
cation hull. We are considering Support Vector Machines
and AdaBoost with decision stumps. In this scenario,
a linear relationship between the deformation modes B
and the task-relevant parameters T arose. We expect
that other data might lead to non-linear functions, and
a different mapping will have to be computed or learned.

The methods described in this section are quite gen-
eral, and not limited to the application scenario of nav-
igating to grasp. We have also done preliminary work
on computing PDMs for the classification and genera-
tion of successful grasps and reaching motions, in which
obstacles are avoided. The main issue here was the high
dimensionality of the input spaces. We reduced these
spaces to a 2D or 3D manifold using Locally Linear Em-
bedding [35], and computed the PDM on the classifica-
tion hulls in these reduced spaces.

4 Perception for vision-guided reaching and
grasping

To enable vision-guided reaching and grasping, knowl-
edge about the location of the target object and rele-
vant obstacles is required. In this section, we describe
the vision-based perceptual system that localizes ob-
jects. Depending on the given knowledge about present
objects, we distinguish between three different classes
of task-related object perception: 1) find and locate a
known object; 2) recognize and classify a present new

10

M. Beetz et al.

v
%

77
e
TN

/;’/1’,”,'"' W

e
,//’l‘f,,'g','

\)
i

/ ﬂ”""”\‘\\\\\\\\\\\\\\

T

i
.

-

1

P(success|x,y)

/)
W "t“@s“\\“t\ -‘
e

iy N
: ',',',',' AR

,©

(a) Distribution for task-relevant param-
eters: £=-0.3, y=0.1, 0,=0.05, 0,=0.05.

(b) Influence of various task-relevant parameters on the distribution.

Fig. 16 Final distributions, after convoluting the uncertainty in the robot pose with a distribution as depicted in Fig.

object; 3) find and locate an unknown object via a se-
mantic object class description. While the first task is
currently well-studied, the other two tasks lead to several
problems which lack a general solution. In the following
section we will discuss our solutions for those tasks. We
first describe a multi-model approach to treat known ob-
jects. Then we show possibilities to index new objects,
and we finally show how we model new classes of objects
using Internet databases.

Testall

New Known
Object Object Object Class 3
My E

*
SPELLECRING = A Environmental Knowledge
Carggly - &
Internet Brand Internet Model
Database Database
)]
Object Recognition and Localization
o
| | 28
Selection 25
5
> S0
E= - o 'g
.
-
35 i *
8 == 8l | SPELLECRING
w w S | Model Information
"3
25 E
S Models available o Context aware
25 for Search Visual Search
=0
i=4 o—
gE 7 Corrected Scaling
s Tracking information
bt o
a

Object Properties
(3D Model, Color)

3D Position
and Covariance

Fig. 17 Overview of the localization methods.

An overview of the perceptual system, including the
different classes of object perception, is depicted in Fig.
The input of the perceptual system is 1) an object or an
object class ID; 2) a position prior defined by a set of
possible positions with corresponding covariances. The
output is also a position with a covariance matrix. The
selection of the algorithm is based on an internal model
learned via internal success and time statistics. In case
of a query using an object class ID the number of entities
to be searched can be specified.

4.1 Localizing Known Objects

The complexity of localizing a known object depends on
the available models of the object. The more accurate
the model, the more accurately and robustly we can lo-
calize the object. We mainly model two kinds of object
knowledge: appearances and location priors.

Appearance Models For modelling appearances we use
the following kind of models with the corresponding match-
ing algorithms:

3D CAD models, with a matching method based on [46].
3D descriptors, with a matching method based on [23].
2D contour models, with a matching method based on [14]
Color distributions

This list also represents the hierarchy which allows us
to infer models top-down, i.e. from a 3D CAD model we
derive the other models, given that the object is visible.

Location Models Location priors are modeled using prob-
ability distributions in space and rotation. We connect
world, robot, actuators and perceived objects with a tree

Generality and Legibility in Mobile Manipulation

of possible coordinate frames. 3D positions have 6 de-
grees of freedom, so we use a 6x6 covariance matrix
to propagate uncertainties. The initialization is done by
filling the diagonal of the covariance matrix with the es-
timated deviation of the 6 position DOFs. A propagation
is calculated with an unscented transformation, by trans-
forming a sample of possible points into a new coordi-
nate frame, and extracting the major components of the
new covariance matrix via a principal component analy-
sis [18]. Movements of the robot cause a reorganization of
the tree: all moved parts are copied before the movement
is propagated. Therefore, any percept is relative to the
next stable parent in the tree, which are mostly world
coordinates. For example, other system modules using
perception information need to know the state of to the
pan-tilt unit (PTU) at the time the localization was per-
formed. As soon as the PTU moves, all localization still
connected to the PTU’s tree-node must be redirected to
the older PTU-state that will be a new node in the tree.

Learning the Optimal Algorithm For optimal localiza-
tion, we have to consider several properties of the al-
gorithms, search space restrictions and the correlations
between them. We learn quality measures in three di-
mensions in that all algorithms have different proper-
ties: reliability, accuracy and computational cost. In this
area we still rely on exhaustive tests to observe rates
of success and times of calculation in order to select
the best algorithm for a task, that has specific require-
ments for the three quality dimensions. Additionally, the
perquisites on the object itself differ from algorithm to
algorithm. For example, the matching with 3D CAD
models is a relatively slow approach with a high false
positive rate, while the contour models are faster and
more robust, but only work for partial planar objects.
For manipulation, the individual methods are still not
reliable enough, so a verification is needed. We use two
verification mechanisms to improve the results: either
apply the same method to a slightly different view, or
apply a different method to the same view. The verifica-
tion expects similar results in either case. A verification
is triggered as soon as the probability of a result being
valid is lower than a threshold quality measure. These
verification methods are included as additional atomic
algorithms during the learning of the optimal algorithm
for a certain problem.

