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Abstract— This article describes the computational model un-
derlying the AGILO autonomous robot soccer team, its implemen-
tation, and our experiences with it. According to our model the
control system of an autonomous soccer robot consists of a prob-
abilistic game state estimator and a situated action selection mod-
ule. The game state estimator computes the robot’s belief state
with respect to the current game situation using a simple off-the-
shelf camera system. The estimated game state comprises the po-
sitions and dynamic states of the robot itself and its teammates as
well as the positions of the ball and the opponent players. Employ-
ing sophisticated probabilistic reasoning techniques and exploiting
the cooperation between team mates, the robot can estimate com-
plex game states reliably and accurately despite incomplete and
inaccurate state information. The action selection module selects
actions according to specified selection criteria as well as learned
experiences. Automatic learning techniques made it possible to de-
velop fast and skillful routines for approaching the ball, assigning
roles, and performing coordinated plays. The paper discusses the
computational techniques based on experimental data from the
2001 robot soccer world championship.

Index Terms— action selection and planning, coordination of
perception, reasoning, and action, integration and coordination of
multiple activities.

I. INTRODUCTION

This article describes the computational model underlying
the AGILO! autonomous robot soccer team [7], its implementa-
tion, and our experiences with it. Robotic soccer has become
a standard “real-world” test-bed for autonomous multi robot
control. In robot soccer (mid-size league) two teams of four
autonomous robots — one goal keeper and three field players —
play soccer against each other on a four by nine meter large soc-
cer field. The key characteristic of mid-size robot soccer is that
the robots are completely autonomous. Consequently, all sens-
ing and all action selection is done on board of the individual
robots. Skillful play requires our robots to recognize objects,
such as other robots, field lines, goals, and even entire game
situations. The robots also need to collaborate by coordinat-
ing and synchronizing their actions to achieve their objectives
— winning games.
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LThis name is an homage to the Agilolfinger, the earliest dynasty ruling in
Bavaria during the 6th century. The dynasty’s most famous representatives are
Grimoald, Hugibert, Odilo, Tassilo and Theodo. Our soccer robots bear the
same names.

Robot soccer provides a challenging and realistic testbed
for cooperative state estimation in complex and dynamically
changing environments. These challenges include: (1) a com-
petitive, highly dynamic, and fast changing environment, (2) a
changing number of opponent robots with unknown identity, (3)
the use of an inaccurate and noisy vision sensors and (4) inde-
pendently moving sensors with inaccurately known positions.

The AcILO RoboCup team is realized using inexpensive, off-
the-shelf, easily extendible hardware components and a stan-
dard software environment. The team consists of four Pioneer
I robots; one of which is depicted in figure 1(a). The robot is
equipped with a single on-board Linux computer (2), a wireless
Ethernet (1) for communication, and several sonar sensors (4)
for collision avoidance. A fixed color CCD camera with a lens
opening angle of 90° (3) is mounted on the robot. The robot
also has a guide rail (5) and a kicking device (6) that enable the
robot to dribble and shoot the ball.

(b)

Fig. 1. An AGILO soccer robot (a) and a game situation (b).

Our hardware is somewhat Spartanic. Our off-the-shelf for-
ward facing camera with 90° field of view has a very restricted
view as compared to the omni-directional vision system and
laser range finders that most RoboCup mid-size teams use. We
also use a differential drive instead of the much more dexterous
holonomous drives. Whereas this hardware gives us a substan-
tial disadvantage against teams which use one or more of the
above-mentioned components, it also confronts us with chal-
lenging research problems.

In this article we investigate the design and realization of an
integrated autonomous control system with the following em-
phases: The first emphasis is on situation assessment and de-
cision making under uncertainty. The second emphasis is on
mapping of abstract and possibly conflicting objectives into



appropriate low-level control signals. The third emphasis is
on selecting appropriate actions with limited computational re-
sources.

The first and perhaps most important reasoning task to be
performed is the assessment of the game situation. Several lim-
itations of the robots as well as environmental conditions make
this reasoning task difficult to perform. The camera system with
an opening angle of 90° and pointed to the front gives an indi-
vidual robot only a very restricted view of the game situation.
Therefore, the robot needs to cooperate to get a more complete
picture of the game situation. Vibrations of the camera, spot
light effects, specularity, and shadows cause substantial inaccu-
racies. Even small vibrations that cause jumps of only two or
three pixel lines cause deviations of more than half a meter in
the depth estimation, if the objects are several meters away.

Thus, estimating the game state both accurately and reliably
is very difficult because (1) the sensors have limited accuracy
and uncertain positions (2) the soccer field is only partly ac-
cessible due to limited camera view and occlusion caused by
other robots (3) the robots change their direction and speed very
abruptly (4) the models of the dynamic states of the robots of
the other team are very crude and uncertain (5) vast amounts of
data must be processed in real-time. However, reasoning about
uncertainty is not only necessary to infer the most likely game
state but also to select the actions that are likely to satisfy the
current objectives of the robot and its team. To select the ac-
tions properly, the robot must predict the consequences of its
possible actions, which have nondeterministic effects, as well
as the intentions of the opponents, which are even more diffi-
cult to predict.

Another challenge is the selection of the actions that are most
appropriate to foster the objectives of the robot. Of course, the
highest goal is to score more goals than the opponents. This
can be achieved by either playing offensively and scoring many
goals or defensively by preventing the other team from scor-
ing. Unfortunately these two objectives are conflicting: to score
more goals the team often has to play offensively and risky, and
will therefore play with a weaker defense. In the course of the
game the robot therefore has to make a trade-off between these
conflicting objectives.

The second problem in action selection is the huge gap, in
terms of abstraction, between the objectives of the robot, such
as defending the goal, and the control signals that it sends, such
as setting the voltage of a motor. Clearly, in order to reason
about the appropriateness of actions effectively and efficiently,
the robot must structure its activity into meaningful tasks, such
as a dribbling, a shot, and a fight for ball possession. Many
researchers consider the hierarchical organization of tasks as
one of the key principles to act and acquire skills effectively.

The complexity and ill-structuredness of many control prob-
lems poses another problem. Reaching target positions and dy-
namic states fast, for example, requires complex and accurate
driving maneuvers. As a consequence, simple heuristics for de-
ciding which robot should get to the ball and how do not work
well.

The last challenge that we explicitly address in our research
is decision making with bounded computational resources. Be-
cause soccer games are very dynamic the robot should select its

actions with a frequency of at least ten cycles per second. There
is often a trade-off between reasoning more thoroughly and rea-
soning faster and more often. The best of both worlds can often
be obtained by compiling acquired knowledge from past expe-
riences into fast inference procedures through experience-based
learning.

In this paper, we show how the AGILO autonomous robot
soccer team meets these challenges. The AGILO robot con-
trollers employ game state estimation and situated action selec-
tion. The game state estimator estimates the complete game
situation at frame rate using a cheap off-the-shelf camera sys-
tem. The game state includes the robot’s own position, the po-
sition of teammates and opponent robots, as well as the ball.
The use of such a vision system yields considerable inaccu-
racies in the sensor data and highly incomplete information
about the game situation. The AGILO game state estimator
deals with these problems by employing sophisticated proba-
bilistic reasoning techniques and by exploiting the cooperation
between the game state estimators of different robots. The sec-
ond component of the individual robot controllers selects ap-
propriate actions based on an assessment of the current esti-
mated game state. The situated action selection mechanism is
the default mechanism for choosing actions and must therefore
propose reasonable actions for all possible situations. Because
the robots are difficult to steer, the AGILO soccer robots em-
ploy experience-based learning mechanisms to acquire compe-
tence in robot motion control.

The remainder of this paper explains how these mechanisms
have been implemented and embedded into the AGILO robot
control software. We report on our experiences with the soft-
ware and lay out our plans for the next generation of the system.

