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Abstract. This paper gives an overview about the approaches chosen by the mid-
dle size robot soccer team of the Munich University of Technology, the AGILO
RoboCuppers. First a brief sytem overview will be given. Then the computational
priciples are described. Finally the directions for further research are outlined.

1 System Overview

The AGILO RoboCup team [1] is realized using inexpensive, off the shelf, easily ex-
tendible hardware components and a standard software environment. The team consists
of four Pioneer I robots. Each robot is equipped with a single onboard linux computer, a
wireless ethernet for communication, and several sonar sensors for collision avoidance.
A color CCD camera with an opening angle of 90o is mounted fix on the robot. The
robot also has a guide rail and a kicking device. That enables the robot to dribble and
shoot the ball.

The incoming video stream from the CCD camera is processed by thevision-based
cooperative gamestate estimation module, which computes thebelief stateof the robot
with respect to the game situation. The action selection module then computes an ab-
stract feature description of the estimated game state that can be used to recognize
relevant game situations. Thesituated action selection moduleselects action based on
a limited horizon utility assessment. The following sections detail the software design
and the operation of these software components.

The game state estimators of the AGILO robots maintain a belief state that contains
the respective robot’s belief about the current game situation [10]. The belief state in-
cludes the estimated positions and orientations of the robot itself, its team mates, the
ball, and the opponent robots and provides the information that is necessary for select-
ing the appropriate actions. State estimation is an iterative process where each iteration
is triggered by the arrival of a new piece of evidence, a captured image or a state es-
timate broadcasted by another robot. The state estimation subsystem consists of three
interacting estimators: the self localization system [5], the ball estimator [7, 6], and the
opponents estimator [9]. This decomposition of game state estimation into specialized
estimation problems reduces the overall complexity of the state estimation process and
enables the robots to exploit the structures and assumptions underlying the different
subtasks of the complete estimation task.

Throughout the game the AGILO robots have a fixed set of tasks with different pri-
orities. The tasks areshoot the ball into the goal, dribble the ball towards the goal,
look for the ball, block the way to the goal, get the ball, ... The situated action selection



module enables the robots to select a task and to carry out the task such that in conjunc-
tion with the actions of the team mates it will advance the team’s objectives the most.
We consider a task to be the intention of the AGILO robot team to perform certain ac-
tions. Action selection and execution is constrained by (1) tasks being achievable only if
certain conditions hold (eg, the robot has the ball) and (2) a robot being able to only ex-
ecute one action at a time. The most salient features of the situated action selection are
the following ones. First, to realize a competent and fast task assignment and execution
mechanism the AGILO controllers make ample use of automatic learning mechanisms
[4, 2, 3]. Second, the task assignment mechanism works distributedly on the individual
robots and are robust against communication corruptions. Finally, the task assignment
and execution mechanism always produces purposeful behavior and always aims at the
achievement of high priority tasks.

2 Current Research Directions

At the current development state of the AGILO autonomous robot soccer control sys-
tem, our most important research directions include the following ones.

– RoboCup without color labeling.Most object recognition and localization meth-
ods in RoboCup work on color segmented camera images. Unfortunately, color
labeling can be applied to object recognition tasks only in very restricted environ-
ments, where different kinds of objects have different colors. To overcome these
limitations we propose an algorithm named the Contracting Curve Density (CCD)[8]
algorithm for fitting parametric curves to image data. The method neither assumes
object specific color distributions, nor specific edge profiles, nor does it need thresh-
old parameters. Hence, no training phase is needed. In order to separate adjacent
regions we use local criteria which are based on local image statistics. We apply
the method to the problem of localizing the ball and show that the CCD algorithm
reliably localizes the ball even in the presence of heavily changing illumination,
strong clutter, specularity, partial occlusion, and texture[7, 6].

– Designing complex state estimation systems.In many autonomous robot appli-
cations robots must be capable of estimating the positions and motions of moving
objects in their environments. We apply probabilistic multiple object tracking to
estimating the positions of opponent players in autonomous robot soccer. We have
extended an existing tracking algorithm to handle multiple mobile sensors with
uncertain positions.

– Learning high performance state estimation routines.Complex probabilisitic
state estimation systems have many parameters that need to be adjusted in order to
achieve the required robustness and accuracy. The parameters that need to be set
include probabilistic observation and action models, predictive models for the ex-
pected information content of new observations, the adequate assignment of com-
putational resources to subtasks, and so on. In our research we investigate how
the proper setting of these parameters can be learned from experience. To do so, we
have developed a global state estimator using a ceiling camera that provides us with
the ground truth data for game situations. Using the ground truth data as an oracle of
what the state estimator should have perceived, we can then learn situation-specific



probabilistic models of our state estimation system that can be used to improve the
system performance.

– Integration of programming and learning. Many reasoning tasks in autoonomous
robot soccer are so difficult that they can neither be completely programmed nor
completely learned. An obvious solution is the proper integration of programming
and learning mechanisms. To this end, we have extended the robot control language
RPL with constructs for explicitly representing (1) the physical system that is to be
controlled and (2) the learning problems to be solved. In the extended language en-
tities such as control tasks, process models, learning problems, and data collection
strategies can be represented explicitly and transparently, and become executable.
In the learning and execution phase, the entities are first class objects that control
programs cannot only execute but also reason about and manipulate. These capa-
bilities enable robot learning systems to dynamically reorganize state spaces and to
incorporate user advice into the formulation of learning problems. The extensions
that we have presented are expressive enough to rationally reconstruct large parts
of the AGILO 2001 action selector.
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