4.2 Localizing Novel Objects

In human living environments, novel objects appear on
a regular basis. The robot must learn to classify and
localize them. For example if a grocery bag arrives in
the kitchen it contains most probably novel object. We
see two possibilities to deal with new objects: First, we
can build an appearance model of them in order to keep
track of the object or relocalize and manipulate it later

11

on. Or second, we can try to classify it into a semantic
class and apply then the mechanisms that we will explain
in Section [4.3] Those novel objects, which we can not
classify, can be either recognized by an attention system
observing significant changes in the environment or they
can be explicitly taught by a user by showing the robot
a new object. In such a situation we use stereo cameras
to learn a contour model that allows us a 3D localization
and tracking of objects with one camera. This method
is restricted for partial planar objects.

4.8 Localizing Novel Objects Based on Their Class

For this problem, we propose a novel method, in which
3D models are automatically retrieved from an Inter-
net database. These models are retrieved based on user-
annotated labels, and used in our robotic system for vi-
sion and manipulation. This method was proposed in [?]
and will be sketched here briefly. given a certain object,
we pass the string that denotes it, e.g.“mug”, “cooking
pot” or “frying pan”, to an Internet search engine for
3D models. The results are clustered in order to select
the most probable subclass matching our request, based
on spatial properties like the shape distribution function
[28]. All results in the main cluster are then spatially
aligned and used as models in a search for known object
that was described before in Section {11

4.4 Results of the Specialization for the Pick-and-Place
Task

Our scenario included several tasks for the perceptual
system: 1) detect a mug on a table; 2) localize a mug
on a table; 3) localize possible obstacles. Instead of an
explicit model, the input to the system was a class label
“mug” connected with an ID. This class label served as
search string for an automatic Internet query at Google
3D warehouse. The results for clustering of the query
(see Fig. [3) can be seen in Fig. The first cluster is the
largest and contains the model that was finally chosen.

This decision is made by trying to match this model
with the 3D CAD based algorithm mentioned before.
It is applied on scenes that could contain the queried
object. Examples for such location are “on the table”
or “in the cupboard”, that can be seen in Fig. [4} Pose
restrictions are based on a semantic map, and the best
fitting models are kept.

Given a well-fitted 3D model, the best algorithm is
determined given a set of different views of the object.
The resulting best algorithm for our test object was the
3D CAD model based matching with a validation via the
same algorithm on a second view/camera with a known
external camera calibration. The results for the mugs
in our test scenario for the vision system are convincing;:
We detected nearly all available mugs (about 90%) while
we nearly only had false positives when there was no

12

8) (k) @
Fig. 18 The result four cluster for the query for “mug”, a -

e are inliers, all the other are counted as outliers (cluster are
f-i, j-k and 1).

’ "\\Q'

A \

(a) Highly cluttered scene. (b) Different background.

(c¢) Varying orientations. (d) Varying positions.

(e) Varying altitudes.

(f) Partial occlusions.

Fig. 19 Several matches during our experiments.

Mug in scene | no mug in scene
Localized 46 19
No mug detected 4 31

Table 1 Evaluation of localization of mugs.

mug available (about 40% false positives in scenes with-
out mugs), see Table [I} The average localization error
for true positives was below 2% in space and rotation.
The typical scenes we used for testing, can be seen in

Fie. [[9] to 00T

M. Beetz et al.

5 Human-like reaching and grasping

Humans usually perform manipulation tasks with highly
stereotyped movement patterns [50]. The optimal con-
trol framework assumes that these typical patterns for
reaching and grasping are the result of a very long and
multi-facetted optimization process [45]. The optimiza-
tion criteria used in human motion control are not lim-
ited to those typically considered by today’s motion plan-
ning algorithms, but also include additional aspects such
as the accuracy of motions [12].

There are good reasons that the motions of robots
for everyday manipulation tasks in the presence of, and
in cooperation with, humans should be similar to human
reaching behavior. First, robots with human-like motion
will enable humans to more easily perform perspective
taking and intention recognition [29]. This is necessary
to enable implicit coordination (which humans use when
coordinating their actions) in joint human-robot tasks.
Second, we believe that robots acting in human environ-
ments must have the capability to learn advanced ma-
nipulation skills through imitation learning [38l5]. The
task of transferring observed reaching and grasping be-
havior into the robot’s motion control system becomes
much easier if both motion control systems apply similar
control strategies. Third, humans can sequence motion
primitives seamlessly [8l42]. We expect that robots that
have the same motion primitives as humans are able to
achieve similar smooth execution of sequences of motion
primitives.

5.1 Stereo-typical human reaching trajectories

To acquire stereo-typical human reaching trajectory, we
performed an experiment in which a subject was asked
to reach and grasp a target glass on a table. A second ob-
stacle glass was placed at different positions on the table
in each episode. The goal of this experiment is to answer
quantitavely 1) at which positions do obstacles lead to
human reaching behavior which is different from the de-
fault behavior when no obstacles are present? 2) which
reaching strategies do humans use to avoid the obstacle?

The reaching motions were captured with a Polhe-
mus Liberty magnetic position/orientation tracker. One
sensor was attached to the hand, as depicted in Fig. [20]
and another sensor was attached to the glass to mea-
sure the exact time when the lifting movement started.
Before performing the experiment we used one sensor to
measure the positions of the obstacle grid in the tracker’s
coordinate frame. All sensors are tracked with very high
precision at 240Hz.