I1. A ROBOT SOCCER EPISODE

Figure 2 depicts six snapshots from an episode of a game
between The AGILO RoboCuppers and The Ulm Sparrows at
the 2001 RoboCup world championship in Seattle. Note that,
although the walls are no longer present in current mid-size
league RoboCup, neither our state estimation nor action selec-
tion depend on them. The first snapshot, figure 2(a), shows
the ball lying at the surrounding wall and two AGILO robots
facing the ball. To avoid conflicts, AGILO 1 goes for the ball
and AGILO 2 is going into the back field to be the defensive
back. This role assignment is favorable because upon reaching
the ball AGiLo 1 can head directly towards the opponent’s goal
whereas AGILO 2 would face the wrong direction. Therefore,
AGILO 2 takes over the defensive position and moves into the
back field. In snapshot 2(b) AG1LO 1 is trying to shuffle the ball
off the wall, which requires a sophisticated rotational move-
ment. However, by the time the robot has achieved this goal
a striker from the Ulm Sparrows blocks its path (figure 2(c)).
Due to an obstacle avoiding maneuver AGILO 1 gets stuck at
the wall.

Figures 2(d) and 2(e) depict how it is freeing its way. Even
though AGILO 2 does not see the ball on its way back into the
defensive position, it knows its exact position which is esti-
mated by AGILO 1 and communicated via a wireless connec-
tion link to all teammates. Because of UIm’s striker blocking
the way to the ball, the AGILO 2 robot estimates that it can now
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Fig. 2. Episode from an a match between The AGILO RoboCuppers and The Ulm Sparrows.




reach the ball faster than AGiLo 1. Therefore, AGILO 2 turns
and goes for the ball (figure 2(e)). As AGILO 1 also estimates
that AGILO 2 can reach the ball faster, it takes the defensive
position and backs up AGILO 2.

Finally, AgILo 2 dribbles the ball towards the opponent goal
and decides whether it should try to score by passing the goal
keeper on the left or the right side of the goalkeeper (see Fig-
ures 2(f) to 2(h)). In order to maximize the chance of scoring
the AGILO 2 is aiming for the right goal post, which allows
AGILO 2 to kick the ball into both corners. If the goalkeeper
drives towards the right corner a short turn and a kick into the
left corner is sufficient to score. On the other hand if the goal
keeper decides to stay in the middle of the goal or moves to the
left, then a shot into the right corner is adequate. Eventually the
goalkeeper stays in the middle of the goal and the striker scores
into the right corner. The match ends with a 7:0 win of The
AGILO RoboCuppers (see also Section VI).

This episode demonstrates several strengths of the AGILO
robot control software. The first one is the competent and accu-
rate assessment of game situations. This assessment comprises
accurate position estimates for the teammates, the ball, and the
opponent robots. It is important to note that because the robots
of the AGILO team cooperate in game state estimation and ex-
change their observations each one of them has a fairly com-
plete picture of the game situation. Consider for example the
player AGILO 2 that accurately knows where the ball is even
though the ball is behind itself. What is also notable is that the
robots plan collision free paths and follow them, which is only
possible because the robots keep track of the positions of their
opponents. Finally, when dribbling towards the goal the robot
simultaneously keeps track of the goal, the goal keeper, and the
ball in order to react to the defensive moves of the keeper.

The second class of strengths are concerned with the skills of
the robots and the way they adapt and play their roles. The play-
ers of the AGILO team reassign roles to themselves based on an
assessment of the game situation. In particular, they continually
monitor whether they can reach the ball faster than any of their
teammates. If so, they immediately, go for the ball. Because of
this task assignment strategy AGILO 2 is capable of taking AG-
ILO 1’s role as AGILO 1 gets stuck when being blocked by the
Ulm Sparrows player. Besides their role assignment, the skills
in approaching the ball, dribbling, and moving in dynamic sit-
uations are remarkable. We will show in section V how these
can be learned.

I1l. OVERVIEW OF THE SYSTEM MODEL

As our basic conceptualization of the robot control system,
the robot it controls, and the environment it acts in, we use the
dynamic system model [14], [37]. In the dynamic system model,
the state of the world evolves through the interaction of two
processes: one denoted the controlling process — the robot’s
control system (or controller) — and the other the controlled
process, which comprises events in the environment, physical
movements of the robot and sensing operations. The purpose
of the controlling process is to monitor and steer the evolution
of the controlled process so that it satisfies the given constraints
and meets the specified objectives.
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Environment Process Sensing Process
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- captured camera images
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Fig. 3. Block diagram of our dynamic system model for autonomous robot
control. Processes are depicted as boxes and interactions as lines with arrows.

Figure 3 shows a block diagram of the dynamic system
model that underlies the design of our robot control system. The
processes are depicted as boxes and the interactions between
them as lines with arrows. There are two interactions between
the controlling and the controlled process. The first interaction
is initiated by the controlling process, which sends control sig-
nals to the controlled process in order to steer its evolution. The
second interaction consists of the controlling process observing
the controlled process by interpreting the sensor data that are
produced by the controlled process.

For the control of soccer robots, it is useful to conceptually
decompose the controlled process into an environment and a
sensing process [14]. The environment process comprises the
robot’s physical behavior: different kinds of possibly concur-
rent movements that cause changes of the robot’s state. At the
same time exogenous events, such as an opponent robot trying
to reach the ball, occur and change the state of the controlled
process, too.

The sensing process maps the world state into the sensor data,
the input of the controlling process. Sensors can provide con-
tinual streams as well as individual bits of sensor data. The
sensor data received by the robots contain odometric data, cap-
tured camera images, and messages broadcasted by teammates.
Odometric readings tell the robot how often the wheels turned
since the last reading and therefore provide information about
how much the robot moved in the meanwhile. Unfortunately,
the information provided by odometric readings might be cor-
rupted, for example due to slippage of the wheels. Broadcasted
messages of the teammates contain the teammates’ own esti-
mates of their own positions and the positions of the ball and
the opponent players.

It is important to note that the robot’s sensors can, in general,
access only partial information about the state of the environ-
ment. The sensor data measured might also be inaccurate and
must therefore often be interpreted to be useful for controlling
the robot. The inaccuracy, locality of sensor data as well as
the data interpretation processes yield data that are incomplete,
inaccurate, and ambiguous.

The decomposition of the controlled process suggests an
analogous decomposition of the controlling process into a state
estimation and an action selection process. The incoming video



streams are processed by the vision-based cooperative state es-
timation module, which computes the belief state of the robot
with respect to the current game situation. The belief state con-
tains estimates of the positions of the robot itself, its teammates,
the ball, and the opponent players. The state estimation mod-
ules of different robots cooperate to increase the accuracy and
reliability of the estimation process. In particular, the coop-
eration between the robots enables them to track temporarily
occluded objects and to faster recover their position after they
have lost track of it. The state estimation processes compute the
robot’s beliefs about the state of the controlled system. The re-
sults of the state estimation are stored in the robot’s belief state,
which contains information such as the robot’s estimated posi-
tion, and the accuracy and a measure of the ambiguity of the
position estimate.

The action selector continually receives the percept vector
generated by the state estimation processes and generates con-
trol signals for the controlled process. The action selection
module then computes an abstract feature description of the es-
timated game state that can be used to recognize relevant game
situations. Based on the abstract game state description, the sit-
uated action selection module selects actions based on a limited
horizon utility assessment.

1V. VISION-BASED, COOPERATIVE GAME STATE
ESTIMATION

The game state estimators [45] of the AGILO robots provide
their action selection routines with estimates of the positions
and the dynamic states of each player and the ball. The AGILO
robots employ probabilistic state estimation to assess the game
state. Probabilistic state estimators maintain probability densi-
ties for the states of objects over time conditioned on the sensor
measurements received so far. Based on these densities, robots
are not only able to determine the most likely state of the ob-
jects, but can also derive even more meaningful statistics such
as the variance of the current estimate. As a result, a probabilis-
tic robot can gracefully recover from errors, handle ambiguities,
and integrate sensor data in a consistent way. Moreover, a robot
employing probabilistic reasoning techniques knows about its
own ignorance, a key prerequisite of truly autonomous robots.