In the experiment, the subject sits at a table, and
is asked to repeatedly reach for, grasp, and lift a tar-
get glass. The hand always starts in the black square in
Fig. Before each reaching motion, an obstacle glass
is placed on different positions on a grid on the table.

Generality and Legibility in Mobile Manipulation

<
< C/C/

“< <§9C: o
& b 7
> TS -

B . <y s
N =
R
= 1

Fig. 20 Location of the sensor (left). Locations of the cups
(right). The green glass is the target glass, which is always at
position B4. The blue glass is an example obstacle at position
D6. The flat black region is the initial location of the fingers.

The grid is 40x80cm. In Fig. for example, the ob-
stacle glass is at position D6. The target glass is al-
ways at position B4. The obstacle glass was placed 10
times on each of the 29 positions. Furthermore, 30 reach-
ing motions were performed without any obstacle glass.
These are the ‘default—trajectoriesﬂ The order of obsta-
cle placement was random, to avoid learning effects. The
total number of reaching motions is therefore 29*10+30
= 320.

To determine the effect of the obstacle on the reach-
ing trajectories, we defined a distance measure d between
the default-trajectories and the sets of other trajecto-
ries, Al...D8. We used the trajectory comparison ap-
proach described Roduit et al. [33]. Here, the difference
measure between two sets of trajectories is computed by
1) computing a point distribution model of the two sets
of trajectories 2) taking only the first n components, by
inspecting the eigenvalues of the covariance matrix of
the merged trajectories 3) computing the Mahalanobis
distance between the coefficients of the two sets of tra-
jectories. A more detailed explanation of this method
can be found in [33]. In Fig. the height of the cups
represents d for that obstacle position.

Fig. 21 The height of the glass represents d for that obstacle
position. dipres is 16.4 for this graph. The red glasses (at C5,
D6, D5, C4) lie above this threshold.

We automatically determine an appropriate thresh-
old on d (called d¢pres) by determining the valley point

1 For convenience, we sometimes informally refer to ‘the

trajectories that arose from the reaching movement that was
performed when the obstacle was placed at position D6’ as
‘the D6-trajectories’.

13

of the histogram of the d values. The distance d be-
tween the C5-, D6-, D5-, and C4-trajectories and the
default-trajectories is higher than this threshold. These
four positions are depicted as red glasses in Fig.

The next step is determining prototypical trajecto-
ries that represent qualitatively different strategies for
avoiding the obstacle. We do so by performing a k-means
clustering on the 40 trajectories in the AVOID-trajectories
set As Jenkins et al. [I7], we perform the clustering us-
ing several different spaces, and compare the results. We
use: 1) a 300D space, in which the 100 z, y and z coordi-
nates are simply concatenated for each trajectory; 2) a
the 3D space of a PCA performed on the 300D trajec-
tories above; 3) a 3D space computed with Local Lin-
ear Embedding (LLE) [35] from the 300D space (using
10 neighbors). In each space, the distance between two
trajectories is determined by the angle between the two
n-dimensional vectors representing the trajectories. The
number of clusters is set to 3 manually. Clustering in the
three spaces yield almost exactly the same clusters (the
three spaces only disagree on the categorization of 3 tra-
jectories). This implies that 1) these clusters are good
stereotypes, and do not just depend on the clustering
space or method; 2) only a very compact representation
in 3 dimensions are needed to determine these stereo-
types. The clustering algorithm in the 300D space yields
the three clusters depicted in Fig.

DEFAULT-trajectories AVOID-trajectories

*’0)

Fig. 22 Clustering the AV OI D-trajectories.

The average trajectories for these sets are plotted
in Fig. 23] Clustering the AVOID-trajectories yields
stereotypical reaching movements, which we label ‘over’,
‘left’, and ‘right’, denoting the direction in which the ob-
stacle is avoided. We call these the ‘principal trajecto-
ries’. What is very interesting about these trajectories is
that they are not qualitatively different from each other,
but are rather variations of the default behavior. From
the top view for instance, it is apparent that the ‘over’
strategy almost perfectly follows the default behavior in
the zy-plane, and is therefore simply a version of the de-
fault behavior, scaled in the z-plane. Similarly, ‘left’ and
'right’ strategies hardly vary from the default behavior
in the z-plane.

Another reason why we believe these trajectories are
good stereotypes is because linear interpolations between
them are also found in the actual human reaching tra-
jectories [43]. This is actually the reason why we chose

14
view: top
Fig. 23 The four stereo-typical trajectories.

3 clusters. When choosing 4 or 5 clusters, some of the
clusters could be reconstructed by choosing linear inter-
polations of the other clusters. With 3 clusters, there is
no redundancy, and the model is as compact as possible.

5.2 Stereo-typical trajectory execution with Dynamic
Movement Primitives

We now describe how the compact model is realized on
our autonomous manipulation platform to reproduce the
principal trajectories, and extrapolate from them using
interpolation.

In the control system, each principal trajectory is

represented by a Dynamic Movement Primitive (DMP) [16].

One DMP was trained for each principal trajectory with
the regression learning algorithm described in [I3]. Some
advantages of DMPs are 1) within a certain range, they
generalize to other goal locations 2) compliance 3) con-
vergence to the goal location is guaranteed. The con-
troller used to execute the trajectories generated by the
DMPs is depicted in Fig.