Approached probabilistically, the state estimation problem
can be considered as a density estimation problem, where a
robot seeks to estimate a posterior distribution over the space
of its poses and the poses of other objects conditioned on
the available data. Denoting the game state at time ¢ by s,
and the data leading up to time ¢ by d, ..., do, we write the
posterior as p(s¢|dy, ...,dg;m). Here m is the model of the
world (e.g., a map). We will also refer to this posterior as
Bely(s;), the robot’s belief state at time ¢ [2]. The game state
consists of the compound state variables Robot!, ..., Robot*,
Ball, Opponent!, ..., Opponent™. The number of oppo-
nents varies and robots might be taken out of the field and
might reenter the filed. The compound state variable Robot? =
(', yt, 0%, &%, 5%, ") comprises the position (7, ) and orien-
tation @* of robot 4 and its translational (&?,%¢) and rotational
velocity §%. Robot refers to the value of these variables at time
step . Analogously, Ball = (xbel yball gball ybally denotes
the position and velocity of the ball, where the ball velocity
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Fig. 4. Software architecture of the state estimator.

is interpolated from the last ball position estimates. Finally,
Opponent? = {(x7,y7, 27, 97) where (27,¢7) is again interpo-
lated from previous estimates. The AGILO game state estima-
tors do not observe the orientations of opponent robots. Deter-
mining the pose of components would require sophisticated 3D
models of the opponent robots.

A key problem in solving this state estimation problem is the
complexity of the joint probability density and the huge amount
of data that the probability density is conditioned on. This re-
quires us to factorize, approximate, simplify (by making as-
sumptions), and decompose the probability density [48]. The
AGILO game state estimators decompose the estimation prob-
lem into subproblems for self-localization and for tracking dif-
ferent kinds of independently moving objects: the ball and the
opponent players. This decomposition reduces the overall com-
plexity of the state estimation process and enables the robots
to exploit the structures and assumptions underlying the dif-
ferent subtasks of the complete estimation task. Accuracy and
reliability is further increased through the cooperation of these
subcomponents. In this cooperation the estimated state of one
subcomponent is used as evidence by the other subcomponents.
We will detail our mechanisms for data compression and the ap-
proximations and simplifications that we make in the remainder
of this section.

Figure 4 shows the components of the state estimator and its
embedding into the control system. The subsystem consists of
the perception subsystem, the state estimator itself, and the be-
lief state. The perception subsystem itself consists of a camera
system with several feature detectors and a communication link
that enables the robot to receive information from other robots.
The belief state contains a position estimate for each dynamic
task-relevant object. In this paper the notion of position refers
to the x- and y-coordinates of the objects and includes for the
robots of the own team the robot’s orientation. The estimated
positions are also associated with a measure of accuracy, a co-
variance matrix.

The perception subsystem provides the following kinds of
information: (1) partial state estimates that are broadcasted by



other robots, (2) feature maps extracted from captured images,
and (3) odometric information. The estimates broadcasted by
the robots of the own team comprise the estimate of the ball’s
location. In addition, each robot of the own team provides an
estimate of its own position. Finally, each robot provides an
estimate for the position of all opponents in its field of view.
From the captured camera images the feature detectors extract
problem-specific feature maps that correspond to (1) static ob-
jects in the environment including the goal, the borders of the
field, and the lines on the field, (2) a color blob corresponding
to the ball, and (3) the visual features of the opponents.

As stated above, the state estimation subsystem consists of
three interacting estimators: (1) the self localization system,
(2) the ball estimator, and (3) the opponents estimator. State
estimation is an iterative process where each iteration is trig-
gered by the arrival of a new piece of evidence, a captured im-
age or a state estimate broadcasted by another robot. The self
localization estimates the probability density of the robot’s own
position based on extracted environment features, the estimated
ball position, and the predicted position. The ball localizer es-
timates the probability density for the ball position given the
robot’s own estimated position and its perception of the ball, the
predicted ball position, and the ball estimations broadcasted by
the other robots. Finally, the positions of the opponents are es-
timated based on the estimated position of the observing robot,
the robots’ appearances in the captured images, and their posi-
tions as estimated by the teammates.

Every robot maintains its own belief state with respect to the
game state, which is constructed as follows. The own posi-
tion, the position of the ball, and the positions of the opponent
players are computed by the local state estimation processes.
The estimated positions of the teammates are the broadcasted
results of the self localization processes of the corresponding
teammates because a robot can localize itself with much higher
accuracy than other robots.

The state estimation module is realized as a collection of
different variants of Bayes filters. These filters are iterative
update rules for probability densities given new evidences in
the form of sensor data and robot actions. The filter algo-
rithms drastically reduce the computational complexity of the
state estimation problem by exploiting the Markov assumption
p(z|2:...0) = p(z|z) and transforming the density estimation
problem of p(z|z) through the application of Bayes rule to a
computationally and implementationally more favorable form
using the observation model p(z|z). Based on these assump-
tions, the complexities of the observation model and the motion
model are substantially reduced.

Figure 5 lists the generic Bayes filtering algorithm. With ev-
ery iteration of the algorithm, the belief state Bel () is updated
according to new evidence including a broadcasted message of
a team mate, a newly captured image or an odometric reading.
Here, x, refers to the state of one of the compound state vari-
ables Robot!, ..., Robot*, Ball, Opponent!, ..., Opponent™.

Depending on the type of data (sensor data or control signal),
the algorithm can be divided into two different stages: (1) pre-
diction, and (2) update. During the prediction stage, a model of
the environment process and the control signal u;_; are used to
obtain the prior probability density function of the state at time

algorithm BAYES FILTER (Bel(z), data)

1 let
2 Bel(z) % previous belief state
3 Bel'(z) % updat ed belief state
4 data % data item (action or signal)
5 v % nor nal i si ng const ant
6
7 do
8 v+ 0;
9 switch (data)
10
1 case (data isacontrol signal vector ) :
12 % predi ction stage
13 for each z do
14 Bel'(z) + [p(z|z’,u) Bel(z) d 2';
15
16 case (data isasensor data vector z) :
17 % update or measurenent stage
18 for each = do
19 Bel'(z) + p(z|z) Bel(z);
20 v < v+ Bel'(z);
21 for each = do
22 Bel'(z) + v! Bel'(z);
23

24 return (Bel'(z));

Fig. 5. The Bayes Filtering Algorithm.

t, via the Chapman-Kolmogorov equation:

Bel(x) = /p(;vt|xt,1,ut,1) Bel(zy 1) dxi 1 (1)

During the update stage, an observation z; becomes available
and is used to update the prior density to obtain the required
posterior density of the current state:

Bel(zt) = v p(z¢|zt) Bel(zi-1) 2

where the likelihood function p(z;|z;) is defined by the ob-
servation model.

To implement the Bayes filter, we must provide three prob-
ability distributions: (1) the initial belief Bel(z¢), (2) the next
state probability p(x¢|z:—1,us—1) given the current state and
the last action, (3) and the observation likelihood p(z¢|z) for a
given state.

In the AGILO robot system, these densities are approximated
by Gaussian distributions. Gaussians have the advantage that
they represent a state and the associated uncertainty in a com-
pact and uniform way with a mean vector and a covariance ma-
trix, respectively. This distribution can efficiently be commu-
nicated over channels with narrow bandwidth (such as wireless
LAN) and processed by the state estimation algorithms. To ac-
count for the lack of reliability of Gaussian Belief filters we run
a more robust and computationally more expensive state esti-
mator as a monitor in parallel.

A. Perception

The information needed for game state estimation is provided
by the perception system and includes the following kinds of



information: (1) partial state estimates broadcasted by other
robots, (2) feature maps extracted from captured images, and
(3) odometric information. The estimates broadcasted by the
teammates comprise the respective robot’s location, the ball’s
location, and the locations of the opponents. From the captured
camera images the feature detectors extract problem-specific
feature maps that correspond to (1) static objects in the envi-
ronment including the goal, the borders of the field, and the
lines on the field, (2) a color blob corresponding to the ball, and
(3) the visual features of the opponents.