It is worth noting that the compact models contain
only kinematic information, more specifically the coor-
dinates from the hand in Euclidean space. This is easily
observable from human subjects, in contrast to internal
dynamic states like forces and torques. We rely on so-
phisticated inverse kinematic algorithms and low level
controllers for successfully tracking the generated tra-
jectories with the robot.

The trajectory generated by the DMP module is taken
and fed to a work space single point attractor, which
takes the next intermediate point in the trajectory and
pulls the end-effector to this intermediate goal until it
is reached. The output of the single point attractor is
the desired velocity vector which is given to the veloc-
ity based inverse kinematics controller which generates
the velocities in joint space. We use the damped least
squares inverse kinematics algorithm from [24] as imple-
mented in the Orocos-KDL library [39] which achieves
more stable behavior around singularities.

To adapt to changes in dynamic worlds, we use Vec-
tor Fields, and integrate them in the DMPs as described
in [30]. This will allow us to take advantage of robot
arms that have force control (Kuka-DLR arms): In cases

M. Beetz et al.

Trajectory from
compact model

DMP Trajectory

[¢——— Goal
generator

Point Set

Point feeder K

D —

N —

Za(x)
Vector Field % T
h 4 —
P
Velocity inverse osition
; ; forward
kinematics J :
kinematics
. > Robot
04 0

Fig. 24 Block diagram of the motion controller. 4, Z4(x)
and x represent the desired intermediate point, the velocity
vector and the current position in work space. 0,4 and 6 cor-
respond to the velocity and angular vectors in joint space. e
is the error used to determine how near to the current desired
point is the end-effector.

Fig. 25 Several examples of succesful grasps during the
experiment.

when the arm is pushed too far away from the stereotyp-
ical motion trajectory dictated by the DMPs it will be
controlled by the vector field, and will still give a smooth
movement to the goal. This fits well within our general
approach of assuming that many tasks can be solved
with standard solutions (i.e. the stereo-typical DMPs),
but that we also need strategies for dealing with unfore-
seen events (i.e. on-line motion adaptation with Vector
Fields). Although not a dynamic object, we also include
the table as a repellor in the Vector Field, to avoid colli-
sions of the hand with the table. The system takes care of
avoiding obstacles that move, appear or disappear from
the arm reaching space. In the example of grasping a
cup from the handle, the vector field has proven to be
a very practical solution in dealing with avoiding the
obstacle that the same cup represents and guiding the
precision movement when the gripper is very near to the
handle, giving a movement shape that produces a reach-
ing approach movement that avoids crashing against the
handle and the cup. The vector field used in the current
system takes the current task position given by the po-
sition forward kinematics and using information about
obstacles and goals it calculates a task space velocity

Generality and Legibility in Mobile Manipulation

vector which is then translated to joint speeds by a ve-
locity inverse kinematics module. Instead of calculating
a vector field grid and then querying the current value
from the grid, it calculates continuously (using point at-
tractors and point repellors) the corresponding velocity
vector for every control cycle. The point attractor and re-
pellor forces are shaped depending on the role that each
object has. For instance, cups that are to be grasped are
composed of two repellors and two attractors, the first
repellor is a sphere that decreases the force influence
with an exponential decay as the distance to the current
position increases, the second repeller is a shadow re-
peller pushing away from the back side of the cup (this
gives smoother movements), one attractor is a normal
spherical attractor with no decay thus having a global
effect of attraction, and the other attractor is a coni-
cal attractor with the tip of the cone in the handle of
the cup and the cone increasing its diameter away from
the cup, also the force of this attractor decays with the
distance (Fig. . A result of this system is that un-
der the situation where a robot arm link touches a joint
limit because the vector field guides the arm outside of
the configuration space of the arm (possibly for avoiding
an obstacle), the velocity inverse kinematics algorithm
still moves the arm in a similar direction and eventually
the arm moves away from this limit and returns to the
normal trajectory.

R N N N VN

ST T ST T, T, s Ba S

Fig. 26 Vector Field for grasping a cup from the handle.

Player [I0] is used for the low-level control of the
Amtec Powercube manipulator, and YARP [26] is used
for the communication between the control modules de-

scribed in Fig.

5.8 Outlook

In our current research, we are investigating the opti-
mization of the stereotypical trajectories with reinforce-
ment learning methods. Thus, the robots first acquire
trajectories by imitation, and then optimize and tailor
them to their own specific hardware, as in [31]. We ex-
pect this to lead to optimized execution, with a strong
bias towards human-like motion.

A disadvantage of the Powercube arms is that they
are not at all anthropomorphic. Although the end-effector
might describe a human-like reaching trajectory, the ro-
tation of the joints and arm configurations can be quite

15

unlike humans. This research topic has rather been con-
ducted with the DLR arm in mind. We are currently
installing two such arms, and expect much more natural
motion from it, especially when executing the stereo-
typical human reaching motions.

6 Task-level Control: RPL

The task-level controller of our system is designed and
realized to achieve flexible and reliable manipulation be-
havior through compact behavior specifications.

Compactness of the control system is achieved by em-
bedding lightweight reasoning processes to infer situation-
specific control decisions and action parameterization.
These lightweight reasoning mechanisms free the pro-
grammer from spelling out each control decision and
parameterization for each conceivable context explicitly.
Rather, we can state the routine for the manipulation
task in the following way: look at the place where the
mug should be. If the the mug is detected then perform a
rough position estimate for the cup and determine what
it stands on. Use the rough position estimate and the
geometric model of the supporting entity in order to de-
termine the place from where the mug can be picked
up (as described in Section. Upon navigating towards
the intended place track the mug to get more accurate
pose estimates and update the manipulation place rep-
resentation according to the refined mug positions, the
perceived obstacles, and the uncertainty in the self local-
ization of the robot. Upon arrival at the manipulation
place fixate the cup to get a position estimate accurate
enough for reaching and grasping (see Section. Deter-
mine the reaching strategy according to the perceived
obstacles on the table, that is whether to reach without
considering obstacles, to reach above, or around obsta-
cles. Given the strategy the trajectory is determined as
described in Section[pland the Dynamic Movement Prim-
itive with the respective parameterization is activated.
And so on.