Fig. 6. The figure shows an image captured by the robot and the feature map
that is computed for self, ball, and opponent localization.

The workhorse of the perception component is a color clas-
sification and segmentation algorithm that is used to segment
a captured image into colored regions and blobs (see figure 6).
The color classifier is learned in a training session before tour-
naments in order to adapt the vision system to specific lighting
conditions and effects.

B. Self and Ball Localization

The self- and ball-localization module [23] iteratively esti-
mates, based on a model of the environment, the probability
density over the possible robot positions, given the observations
taken by the robot.

A robot’s belief Bel(z;) about its own position is approxi-
mated by a multi-variate Gaussian density and represented by
its mean vector X = (z,y, ¢, Toaur, Ysar)*» and 5x 5 covariance
matrix X .

Bel(z:) = N(z4;%,2Zx) @)

- 1 eI @)
(27)5det(Sx)

The robot’s model of the static part of its environment that
is used for self localization is composed of landmarks together
with their positions and orientations. The landmarks include
goals, field lines, and walls surrounding the pitch. Each entity is
modeled as a curve feature [10]. Figure 7 depicts an excerpt of
the environment model representing the neighborhood around
a goal. The goal is modeled as a set of 3D lines where each line

is associated with a color transition. Using this environment
model and a position estimate, the robot can predict where in a
captured image lines should be visible and which color transi-
tion they represent.

Fig. 7. Model of the neighborhood of a goal. The model contains the edges of
the objects and the color transition they are the borderline of.

The self-localization algorithm performs a maximum a pos-
teriori (MAP) estimate of the robot’s pose. The MAP estimate
Z; is given by ; = argmax,, p(x:) - p(z|z:), where p(z;)
is the prior of the pose z; summarizing all evidence gathered
in the past. The prior at the current time step is obtained by
predicting the pose distribution estimated for the previous time
step. The second term p(z|z.) is the likelihood that the robot
observed z given its current pose .

The likelihood function p(z|z;) uses correspondences be-
tween the predicted and obtained data and determines the re-
spective quality of fit. In order to approximate this function
for given image data, the following steps are necessary: First,
the 3D curve features that are predicted to be visible are pro-
jected into the image plane. Second, a local search is performed
to establish correspondences between the model curve and im-
age features. During this search knowledge about the expected
color transitions is used. Measurement errors of the resulting
observations are assumed to be mutually independent Gaussian
random variables with zero mean. Based on these assumptions,
we derive a likelihood function that evaluates the deviations be-
tween the found image points and the corresponding projections
of the 3D curve features.

Finally, the resulting maximum a posteriori criterion is opti-
mized for the robot pose. A maximum a-posteriori (MAP) es-
timation step computes an estimate z; of the robot pose which
best fits to the position prediction p(x;) and to the image ob-
servations. Since the projection of the 3D features is non-
linear, the resulting objective function can not be optimized in
a closed-form. Hence, we use an iterative optimization based
on Newton’s method. The assumption of Gaussian errors to-
gether with the iterative optimization method make this method
equivalent to an iterated Kalman filter. A nice feature of this
algorithm is that a robot can use ball observations performed
by teammate robots as dynamic landmarks and thus can solve
under determined localization problems when the ball is in its
field of view. The details of the algorithm can be found in [23],
[45].

The above self-localization algorithm is used to track the
pose of an AGILO player and the ball. It is initialized with a
pose estimate generated by a global self-localization procedure
[36], which is based on a particle filter. The self-localization



algorithm then refines this pose and tracks the robot’s pose and
the ball until it fails and requires reinitialisation. By provid-
ing two self-localization procedures computational resources
are saved. The fast and accurate self-localization algorithm runs
at frame rate (30 Hz), while the particle filter runs at 10 Hz or
less.

C. Ball and Opponent Tracking

The ball and opponent tracker [44] is based on a multiple hy-
pothesis tracking approach [39] and computes the belief state
with respect to the existence and position of opponent robots.
This part of the belief state is computed by (1) detecting fea-
ture blobs in the captured image which might correspond to an
opponent, (2) estimating the world coordinates and uncertain-
ties of these blobs, and (3) associating them with the object
hypotheses, which correspond to tracked opponents.

The belief Bel(z;) of a opponent tracker is represented by a
set of weighted Hypotheses, H, = |, {hi,pi} = Ui, {<
hi, %y >,p;}. The hi’s are Gaussian random variables,
hi ~ N(hi, %), representing an object hypothesis (a pos-
sible object state) by a mean hi = (z,#,y, )’ consisting of a
2D position and velocity estimate, an associated 4 x 4 covari-
ance matrix nis and non-negative numerical factors p¢ called
the importance factors. The importance factors determine the
weight (=importance) of a hypothesis and can be thought of
as the probability of representing a real opponent on the field.
This representation is also sometimes called a sum or mixture
of Gaussians and can be evaluated as follows:

n
Bel(z;) = Y p} * N(zi; hj, Tp:) 4)
i=1

The opponent tracker maintains a Kalman filter, for every
hypothesis. In order to update the belief state five things need
to be done for the set of hypotheses: (1) predict the positions
according to the system model, (2) associate predicted hypothe-
ses and observations, (3) fuse feasible associations and generate
new hypotheses, (4) compute the hypotheses weights, and (5)
prune the set of hypotheses.

The implementation of the prediction stage is straight-
forward. The only difference is that the system model has to
be applied to every hypothesis. The update stage has to be ex-
tended such that it can handle multiple measurements, multiple
hypotheses (add new, update existing and delete unlikely hy-
potheses), and can perform the probability computations for all
hypotheses.

For the following, it is assumed that the measurement vector
consists of a number of possible opponent observations, which
were determined by the sensor data processing and feature ex-
traction algorithms [45]. The first task performed by the update
stage is to copy all predicted hypotheses to the set of new hy-
potheses. This accounts for the fact that none of the hypotheses
might be reconfirmed by a measurement and is also referred to
as track splitting.

Then, the update stage assigns the new observations to ex-
isting hypothesis. This process is called data association. An
association is usually performed on the basis of a validation
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Fig. 8. Hypotheses trees maintained by the opponent tracker. Every branch
of a tree represents one possible track of a physical object. New branches are
introduced as an attempt to solve data association ambiguities through track
splitting.

gate. Typically, for Gaussian probability densities the Maha-
lanobis distance is used. If an observation falls within the vali-
dation gate of an existing hypothesis, then they are assumed to
have originated from the same physical object. In this case, the
measurement and the hypothesis are fused by the Kalman filter
update equations and are used to create a new hypothesis.

The ambiguities arising in this step can in the general case
not be resolved. For example, it is possible that one opponent
observation reconfirms several hypotheses or that an existing
hypothesis is reconfirmed by more than one observation. A
way to overcome this problem is to avoid unique associations
and consider all possible assignments instead. This procedure
generates a new hypothesis for every possible combination of a
hypothesis from the previous time step and an observation from
the current time step and stores them in a tree like data struc-
ture (see Figure 8). Every newly created hypothesis is added
to the set of current hypotheses and is linked with its prede-
cessor contained in the previous set of hypotheses. Over time
this creates a tree like structure, where each branch represents
a possible track of a dynamic object. This procedure delays the
final unique associations for a predefined number of time steps
in the hope that further information acquired in subsequent time
steps will automatically resolve all existing ambiguities.

The computation of the importance factor (probability)
of an hypothesis requires the evaluation of the expression
P(hi|Z;..o), where hi is the hypothesis for which the proba-
bility is computed, and Z;. ¢ is the set of all current and pre-
vious observations. The form of this expression is highly task
dependent [3], [13], [29], [45].

Observations that cannot be assigned to an existing hypoth-
esis, are used to initialize new hypotheses. The probabilities
of these hypotheses are initialized with a predefined constant
probability. Alternative approaches are to derive an initial prob-
ability from the measurement’s covariance matrix.

Finally, to constrain the growth of the set of hypotheses and
the computational demand of the opponent tracker, the set of
hypotheses is pruned. Several different and efficient pruning
strategies exist and are applied. Similar hypotheses are merged,
unlikely ones are discarded, and an upper bound on the number
of hypotheses allows to save computational resources. Typi-
cally pruning strategies and their parameters exploit applica-
tion specific information and heuristics. For alternative pruning
strategies see, for example [3], [13], [29].



V. SITUATED ACTION SELECTION AND EXECUTION

After having described the mechanisms for game state es-
timation we will now turn to the issue of action selection.
Throughout the game the AGILO robots have a fixed set of
tasks with different priorities. The tasks are shoot the ball into
the goal, dribble the ball towards the goal, look for the ball,
block the way to the goal, get the ball, ... The situated action
selection module enables the robots to select a task and to carry
out the task such that, in conjunction with the actions of the
teammates, it will advance the team’s objectives the most. We
consider a task to be the intention of the AGILO robot team to
perform certain actions. Action selection and execution is con-
strained by (1) tasks being achievable only if certain conditions
hold (e.g., the robot has the ball) and (2) a robot being able to
only execute one action at a time.

We define that a task assignment a; is better than as if there
exists a task in aq that has lower priority than all the ones in
ay or if they achieve the same tasks but there exists a task ¢
in a; such that all tasks with higher priority are performed at
least as fast as in ay and t is achieved faster by a; than by a,.
This performance criterion implies that if an AGILO robot can
shoot a goal it always will try because this is the task with the
highest priority. Also, if the AGILO team can get to the ball
it tries to get there with the robot that can reach the ball the
fastest. This strategy might not yield optimal assignments but
guarantees that the highest priority tasks are achieved as quickly
as possible.

To achieve a high degree of autonomy the AGILO robots per-
form the task assignment distributedly on the individual robots.
This makes the task assignment more robust against problems
in inter robot communication. These problems can be caused
by robots being sent off the field, computers being crashed af-
ter heavy collisions, and communication being corrupted due to
interferences with other communication channels.

The most salient features of the situated action selection are
the following ones. First, to realize a competent and fast task
assignment and execution mechanism the AGILO controllers
make ample use of automatic learning mechanisms. Second,
the task assignment mechanism works distributedly on the in-
dividual robots and are robust against communication corrup-
tions. Finally, the task assignment and execution mechanism
always produces purposeful behavior and always aims at the
achievement of high priority tasks.

A. AGILO Simulator: a Tool for Learning

An important means for developing competent robot soccer
skills is a robot simulator that allows for realistic, controllable,
and repeatable experiments. For this reason we have devel-
oped a robot simulator that accurately simulates how the dy-
namic state of the robot changes as the robot’s control system
issues new driving commands such as setting the target trans-
lational and rotational velocities. The AGILO software devel-
opment environment therefore provides a robot simulator that
uses multi layer neural networks to simulate the dynamics of the
AGILO soccer robots. We have used the RPROP algorithm [41]
for supervised learning in order to teach the neural net mapping
dynamic states and control signals into the subsequent states.
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Fig. 9. A training scenario in the multi robot simulation environment:
To acquire training patterns for the neura projector arobot is set to a
randomly defi ned initial state ; (position of the robot in subfi gure @)
and has to drive to arandomly defi ned target state x; indicated by the
dashed arrow. Thedirection and length of thisarrow indicate the target
state’s orientation and velocity. The time the robot needs to reach its
target state (subfi gure b & c) is taken to complete the training pattern
{{xs, 21 ), time).

For specializing the simulator to the AGILO robots we have
performed a training session in which we have collected a total
of more than 10000 training patterns from runs with real AG-
ILO robots for a large variety of navigation tasks. Using a test
set of patterns that was not contained in the training patterns we
determined that prediction for the patterns for moderately diffi-
cult navigation tasks was about 99%. The accuracy decreased
to about 92% in situations where both velocities, the transla-
tional and rotational one, were changed abruptly at the same
time. These inaccuracies are caused by the lack of representa-
tive training patterns as well as the high variance in navigation
behavior with maximal acceleration.

B. Task Assignment

A very simple algorithm suffices to compute task assign-
ments that satisfy the performance criterion that we have stated
before:

algorithm AsSSIGN-TASKS(robs,tasks)
for 1 « 1t0 LENGTH(tasks)
ACTION(argmin,c agrrocost(r, tasks[I]) < tasks[I])

The algorithm works as follows. In the beginning of each
iteration the action of each AGILO robot is reset to idle. Then
the algorithm iterates over all tasks in the order of their priority.
It then assigns the task to the idle AGILO robot that can achieve
the task the fastest. The task assignment algorithm does two
things: first, it computes the task that should be achieved by the
robot itself and second, it computes which higher priority tasks
will probably be achieved by which other robot.

The algorithm assumes knowledge of the cost of task
achievement. For robot soccer we define the cost cost(r;, a;)
of a robot r; performing an action a; as the time needed to com-
plete an action a;, that is, the time to reach a given target state.
To make accurate predictions a robot has to take its dynamic be-
havior, the intentions of its teammates, and possible opponent
movements into account.

The AGILO task cost estimator performs three steps. First,
the selection of the multi robot navigation method that matches
the game state best. By taking the estimated game state into
account the cost estimator can take even expectations about the
movements of the opponents into account. Second, computing
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Fig. 10. Navigation plans for a given single robot navigation task as
proposed by different navigation planning methods.

a path in the context of the navigation paths of the teammates.
This is done by computing navigation paths that avoid negative
interferences with the paths computed for the higher priority
tasks (see section V-C). Third, the proposed path is then decom-
posed into a sequence of simpler navigation tasks for which the
time cost can be accurately predicted using a neural network.
The mapping from navigation tasks, given by start points and
destinations, into the time cost needed for the task completion
is realized through a multi layer artificial neural network and
learned through the backpropagation derivative RPROP [41].
We have trained the network using about 300.000 training pat-
terns generated from accomplishing random navigation tasks in
the learned simulator (see figure 9).

C. Multi Robot Navigation Planning

Each robot employs a multi robot navigation planner in order
to plan its own path in the context of the intentions of the team-
mates. The planner is given a joint navigation task that specifies
a target state (position, orientation and velocity) for each robot
of the team. The objective of the navigation system is to achieve
a state where each robot is at its target state as fast as possible.

But which navigation planning method should a robot apply
to achieve its objectives? Contemplate figure 10. The figure
depicts a single robot navigation task in a typical game situa-
tion and the navigation plans proposed by different navigation
planning algorithms with different parameterizations. The fig-
ure illustrates that the paths computed by the different methods
are qualitatively very different. While one path is longer and
keeps larger distances to the closest obstacles another one is
shorter but requires more abrupt directional changes. The per-
formance that the paths accomplish depends on many factors
that the planning algorithms have not taken into account. These
factors include whether the robot is holonomic or not, the dy-
namic properties of the robot, the characteristics of change in
the environment, and so on. As a consequence, it seems im-
possible to analytically predict which navigation algorithm and
parameterization works best for our application.

Rather than designing yet another multi robot navigation al-
gorithm we have decided to equip the AGILO robots with a
hybrid robot navigation planning system. The system [11] em-
ploys different single robot navigation and plan merging mech-
anisms and selects the appropriate methods based on an assess-
ment of the given navigation task and game situation. This way

the system can exploit the different properties of the individual
methods by learning for which navigation tasks the methods are
best suited.

The planning methods employed by the AGILO naviga-
tion system include the Potential Field Method, the Shortest
Path Method, Circumnavigating Obstacles, and Maximizing the
Clearance, all described in [32]. Plan merging and repair meth-
ods include methods for merging plans that add waiting steps in
order to avoid interferences. Path replanning methods revise the
individual plans such that no negative interferences will occur
including the Definition of Temporary Targets, the Hallucina-
tion of Obstacles at Critical Sections, and the Insertion of New
Obstacles. The first one modifies the path by introducing addi-
tional intermediate target points. The second one hallucinates
additional obstacles at the positions where collisions might oc-
cur. The third one simply considers the other robot at its respec-
tive position as a static obstacle.