Thus the control routine infers many pieces of task-
relevant information on the fly. The geometry of the en-
tity supporting the mug and its geometric description,
the place where the manipulation is to be performed,
the classification of the clutteredness on the table and
the expected impact on the manipulation action, etc.

The second key aspect of our task-level control is how
the robot achieves the required flexibility and reliability.
To do so, the task-level control is specified by concur-
rent reactive plans implemented in the language RPL
(Reactive Plan Language). The RPL plans for the ma-
nipulation tasks specify how the robot is to respond to
sensory input in order to accomplish its task.

Successful interaction with the environment requires
robots to respond to events and to asynchronously pro-
cess sensor data and feedback arriving from the con-
trol processes. RPL provides fluents, registers or program

16

variables that signal changes of their values. Fluents are
best understood in conjunction with the RPL statements
that respond to changes of fluent values. The RPL state-
ment whenever f b is an endless loop that executes
b whenever the fluent f gets the value “true.” Besides
whenever, wait-for f is another control abstraction that
makes use of fluents. It blocks a thread of control until
f becomes true.

RPL provides control structures for reacting to asyn-
chronous events, coordinating concurrent control pro-
cesses, and using feedback from control processes to make
the behavior robust and efficient [25].

(par
(achieve

(hand-at-pose ’left ...))
(achieve
(hand-at-pose ’right ...)))
(try-all
(achieve
(estimate-pos ...
(achieve
(estimate-pos ...
(try-in-order
(achieve
(entity-in-hand ..
(achieve
(entity-in-hand ...
(with-policy
(maintain
(entity-in-hand ...))
(achieve
(robot-at-pose ...)))

par pi...pn

try-all pi...p,
‘camera))

'laser)))

try-in-order p;...p,
. left))

right)))

with-policy p b

Fig. 27 Some RPL control structures and their usage.

Fig. lists several control structures that are pro-
vided by RPL and can be used to specify the interactions
between concurrent subplans. The control structures dif-
fer in how they synchronize subplans and how they deal
with failures.

The par-construct executes a set of subplans in par-
allel. The subplans are activated immediately after the
par plan is started. The par plan succeeds when all of
his subplans have succeeded. It fails after one of its sub-
plans has failed. The second construct, try-all, can be
used to run alternative methods in parallel. The com-
pound statement succeeds if one of the processes suc-
ceeds. Upon success, the remaining processes are termi-
nated. Similarly try-in-order executes the alternatives
in the given order. It succeeds when one process ter-
minates successfully, it fails when all alternatives fail.
with-policy p b means “execute the primary activity b
such that the execution satisfies the policy p.” Policies
are concurrent processes that run while the primary ac-
tivity is active and interrupt the primary if necessary.
Additional concepts for the synchronization of concur-
rent processes include semaphores and priorities.

M. Beetz et al.

Using RPL’s mechanisms for sensor-driven plan exe-
cution, for failure detection and handling, and for syn-
chronizing complex concurrent behavior we have realized
the task-level control for our manipulation task by using
RPLconstructs such as with-failure-handling allowing a
simple notation for concurrent task monitoring and re-
covering.

One of the tasks handled by this construct is navi-
gation. The construct with-failure-handling consists of
three blocks: perform, monitor and recover. All these
blocks get executed in parallel. The perform block is
executing the main plan. In the case of navigation this
means that it commands the robot base to drive to a
predefined position and waits for a success indicator flu-
ent. In the mean time the monitor is observing the cur-
rent position of the robot. When the intended position
is reached the success fluent is set to true and the per-
form block finishes, indicating to the caller that the plan
succeeded. When the monitor block detects that the
position of the base is not changing anymore but the
position is not in the tolerance range, a failure gets gen-
erated. The recover block gets started by the generated
failure and directs the base to move to a random nearby
position, and restarts the perform block. The recover
block is retrying the plan forever, because real life tests
showed that the plan is always succeeding after some
tries. Still the recover block could be simply altered to
perform a retry, for example 4 times and indicate that
the plan failed. This can trigger high-level failure han-
dling to resolve the error.

An implementation example can be seen in Listing

m

Listing 1 Example implementation of with-failure-handling
for base navigation.

(with-failure-handling failure ()
(recover ((typep failure
"navigation-failed)
(move-to-random-nearby-position)
(restart-perform)))
(monitor
(if (position-not-changing)
(if (destination-reached-p)
(pulse continue)
(fail
:class navigation-failed))))
(perform
(goto-destination)
(wait-for continue))))

7 Results

The platform is evaluated in two sessions. First at a pub-
lic demonstration, where the main goal was to test the
robustness of the system under continuous deployment.
A second later session was used for a quantative anal-
ysis of the error recovery functionality. In this session,

Generality and Legibility in Mobile Manipulation

RPL and the algorithm for determining successful grasp
places were also included in the system.

7.1 Public Demonstration

We introduced the system described in this paper to the
public on 18.10.2008, at the “Tag der offenen Tiir” (open
house) of the Technische Universitdt Miinchen. During
this demonstration, the robot almost continually per-
formed the application scenario, where it locates, grasps
and lifts a cup from the table, and then transports it to
a work-surface next to the kitchen oven. It performed
this scenario 50 times in approximately 6 hours. Fig.
depicts two pictures taken during the demonstration.
This successful demonstration has convinced us that the
robot hardware and software are robust enough to de-
ploy amongst the general public.