The predictive model of the expected performance of differ-
ent navigation planning methods is specified by rules such as
the following one:

if there is one intersection of the navigation problems
A the navigation problems cover a small area (< 10.7m?)
A the target points are close to each others (< 1.1m)
A the starting/target point distances are small (< 5m)
then fastest-method({potential field,temp. targets })

This rule essentially says that the potential field method is
appropriate if there is only one intersection and the joint navi-
gation problem covers at most one fourth of the field, and the
target points are close to each others. This is because the po-
tential field algorithm tends to generate smooth paths even for
cluttered neighborhoods.

We have learned a set of 10 rules including the one above
using the C4.5 decision tree learning algorithm [38] with stan-
dard parameterization and subsequent rule extraction. To do so
we have collected a training set of 1000 data records, where
each data record contained a description of a randomly gener-
ated navigation task and the time resources required to complete
the task for each possible combination of navigation planning
and plan repair method.

The language for characterizing navigation tasks uses 7 fea-
tures (see figure 11): (1) the number of intersections between
the line segments that represent the navigation tasks, (2) the size
of the bounding box of the navigation tasks, (3) the minimal lin-
ear distance between different starting positions, (4) the mini-
mal linear distance between different target positions, (5) the
minimal distance between the line segments that represent the
navigation tasks, (6) the maximum length of the linear distances
of the individual navigation tasks, and (7) the number of obsta-
cles in the bounding box of the joint navigation task.

To sum up, the AGILO multi robot navigation algorithm
works as follows. First, the appropriate planning mechanism
is selected based on the assessment of the given navigation task
and the situation in which it is to be executed. In the second
step, the joint navigation task is decomposed into single robot
navigation problems. The individual problems are then solved
using the selected planning methods. Then, the individual plans
are repaired in order to avoid negative interferences with the
higher priority plans. Finally, the algorithm extracts sequences
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Fig. 11. Visualization of navigation task features that are used for classifying
navigation tasks.

of target states from the robot’s own navigation plan and sends
those sequences to the robot’s neural network controller, which
is further described in the next section.

D. Execution of Navigation Plans

The robot motion controllers are used for achieving given dy-
namic states as fast as possible. The motion controller receives
the target state (for example, the next state on a planned path)
of a robot and returns low level commands that transform the
current state into the target state as fast as possible. To arrive
at the target state different trajectories are possible. But how to
set them to quickly reach the target state? The AGILO robot
controllers learn a direct mapping from the robot’s current state
and the robot’s target state to the next command to be executed
using multi layer artificial neural networks and the RPROP [41]
algorithm: Net.

VI. EXPERIMENTS AND DISCUSSION

The AGILO RoboCuppers, described in this paper, have par-
ticipated in the fifth robot soccer world championship in Seattle
(2001). The team has played six games for a total of about
120 minutes. The team advanced to the quarter finals playing
games against Sharif CE (7:0), SPQR (7:0), Eigen (0:4), Ulm
Sparrows (7:0), GMD Robots (1:1), and COPS Stuttgart (0:1).
In the tournament none of the AGILO players was sent off the
field because of causing collisions with opponent players or not
leaving the penalty area in time. Most of the occasions in which
the AGILO players had to be taken off to be restarted seemed
to be caused by hardware problems. More results related to
RoboCup 2001 can be found in [45].

For this paper we have developed a ceiling camera system,
which provides ground truth information for any given match
situation. For the following experiments our robots have played
three matches under tournament conditions together with The
Ulm Sparrows with a net playing time of about 2 hours. Dur-
ing these experiments belief states of the AGILO robots were
recorded in a log file and compared after the match to the data
provided by the ground truth camera system.

A. Game State Estimation

A typical result of the AGILO game state estimator is shown
in Figure 12. Subfigure 12(a) shows the trajectories of the AG-
ILO players, computed through vision-based self localization
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[23]. Subfigures 12(b) and (c) display the ball and opponent
observations performed by the AGILO players, respectively.
The tokens indicate which AGILO robot made the observations.
Figure 12(d) visualizes how the individual observations of the
ball and the opponent robots are merged into consistent tracks.

Qualitatively, we can estimate the accuracy of the game state
estimation by looking for the jumps in the tracked lines. We
can see that the own tracks are smooth and can therefore be
expected to be accurate. Only defender Grimoald looses track
of its pose and is reinitialized by its particle filter. The tracks
of the ball and the opponents look very reasonable. They are
less accurate and sometimes incomplete. We can also see that
several tracks resulted from cooperative perception, i.e. from
merging the observations of different robots. In addition, the
exchange of observations results in fewer hallucinated obstacles
and therefore allows for more efficient navigation paths. Sev-
eral incorrect opponent observations made by the goal keeper
(Theodo) and ball observations made by defender (Grimoald)
were correctly omitted by the ball and opponent tracker and not
assigned to a track.

Quantitative data for the experiments can be found in Tables |
and Il. Table | summarizes the localization accuracies for the
AGILO robots and the observation accuracies for ball and op-
ponent observations for the three friendly matches. The local-
ization worked very well for the goalkeeper (#1) and the striker
Odilo (#4). Their mean localization accuracies are estimated to
be 12 and 19 cm, respectively. This is not amazing for the goal-
keeper, since it is quite stationary and can observe the penalty
area lines most of the time very well and use them for precise
localization. The accuracy achieved by Odilo is quite remark-
able since it traveled long distances across the field and scored
several goals. The inferior accuracies of Grimoald (#2) and
Hugibert (#3) lead to further investigations and it was found,
that both robots were using suboptimal camera parameteriza-
tions. Furthermore, Grimoald (#2) was also using a suboptimal
color lookup table, and as such failed to produce good classi-
fication results for a wide range of images. As a consequence,
the localization algorithm failed more often and the achieved
accuracy was less good than for the other two robots. However,
the achieved accuracies are still quite good and prove that the
localization algorithm is robust up to a certain degree of noise
and the use of suboptimal camera parameters. The addition of a
suboptimal color classifier causes the localization algorithm to
be unstable and fail more often by two orders of magnitude.

Table | summarizes also the input data used to test the oppo-
nent tracking algorithm. The left, center and right column dis-
play the accuracies (RMSE) and the standard deviation of the
self-localization, of the ball observations and of the opponent
observations of the individual robots. Self-localization errors
and inaccuracies often cause errors in ball and opponent ob-
servations. As a rule of thumb, the errors for opponent obser-
vations are usually greater than the errors for ball observations.
This is due to the unique circular shape of a ball. Arbitrary robot
shapes hamper the opponent detection routines and as such add
an indirect level of noise. Unfortunately the influence of the
wrong intrinsic camera parameters of Grimoald and Hugibert
on the observations is clearly visible.

The results of the opponent tracking algorithm for all three
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Fig. 12. (a) Trajectories of The AGILO RoboCuppers, (b) ball observations of The AGILO RoboCuppers, (c) opponent observations of The AGILO RoboCuppers,

(d) cooperatively estimated trajectories of the ball and of The Ulm Sparrows.

matches are displayed in Table 1l. The column ball and op-
ponent tracks reveal the achieved statistics for the respective
object class. Every column displays the percentage of correct
tracks, the percentage of incorrect tracks, the track accuracies,
and the standard deviation. For every match, the statistics for
individual as well as for cooperative perceptions are given. In
order to generate the statistics for the individual observations
the opponent tracker was run four times using only the obser-
vations performed by one robot.

Cooperative perception increases both the percentage of the
correctly determined tracks and the accuracy of these tracks.
During the match, between 46 to 57 % of the ball’s trajectory
was detected with an accuracy of 0.19 to 0.23 m. This is a good
result, since the ball is often occluded by robots, lifted up by
the referee and moved to a new location or shot off the pitch by
one of the robots. Opponent tracking worked equally well. On
average, 51 % of the opponent tracks were determined correctly
by the opponent tracking algorithm. The number of false tracks
was reduced to an average of 9 % and the mean track accuracy
was 0.35 m. This is also a good result, since broken robots are
regularly moved off the field and repaired outside. Furthermore,
the opponent goal keeper is usually only observed during an
attack.