Fig. 28 Some photos of the public demonstration at the
Technische Universitdat Miinchen.

7.2 Failure Detection and Recovery

To evaluate the reliability of our overall system and its
subcomponents, we test the setup of the public demon-
stration, which required a human operator to look after
the system to detect failures. Then we replaced the sim-
ple control program by a more sophisticated RPL kernel,
and run a test again under similar conditions. The er-
rors we counted occurring in the system are denoted in
Table [2| It can be seen that errors occur frequently in

17

such a complex system, especially the navigation com-
ponent failed often by not raising the event of a success-
ful arrival, which then caused the system without error
recovery to wait for this event forever, or until the hu-
man operator intervened. This problem was completely
solved by monitoring the navigation. Only once in the
tests an unhandled hardware problem in the navigation
system caused a failure in the system with error recovery.
The errors in the vision system are mainly false positive
detected objects or localization with an spatial or ro-
tation error over 2%, which exceeds the tolerance for a
successful grasp. Those failures were recovered by moni-
toring the success of the grasp following the localization.
Grasping errors are of two kinds: First, singularities in
the vector field forcing the arm to be repelled before
reaching the target in a repetitive way and second, by
moving the object before the robot was able to grasp it.
The first problem could be solved by monitoring the end-
effector of entering already visited volumes. The second
is detected by monitoring the gripper position on clos-
ing, whether it contains an object or not. For the second
trial we also added the module that computes a position
from which grasping is likely to succeed (Section [3), and
allowed us to place cups on the entire table. This enabled
the robot to grasp cups that were out of range in the first
trial. Twice the system with error recovery did not no-
tice that the pick up failed until it moved away from the
table while there was still an RFID signal of the mug on
the table, those are two detected errors, which actually
occurred in the grasping system but were detected using
the RFID antennas.

8 Conclusion

In this article we have presented the current state of
our investigations of methods for achieving more general
manipulation capabilities for mobile manipulation plat-
forms, which produce legible behavior in human living
environments. We have proposed an integrated system
that performs simple vision-guided everyday manipula-
tions in a human living environment. The manipulation
task is to put typical, easy to grasp everyday objects,
e.g. mugs and plates, on the table in order to perform a
household task such as setting the table.

In this context, we have extended the basic manip-
ulation capabilities of a mobile manipulation platform
in several important ways that increase the generality
and compactness of the robot control systems and the
legibility of the behavior they produce. These extensions
include place- instead of position-based mobile manipu-
lation, object recognition and localization methods that
can automatically learn environment specific 3D mod-
els for object categories and use the specialized models
for improved object recognition and localization, and a
method for learning reaching strategies from humans and
realizing them through dynamic motion primitives.

M. Beetz et al.

18
Runs | Succ. Errors (Occured/Detected)
Total = | Navi | Vision | Grasp | RFID
Without ER | 32 | 15 20/0 | 6/0 | 4/0 | 8/0 | 0/0
With ER 32 | 81 | 22/19 | 7/6 | 5/5 | 10/8 | 0/2

Table 2 Execution episodes with and without error recovery (ER).

In order to achieve generality we have based naviga-
tion for manipulation on the concept of place rather than
position. A place was realized as the set of positions from
where the object can be successfully be grasped weighted
with the probability that the respective pick up will be
successful. The advantage of using places instead of posi-
tions are that places provide more flexibility, that places
can take the inaccuracies of position estimates into ac-
count, and that places for multiple manipulation tasks
can be combined to compute places where all tasks can
be performed successfully. In addition, places are learned
from experience in performing everyday manipulation
tasks. The second method that increases generality is
our method for object recognition and localization. This
method can recognize objects of particular classes using
3D object models retrieved from the world-wide web.
In order to optimize object perception and localization
for stereotypical tasks the robot then uses the specific
models that best match the objects in its environment.

In our ongoing research we investigate further aspects
of increasing generality. These aspects include the use of
partial, inaccurate and uncertain object descriptions and
the intergration of probabilistic reasoning. Probabilistic
reasoning is necessary to enable the robot to perform
tasks such as put a clean, unused cup on the table. To
this end, the robot must infer that a cup in the dish-
washer before running is probably dirty, a cup standing
on the table is probably used by somebody else. Another
aspect is to generalize pick and place tasks for more com-
plex situations like get a cup out of the cupboard or put
a knife into a drawer. These situations require foresight
such as determining the right place considering that the
drawer will be opened and the object placed afterwards.

Legibility of the behavior of our robot is increased
through place-based mobile manipulation as well as the
learning of reaching strategies. Because the robot learns
the places that are appropriate for performing the re-
spective actions, going to the respective places already
indicates the manipulation actions to be performed. Like-
wise learning the reaching strategies of humans and map-
ping them into robot control enables people to infer what
the robot is doing through perspective taking.

Besides further scaling the generality of our control
programs we also investigate the integration of the ma-
nipulation capabilities described in this article into more
comprehensive control systems that are capable of per-
forming complete activities such as setting the table or
cleaning up. These aspects are described in a companion

paper [?].

References

1. T. Asfour, K. Regenstein, P. Azad, J. Schroder, A. Bier-
baum, N. Vahrenkamp, and R. Dillmann. Armar-iii: An
integrated humanoid platform for sensory-motor control.
In Proceedings of the IEEERAS/RSJ International Con-
ference on Humanoid Robots (Humanoids06), pages 169—
175, 2006.

2. Michael Beetz, Freek Stulp, Bernd Radig, Jan Ban-
douch, Nico Blodow, Mihai Dolha, Andreas Fedrizzi, Do-
minik Jain, Uli Klank, Ingo Kresse, Alexis Maldonado,
Zoltan Marton, Lorenz Mosenlechner, Federico Ruiz,
Radu Bogdan Rusu, and Moritz Tenorth. The assistive
kitchen — a demonstration scenario for cognitive tech-
nical systems. In IEEE 17th International Symposium
on Robot and Human Interactive Communication (RO-
MAN), Muenchen, Germany, 2008. Invited paper.

3. Thorsten Belker. Plan Projection, Execution, and Learn-
ing for Mobile Robot Control. PhD thesis, Department
of Applied Computer Science, University of Bonn, 2004.

4. Dmitry Berenson, Rosen Diankov, Koichi Nishiwaki,
Satoshi Kagami, and James Kuffner. Grasp planning in
complex scenes. In IEEE-RAS International Conference
on Humanoid Robots, 2007.

5. A. Billard, S. Calinon, R. Dillmann, and S. Schaal.
Springer Handbook of Robotics, chapter 59. Robot pro-
gramming by demonstration. Springer, 2008.

6. S. Calinon, F. Guenter, and A. Billard. On learning, rep-
resenting and generalizing a task in a humanoid robot.
IEEE Transactions on Systems, Man and Cybernetics,
Special issue on robot learning by observation, demon-
stration and imitation, 37(2):286-298, 2007.

7. A. Dearden and Y. Demiris. Learning forward models
for robotics. In Proceedings of the Nineteenth Inter-
national Joint Conference on Artificial Intelligence (1J-
CAI), pages 1440-1445, 2005.

8. T. Flash and B. Hochner. Motor primitives in verte-
brates and invertebrates. Current Opinion in Neurobiol-
ogy, 15:660-666, 2005.

9. M. Fox, J. Gough, and D. Long. Using learned action
models in execution monitoring. In Proceedings of UK
Planning and Scheduling SIG, 2006.

10. Brian Gerkey, Richard T. Vaughan, and Andrew Howard.
The Player/Stage Project: Tools for multi-robot and dis-
tributed sensor systems. In Proceedings of the 11th In-
ternational Conference on Advanced Robotics (ICAR),
pages 317-323, 2003.

11. Karen Zita Haigh. Situation-Dependent Learning for In-
terleaved Planning and Robot FExecution. PhD thesis,
School of Computer Science, Carnegie Mellon University,
1998.

12. C. M. Harris and Daniel M. Wolpert. Signal-dependent
noise determines motor planning. Nature, 394(20):780—
784, 1998.

Generality and Legibility in Mobile Manipulation

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Dy-
namic movement primitives for movement generation
motivated by convergent force fields in frog. In Roy
Ritzmann and Robert Quinn, editors, Fourth Interna-
tional Symposium on Adaptive Motion of Animals and
Machines, Case Western Reserve University, Cleveland,
OH, 2008.

Andreas Hofhauser, Carsten Steger, and Nassir Navab.
Harmonic deformation model for edge based template
matching. In Third International Conference on Com-
puter Vision Theory and Applications, volume 2, pages
75-82, 2008.

I. Horswill. Integrated systems and naturalistic tasks. In:
Strategic Directions in Computing Research AT Working
Group, 1996.

A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement
imitation with nonlinear dynamical systems in humanoid
robots. In International Conference on Robotics and Au-
tomation (ICRA2002), 2002.

O. Jenkins, R. Bodenheimer, and R. Peters. Manipula-
tion manifolds: Explorations into uncovering manifolds
in sensory-motor spaces. In International Conference on
Development and Learning (ICDL 2006), 2006.

Simon Julier and Jeffrey K. Uhlmann. A general method
for approximating nonlinear transformations of probabil-
ity distributions. Technical report, Dept. of Engineering
Science, University of Oxford, 1996.

D. Katz, E. Horrell, Y. Yang, B. Burns, T. Buckley,
A. Grishkan, V. Zhylkovskyy, O. Brock, and E. Miller.
The UMass Mobile Manipulator UMan: An Experimen-
tal Platform for Autonomous Mobile Manipulation. In
Workshop on Manipulation in Human Environments at
Robotics: Science and Systems, 2006.

C. Kemp, A. Edsinger, and E. Torres-Jara. Challenges
for robot manipulation in human environments. [IEEE
Robotics and Automation Magazine, 14(1):20-29, 2007.
D. Kragic, M. Bjorkman, H.I. Christensen, and J.O.
Eklundh. Vision for robotic object manipulation in
domestic settings. Robotics and Autonomous Systems,
52(1):85-100, 2005.

S. M. LaValle. Planning Algorithms. Cambridge Univer-
sity Press, 2006.

V. Lepetit and P. Fua. Keypoint recognition using ran-
domized trees. Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, 28(9):1465-1479, Sept.
2006.

A. A. Maciejewski and C. A. Klein. The singular
value decomposition: Computation and applications to
robotics. International Journal of Robotics Research,
8(6):63-79, 1989.

D. McDermott. A Reactive Plan Language. Research
Report YALEU/DCS/RR-864, Yale University, 1991.
G. Metta, P. Fitzpatrick, and L. Natale. YARP: Yet
Another Robot Platform. International Journal of Ad-
vanced Robotics Systems, special issue on Software De-
velopment and Integration in Robotics, 3(1), 2006.
Daniel Nyga, Moritz Tenorth, and Michael Beetz. Un-
derstanding and executing instructions for everyday ma-
nipulation tasks from the world wide web. Submitted
to the IEEE International Conference on Robotics and
Automation (ICRA). Under review, 2009.