The cooperation of the different robots increases both, the
completeness and the accuracy of state estimation. Accuracy
can be substantially increased by fusing the observations of dif-
ferent robots because the depth estimate of positions are much
more inaccurate than the lateral positions in the image. This
can be accomplished through the Kalman filter’s property to
optimally fuse observations from different robots into global

hypotheses with smaller covariances.

The completeness of state estimation can be increased be-
cause all the robots can see only parts of the field and can be
complemented with observations of the teammates. The other
effect we observed was that cooperation allowed to maintain the
identity of opponent players over an extended period of time,
even though the field of view of the observing robots is limited.
This point is well illustrated in Fig. 12(d). The three opponent
field players were tracked successfully over a period of 120 sec-
onds.

Our results suggest that purely image-based probabilistic es-
timation of complex game states is feasible in real time even in
complex and fast changing environments. We have also seen
that maintaining trees of possible tracks is particularly useful
for estimating a global state based on multiple mobile sensors
with position uncertainty. Finally, we have seen how the state
estimation modules of individual robots can cooperate in order
to produce more accurate and reliable state estimates.

B. Action Selection

The action selection is even more difficult to evaluate. A
weak indication of the coherence of coordination is the number
of robots performing go2ball at the same time. Ideally there
should always be exactly one robot going for the ball if the team
knows where the ball is. The statistics extracted from the log
files of the Seattle tell us that 98.64% of the cycles exactly one
robot was going to the ball, in 0.34% no robot, and in 1.02%
of the cycles more than one. The average duration that a robot
performs go2ball or handles the ball without being interrupted



13

Self-Localization Ball Observations Opponent Observations
Robot | RMSE (m) std.dev. (m) | RMSE(m) std.dev. (m) | RMSE (m) std.dev. (m)

1. Match

#1 0.12 0.07 0.31 0.23 0.38 0.26

#2 0.33 0.15 0.38 0.25 0.50 0.26

#3 0.24 0.11 0.24 0.22 0.46 0.26

#4 0.19 0.09 0.25 0.23 0.37 0.25
2. Match

#1 0.11 0.06 0.33 0.22 0.42 0.26

#2 0.33 0.19 0.35 0.25 0.48 0.27

#3 0.21 0.10 0.28 0.24 0.40 0.24

#4 0.20 0.10 0.25 0.26 0.35 0.24
3. Match

#1 0.12 0.09 0.27 0.22 0.40 0.26

#2 0.37 0.21 0.34 0.26 051 0.26

#3 0.23 0.11 0.26 0.22 0.44 0.25

#a 0.19 0.10 0.18 0.20 0.38 0.25

Mean of al matches

#1 0.12 0.08 0.29 0.22 0.40 0.26

#2 0.34 0.18 0.36 0.25 0.50 0.26

#3 0.23 0.11 0.26 0.23 0.44 0.25

#4 0.19 0.10 0.21 0.22 0.37 0.25
TABLEI

ACCURACIESACHIEVED FOR SELF-LOCALIZATION, BALL, AND OPPONENT OBSERVATIONS.

by a decision of a fellow robot is 3.35 seconds. In only 0.25%
of the time a robot that is stuck is determined to go for the ball
by the other robots. These results suggest that the task assign-
ment algorithm together with our task cost estimation mecha-
nism works well. Buck et al. [11] present more conclusive re-
sults obtained in the RoboCup simulation league that show that
the team performance using the task assignment algorithm de-
grades gracefully as the corruption level for communication is
increased. They also show how the task assignment algorithm
achieves more complex patterns of cooperation such as double
passes.

Figure 13 shows a kind of situation that has occurred several
times during the RoboCup and is replayed in the AGILO simu-
lator. Robot number 2 is supposed to be the fastest to get the ball
and therefore approaches the ball (fig. 13a). Near the ball robot
2 collides with an opponent robot. Robot 2 is in a deadlock sit-
uation and cannot move forward anymore. The only action fea-

sible to execute remains get_unstuck. Thus robot 3 approaches
the ball now (fig. 13b) Having reached the ball robot 3 dribbles
towards the opponent goal while robot 2 is moving backwards
(fig. 13c): Afterwards robot 2 is not stuck anymore and robot 3
is still dribbling.

We have also evaluated our learned hybrid multi robot navi-
gation system in the AGILO robot simulator. To do so, we have
compared its performance with the performance obtained by
the individual navigation methods. We have performed a boot-
strapping t-test based on 1000 different joint navigation tasks to
empirically validate that the hybrid navigation planner performs
better than the individual planning methods. Based on these
experiments we obtained a 99.9% confidence in the test set
(99.9% in the training set) that the hybrid method outperforms
the potential field method (with its respective parameteriza-
tion). The respective probabilities for the shortest path method
are 99.9% (99.9%), for the maximum clearance method 99.84%
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Ball track Opponent tracks
Corr. Incorr.  RMSE  std. dev. | Corr.  Incorr.  RMSE  std. dev.
Robot || (%) (%) (m) (m) %) (%) (m) (m)
1. Match
#1 21 8 0.32 0.23 25 13 0.43 0.26
#2 17 11 0.37 0.26 21 20 0.50 0.24
#3 18 14 0.23 0.23 27 19 0.45 0.25
#4 31 9 0.27 0.24 34 13 0.38 0.24
Coop. || 46 10 0.23 0.21 57 10 0.35 0.19
2. Match
#1 12 7 0.33 0.21 20 8 0.46 0.25
#2 16 15 0.31 0.25 19 12 0.46 0.27
#3 20 8 0.32 0.26 28 16 0.40 0.24
#4 28 13 0.29 0.27 31 11 0.36 0.23
Coop. 49 13 0.23 0.22 50 9 0.34 0.21
3. Match
#1 24 9 0.28 0.22 20 11 0.46 0.25
#2 10 9 0.37 0.26 16 11 0.50 0.25
#3 18 12 0.27 0.22 21 13 0.44 0.25
#4 34 17 0.22 0.22 24 9 0.39 0.25
Coop. 57 16 0.19 0.18 46 8 0.38 0.21
Mean of al matches
Coop. 51 13 0.21 0.20 51 9 0.35 0.20
TABLEII

ACCURACIESAND COVERAGE ACHIEVED BY THE OPPONENT TRACKER FOR BALL AND OPPONENT TRACKING.

(99.71%), and for the viapoint method 96.25% (94.62%). This
validates our hypothesis that the hybrid planner dominates the
other planning methods with statistical significance (> 95%).

Besides the performance the frequency with which the AG-
ILO system selects actions is also impressive. There are on av-
erage 10 action selection cycles per second despite the sophis-
tication of task cost prediction and multi robot navigation. This
speed can be reached because the results of complex computa-
tions are estimated through neural networks and decision trees
that have been trained using experience-based learning mecha-
nisms.

So far our plan-based control mechanisms have only been

applied in the AGILO RoboCup simulator and not yet in exten-
sive experiments. Our next steps in the advancement of our ac-
tion selection mechanisms are the autonomous learning of more
complex tasks, such as dribbling towards the opponent goal and
shooting in the right moment in the right corner. Another im-
portant issue is action selection under uncertainty. The skills
that we have learned so far were all acquired with the simulator
using a perfect world model. We believe that we can learn much
better skills if our simulator can also learn probabilistic models
of the AGILO state estimation processes. To learn such a prob-
abilistic perception model we need however a ceiling camera
that records the ground truth that the estimated states can be



Fig. 13. An example for intelligent cooperation in area robot soccer
environment. Robot 2 approaches the ball (subfi gure @) and thereby
collides with a robot of the opponent team (b). As the opponent robot
constantly pushes robot 2 is stuck and temporary not regarded by the
other robots. Thus robot 3 moves towards the ball while robot 2 tries
to get unstuck (c). Finally robot 3 dribbles towards the opponent goal
whilerobot 2 is staying back in its own half (d).