28

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

19

. R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin.
Shape distributions. ACM Transactions on Graphics
(TOG), 21(4):807-832, 2002.

E. Oztop, D.W. Franklin, T. Chaminade, and G. Cheng.
Human-humanoid interaction: Is a humanoid robot per-
ceived as a human? International Journal of Humanoid
Robotics, 2(4):537-559, 2005.

Dae-Hyung Park, Heiko Hoffmann, and Stefan Schaal.
Movement reproduction and obstacle avoidance with dy-
namic movement primitives and potential fields. In In-
ternational Conference on Humanoid Robots, 2008.

J. Peters and S. Schaal. Reinforcement learning of motor
skills with policy gradients. Neural Networks, 21:682—
697, 2008.

Anya Petrovskaya and Andrew Y. Ng. Probabilistic mo-
bile manipulation in dynamic environments, with appli-
cation to opening doors. In International Joint Confer-
ence on Artificial Intelligence (IJCAI-07), 2007.

Pierre Roduit, Alcherio Martinoli, and Jacques Jacot. A
quantitative method for comparing trajectories of mobile
robots using point distribution models. In Proceedings of
the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2441-2448, 2007.
David A. Rosenbaum, Rajal G. Cohen, Ruud G. J. Meu-
lenbroek, and Jonathan Vaughan. Plans for grasping ob-
jects. In Mark L. Latash and Francis Lestienne, editors,
Motor Control and Learning, pages 9—25. Springer US,
2006.

Sam Roweis and Lawrence Saul. Nonlinear dimension-
ality reduction by locally linear embedding. Science,
290(5500):2323-2326, 2000.

Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow,
Mihai Dolha, and Michael Beetz. Towards 3D Point
Cloud Based Object Maps for Household Environments.
Robotics and Autonomous Systems Journal (Special Is-
sue on Semantic Knowledge), 2008.

A. Saxena, J. Driemeyer, and A.Y. Ng. Robotic Grasping
of Novel Objects using Vision. The International Journal
of Robotics Research, 27(2):157, 2008.

Stefan Schaal. Is imitation learning the route to hu-
manoid robots? Trends in Cognitive Sciences, 3(6):233—
242, 1999.

Ruben Smits, Tinne De Laet, Kasper Claes, Peter
Soetens, Joris De Schutter, and Herman Bruyninckx.
Orocos: A software framework for complex sensor-driven
robot tasks. IEEE Robotics and Automation Magazine,
2008.

Siddhartha Srinivasa, David Ferguson, Michael Vande
Weghe, Rosen Diankov, Dmitry Berenson, Casey Hel-
frich, and Hauke Strasdat. The robotic busboy: Steps to-
wards developing a mobile robotic home assistant. In In-
ternational Conference on Intelligent Autonomous Sys-
tems, 2008.

Freek Stulp and Michael Beetz. Refining the execution
of abstract actions with learned action models. Journal
of Artificial Intelligence Research (JAIR), 32, June 2008.
Freek Stulp, Wolfram Koska, Alexis Maldonado, and
Michael Beetz. Seamless execution of action sequences.
In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pages 3687-3692,
2007.

Freek Stulp, Ingo Kresse, Alexis Maldonado, Federico
Ruiz, and Michael Beetz. Compact models of human

20

44.

45.

46.

47.

48.

49.

50.

51.

52.

reaching motions for robotic control in everyday manip-
ulation tasks. Submitted to the IEEE International Con-
ference on Robotics and Automation (ICRA). Under re-
view., 2009.

R. Sutton and A. Barto. Reinforcement Learning: an
Introduction. MIT Press, 1998.

Emanuel Todorov. Optimality principles in sensorimotor
control. Nature Neuroscience, 7(9):907-915, 2004.
Christian Wiedemann, Markus Ulrich, and Carsten Ste-
ger. Recognition and tracking of 3d objects. In Gerhard
Rigoll, editor, Pattern Recognition, volume 5096 of Lec-
ture Notes in Computer Science, pages 132—141, Berlin,
2008. Springer-Verlag.

A. Wilhelm, J. Huissoon, W. Melek, C. Clark, M. Fuchs,
and G. Hirzinger. Design of a wheeled mobile robotic
platform with variable footprint. In IEEE/RSJ Confer-
ence on Intelligent Robotics and Systems, 2007.

PR2 Robot, 2008. www.willowgarage.com/pages/robots/pr2-overview.

Matthias Wimmer, Freek Stulp, Sylvia Pietzsch, and
Bernd Radig. Learning local objective functions for ro-
bust face model fitting. IFEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 30(8):1357—
1370, 2008.

Daniel Wolpert and Zoubin Ghahramani. Computa-
tional principles of movement neuroscience. Nature Neu-
roscience Supplement, 3:1212-1217, 2000.

F. Zacharis, Ch. Borst, and G. Hirzinger. Capturing
robot workspace structure: representing robot capabili-
ties. In Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages
3229-3236, 2007.

F. Zacharis, Ch. Borst, and G. Hirzinger. Positioning
mobile manipulators to perform constrained linear tra-
jectories. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 2578-2584, 2008.

M. Beetz et al.

	Introduction
	Related Work
	Navigating to Grasp
	Perception for vision-guided reaching and grasping
	Human-like reaching and grasping
	Task-level Control: RPL
	Results
	Conclusion