Algorithm Mean time (1000 problems)
plsec | signifi cance P(pree < 1)
Simple Potential Field || 15.92 99.99 %
Shortest Path 13.14 99.99 %
Maximum Clearance || 12.31 99.84 %
Viapoint 11.95 96.25 %
Decision Tree 11.44
TABLEIII

RESULTS OF FOUR EVALUATED ALGORITHMS AND THE TRAINED
DECISION TREE. THE SIGNIFICANCE LEVEL IS BASED ON A T-TEST.

compared to. Finally, we believe that in order to acquire more
skills more autonomously it is crucial to better integrate learn-
ing mechanisms into robot control languages. To this end we
extend our plan-based control language RPL such that it is ca-
pable of declaratively specifying learning problems within the
control routines.

VI1I. RELATED WORK

The research described in this paper can be discussed with
respect to several dimensions. Within the robot soccer applica-
tion we will compare it with the control techniques employed
by other mid-size teams and those employed by teams playing
in the simulator and the small size league. In addition, we will
compare the system with other autonomous control systems that
share the control principles that they apply.

15

In the mid-size league most competing teams apply behavior-
based control techniques and avoid the problem of estimating
the complete game state with the CS Freiburg team being a no-
table exception [35]. However, because the Freiburg team is
using Laser range finders as their primary sensors, which are
very accurate in depth estimation, they can get away with a
simpler state estimation mechanism in which can assume al-
most perfect sensors with known positions. Most other mid-
size teams coordinate the play of their teammates by negotiat-
ing or assigning roles to the different players [27]. In contrast,
in the AGILO team the coordination is implicit and based on
a sophisticated cost estimate for task assignment. The AGILO
team is also distinguished in the mid-size league with respect
to its extensive use of learning and plan-based control mech-
anisms. Technologically, the AGILO software shares control
mechanisms with teams in the simulator league. In particular,
it applies similar learning techniques as the Karlsruhe Brain-
stormers [42]. The use of such techniques in autonomous robot
soccer is much more difficult due to the difficulties in obtain-
ing sufficient training data, high variances in physical effects,
extremely noisy sensors, and the incompleteness of available
information.

With respect to the software architecture and employed soft-
ware techniques the AGILO control software shares common-
alities with autonomous robotic agents such as the extended
RHINO control system [6]. The RHINO system, too, makes ex-
tensive use of probabilistic state estimation, has a default mech-
anism for action selection, and a plan-based control mechanism.
The AGILO software extends this work in that it applies these
techniques to a multi robot control problem in a very dynamic
and adversary environment.

In the research area of autonomous robot soccer several al-
gorithms for probabilistic self-localization have been proposed.
Gutmann et al. [21] have proposed a self localization method
based on a Kalman filter approach by matching observed laser
scan lines into the environment model. We differ from this ap-
proach mainly by using vision data instead of laser data. The
advantage of using vision sensors is that it is a more general
sensor which can be applied to a broader spectrum of applica-
tions and environments. A key challenge for vision algorithms
is the amount of data they have to process and interpret. Other
approaches to vision-based self localization using conventional
and omnidirectional camera systems can be found in [47], [27],
[30], [34], [1]. Most of them are data driven, e.g. apply a Hough
transformation or other computational expensive feature extrac-
tion technique to the complete image, whereas our approach is
model driven and requires only the evaluation of a few pixels
in the vicinity of a projected model feature point. Blake and
Isard [10] also perform model driven localization. However
they restrict themselves to perspective and linear models that
have limited modeling capabilities. Through the addition of an
iterative optimization step our algorithm extends the standard
Kalman filter approach to self localization [18] to handle arbi-
trary non-linear models.

Enderle et al. [17], [1] have developed a vision-based self-
localization module for the RoboCup scenario using a sample-
based Markov localization method, that is also known as Monte
Carlo localization (MCL) [15]. In Fox et al. [19] an extension
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of this approach to multi-robot systems is proposed. The advan-
tage of MCL is that no assumption about the shape of the prob-
ability distribution is made. However, in order to achieve high
accuracy, usually a large number of samples is required. Our
self localization method has the advantage that it is faster as it
utilizes Newton iteration with quadratic convergence speed.

Roumeliotis and Bekey [43] present an approach in which
sensor data from a heterogeneous collection of robots are com-
bined through a single Kalman filter to estimate the pose of each
robot in the team. Further works [31], [40] have described ap-
proaches in which robots actively coordinate their movements
in order to reduce cumulative odometric errors. While all the-
ses methods rely on the capability of a team’s robots to detect
and identify each other correctly, our approach is able to exploit
geometric knowledge about other objects, which do not belong
to the team.

To the best of our knowledge no probabilistic state estima-
tion method has been proposed for tracking the opponent robots
in robot soccer or similar application domains. Dietl and Gut-
mann [16], [21] estimate the positions of the opponents and
store them in the team world model but they do not probabilis-
tically integrate the different pieces of information. Probabilis-
tic tracking of multiple moving objects has been proposed by
Schulz and Burgard [46]. They apply sample-based joint proba-
bilistic data association filter (SIPDAF) estimation to the track-
ing of moving people with a moving robot using laser range
data. In contrast to the SJIPDAF the multiple hypothesis track-
ing approach requires less computational power if the pruning
parameters are carefully selected. Hue et al. [26] are also track
multiple objects with particle filters. In their work data associ-
ation is performed on the basis of the Gibbs sampler. Our ap-
proach to multiple hypothesis tracking is most closely related to
the one proposed by Cox and Hingorani [12]. Cox and Leonard
[13] use multiple hypothesis tracking to model a static environ-
ment consisting of corners and walls. We extend their work
on multiple hypothesis tracking in that we apply the method to
a much more challenging application domain where we have
multiple moving observers with uncertain positions. In addi-
tion, we perform object tracking at an object rather than on a
feature level. Further applications where multiple hypothesis
tracking is used include active global localization of a robot
within a topological map [28] and navigation of an autonomous
system in unknown environments [33].

VIIl. CONCLUSION

This article has described and discussed the control soft-
ware of the AGILO autonomous robot soccer team. Similar
to advanced autonomous robotic agents acting in human work-
ing environments the AGILO team employs sophisticated state
estimation and control techniques, including experience-based
learning and plan-based control mechanisms.

We have shown that the application of probabilistic state esti-
mation techniques together with information exchange between
the robots results in game state estimators that are capable of es-
timating complete states including robots with surprising accu-
racy and robustness even with restrictive and noisy camera sys-
tems. We have also seen that the ample use of experience-based

learning has resulted in powerful control mechanisms, includ-
ing competent coordination, with little runtime computational
cost. The results of the 2001 robot soccer world championship
have shown that these techniques allow for competitive soccer
play despite an inferior hardware equipment.

There are several research directions that we are currently
pursuing and that extend the research reported in this article.
First, we have extended an existing control language with con-
structs for specifying control tasks, process models, learning
problems, exploration strategies, etc. Using these constructs,
the learning problems can be represented explicitly and trans-
parently and become executable. With the extended language
we have started to rationally reconstruct parts of the action se-
lection mechanism that we have described in this article [9].

Another branch of our active research is to add plan-based
control mechanisms for improved performance [4], [6], [5].
The key idea of plan-based control is the explicit and trans-
parent representation of control routines such that the action
selection mechanism cannot only execute the routines but also
reason about and manipulate them. We plan to use these mech-
anisms to learn and execute more sophisticated plays [8].

In the area of probabilistic game state estimation we have
developed a state estimation system using a camera mounted
at the ceiling that provides us with ground truth data about the
game evolution. We currently, use the data from the ceiling
camera to evaluate and analyze our state estimation routines.
In particular the data will enable us to learn more informative
probabilistic models that will hopefully improve the reliability
and accuracy of state estimation.

Finally, we are investigating more general and robust mech-
anisms for image segmentation and object tracking [22]. These
mechanisms should enable the robots to perform the state esti-
mation tasks without making the restrictive assumptions about
distinct colors of the objects of interest and replace the current
segmentation algorithms based on color labeling [24], [25].
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